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The work of David Olive has had a major impact on
the development of string theory.

I think this impact has been greatest in two areas:

a) world-sheet CFT (eg GKO,GSO, etc...)
b) strong-weak coupling duality.

The latter will play an important role
in what I have to say here.

David Olive's work with Montonen, suggesting that
non-Abelian gauge theories have a dual description
at strong coupling in terms of magnetic degrees of
freedom, found its home in string theory where it
lead to string dualities and M theory.
We learned that some vacua of different string
theories are in fact equivalent.

It is important to try and understand if these
dualities can have a bearing on " realistic vacua of
string and M theory".

We will discuss this question today.



There are many different vacua of string and M
theory.

Some examples are:

Eleven dimensional flat spacetime.
Type IIB on AdS;XSwith N units of flux

Heterotic Strings on K3x R>'

None of these vacua are realistic.
There are too many large dimensions.
The gauge groups are wrong.
Etc. etc.

However, there is very strong evidence that
these are exact, non-perturbative vacua.

This is due to strong-weak coupling dualities.

So, I think, we have to live with the fact that
M theory predicts many vacuum states which are
not realistic.

This is not a problem as long as the theory also
predicts the existence of a vacuum state which
is realistic.



But, in order to proceed, we need to have some
idea about the number of " realistic vacua" in the
theory.

This is not really a well posed question, because
one can (and many people have) conceive of many
different UV completions of the standard models
of particle physics and cosmology.

Also, we dont actually know any realistic vacua.
So, in defining " realistic vacua" we need to make
some choices.

My choice is unbroken supersymmetry
at some energy scale above the electroweak scale.
This is because of hints from unification and
hierarchy stabilisation as well as the idea that string
theory predicts supersymmetry.

Since particle physics also requires non-Abelian
gauge symmeiry and chiral fermions,
we will be interested in

The Space of



String and M theory vacua with four large
dimensions, non-Abelian gauge symmetry, chiral
fermions and unbroken supersymmetry
at some energy scale
E>FE,

Comments:
I have absolutely no idea how big this space is!!

One could obtain a rough lower bound by simply
enumerating the number of known vacua
with these properties.

(Douglas has initiated a study of this bound,
hep-th/0303194)

Even though we have defined the space,
its not really the space!

This is because I did not add the
criterion that supersymmetry is broken at
low energy. So we get an upper bound.

Here is a (more or less complete) list
of the known vacua in the space:



a EXEgheterotic strings on Calabi-Yau 3-folds

b SO(32)heterotic strings on Calabi-Yau 3-folds

¢ Type IIA orientifolds of C-Y 3-folds
with D6-branes

d Type IIB orientifolds of C-Y 3-folds
with D(odd) branes.

e F-theory on Calabi-Yau 4-folds

f  Mtheory on G2-holonomy manifolds with
singularities

g Non-geometric CFT's, where the extra
dimensions are represented by a SCFT without a
geometric limit.

h  Freund-Rubin compactifications of M theory on
singular Einstein manifolds with R>0

Comments:

Vacua from g behave similarly to those in a - {,
which can also be perturbatively defined by CFT.

One can also add fluxes to some of these vacua.
We will discuss this below.

Vacua from a - f can be related by dualities.

For example: all of the c-vacua are also f-vacua;
all of the d-vacua are limits of e-vacua;
when the G2-manifolds in f are K3-



fibred, they are dual to a- or b-vacua.

More importantly, there are vacua in this list which
are apparently not dual to other vacua in this list!

Precisely: if we assume that all dualities between
string and/or M theory vacua originate from the
known, fundamental dualities between vacua with
16 or more supercharges, then there are vacua
which are not dual to other vacua.

Eg, if the G2-holonomy manifolds in f-vacua are not
K3-fibered then they cannot be dual to the heterotic
string vacua. If they are also not locally foliated by
circles, then they are not dual to Type IIA vacua.

Similarly, if the F-theory d-vacua are defined with
non K3-fibered C-Y 4-folds, then they are not dual to
the heterotic string vacua.

The a,b,c,d,e,f,g-vacua all classically have
A=0whereas the Freund-Rubin vacua in h

have classically A <0, suggesting that h-vacua are
distinct from the rest.

This is one point that we will try to develop



evidence for here: Freund-Rubin vacua are not
dual to the special holonomy vacua" a - f.

If this is indeed true, then it means that the space
of realistic vacua is disconnected, even after
accounting for dualities.

This makes the task of making predictions

for physics beyond the standard models more
difficult.

There are presumably more classes of realistic vacua
than just those we know about already! For example,
someone may eventually find some new classes of
flux compactifications

of M theory. My bet is that new vacua do exist.

I now want to move on and give some more details
about what I have said already.

First of all, I want to review a modern approach to
particle physics model building via M theory on a
manifold, X, with G2-holonomy.

The classical vacuum is flat four dimensional
spacetime.



When X is smooth, the low energy description
of the physics is 4d supergravity with an Abelian
gauge group and massless, neutral, moduli.

In order to obtain non-Abelian gauge symmetry
X must contain a 3-manifold Q, along which there
is an orbifold singularity (BA hep-th/9812205,
0011089) These singularities are ADE in type ie

4

locally X~ XQ

F ADE

Thus, along Q we have a non-Abelian ADE gauge
field.

In order to obtain chiral fermions X contains
additional singular points p; on Q at which there is

a conical singularity
(Atiyah-Witten hep-th/0107177 and BA-Witten
hep-th/0109152)

Near these singularities the metric is
ds’=dr’+r’g(Y)

with Y a compact 6-manifold whose topology
determines which representation of the gauge



group the chiral fermions reside in.

For both kinds of singularity, the
light charged particles are actually wrapped
membranes.

So the picture of the seven extra dimensions in
these vacua is roughly



Notice that all the charged matter particles are
localised at points in the extra dimensions.

This means that there can be no local interactions
between them.

Instead, interactions are generated by non-local
instanton effects. Every interaction between the
charged particles is generated by a Euclidean
membrane instanton which wraps a (supersymmetric)
3-cycle N which passes through the points p;i
supporting the particles involved.

The coupling constant A for this interaction term is
of order

—T,Vol(N)

A~e
with T, the membrane tension.
Because the couplings are exponentionally
suppressed it is extremely natural to obtain

hierarchies of Yukawa couplings.

In fact it is also natural for some couplings to
be extremely small....



In GUT models built this way the couplings have a
minimal value given by

-2

«,. which is roughly 10 ° for

T
8

AONe

1
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So in principle one can suppress unwanted
operators” using this mechanism. In practice this
turns out to be difficult if one wants to preserve
Grand Unification.

Luckily, these vacua can also have natural discrete

symmetries which can also suppress such operators,
(Witten hep-ph/0201018).

Notice also that the theory automatically predicts
localised chiral fermions.

Another prediction of such vacua is that
supersymmetry breaking, if it occurs, will
generically be gravity mediated.

This is because the 3-manifolds which support
the gauge fields generically do not intersect in X



Even though this is a generic prediction,

some models will exist in which supersymmetry
breaking is gauge mediated. Consider the models
which are dual to Type IIA orientifolds of C-Y
3-folds with partially wrapped intersecting D6-
branes.

In this dual picture, Q is a 3-manifold in the
Calabi-Yau, Z and is a surface which the D6-branes
wrap. In a six dimensional space such as Z, a
collection of 3-manifolds will generically intersect in
points, and hence there will be massless

particles charged under both of the gauge groups
which are involved. So, it is natural in such vacua
that there are gauge interactions between all gauge
groups.

Existence:

Unlike Calabi-Yau's, G2-manifolds are much
harder to construct explicitly. However, there
are many more G2-manifolds than there are
Calabi-Yau 3-folds!!! This is again because of
dualities.

So, even though we dont know that many G2-
manifolds explicitly, we do know that they exist.



The problems of G2-compactification:

The main problem, which is not specific to

these vacua but all string/M theory vacua is

a proper understanding of supersymmetry
breaking and the cosmological constant problem.

A problem more specific to G2 compactification
is explaining why the couplings of charged particles
take the values they take.

Recall that these are generated by membrane
instantons and are exponentionally suppressed by
the volume of the instanton. These couplings are
actually functions of the parameters s; of the
Einstein metric on X. So, to explain why, say

Al’
= 10° is equivalent to explaining why
s,~s,—14

This is a mild fine tuning, but needs to be
understood.



We can offer an explanation

prior to supersymmetry breaking, with the hope that
the reasoning is still valid in models without
bose-fermi mass degeneracy......

Moduli Stabilisation by Fluxes:

Low energy M theory is well approximated
by 11d supergravity in smooth regions of spacetime.

This theory has two bose fields: a metric g and
a 3-form potential C, with field strength G.

The classical solution corresponding to a G2-
holonomy manifold X times Minkowski spacetime
has G=0.

This classical theory has zero potential. Hence the
parameters of the metric s; are massless fields
whose vevs are undetermined.

However, at volumes large compared to Lp,
the energy density of C is small and hence the
theory with non-zero G can be regarded as a
perturbation of the G = 0 case.



Since the Lagrangian for C, G*G depends on

the metric on X, it depends on the moduli fields

s ; and therefore induces a potential for the moduli.
If this potential has isloated

stable critical points, the vev's of the moduli are
determined!

Unfortunately, this does not happen
(BA-Spence hep-th/0007213; Beasley-Witten hep-
th/0203061)

Instead, the potential is positive, with a runaway
behaviour.

As we saw above, at special kinds of singular
subspaces, the theory has additional localised
light degrees of freedom.

In [BA hep-th/0212294] we proved that, under
certain topological conditions, a combination of
fluxes for both G and the gauge fields at a singularity
is enough to guarantee the existence of a
supersymmetric vacuum with negative A in which
the s; are uniquely determined.

In [BA hep-th/0303234] we went on to show
that in such vacua, choices for G exist for which the
Yukawa couplings between quarks, leptons and



Higgses are correct.

The bad news is that choices of flux exist which
give virtually any set of Yukawa couplings!

Other problems which need to be addressed are:
Calculating the phases of the mixing matrix.

Showing that the Yukawa couplings are unchanged
by supersymmetry breaking effects.

Explaining how, after supersymmetry breaking, the
cosmological constant is very slightly above zero.

I now want to go on to discuss the so-called Freund-
Rubin vacua, and explain why I think that these
vacua cannot be dual to the vacua I discussed above.



Freund-Rubin Vacua:

In 1980, Freund and Rubin found a solution of
11d supergravity (a.k.a. low energy M theory) in
which spacetime is of the form

S'X AdS,

This describes a compactification on a round 7-
sphere to anti de Sitter space.

The cosmological constants of the two spaces are
proportional to each other, so the Kaluza-Klein
excitations have a mass of the same order as the
fluctuations of the AdS.

By replacing S’ by another Einstein, R > 0 manifold,
Y, we obtain other solutions.

This lead to an industry in the early 80's in which
one attempts to find a suitable Y for which the low
energy physics is that of the standard models.

Unfortunately Witten proved that, when Y is smooth
one can never obtain chiral fermions from such
vacua. The discovery of the heterotic string then

put an end to this program..



Maldacena revived interest in these vacua when he
proposed that they are all holographically dual to
3d conformal field theories (which reside on the
world-volumes of membranes at the boundary of
AdS4).

This was strongly motivated by the fact that the
metric of N membranes in flat spacetime becomes
the Freund-Rubin vacuum at large N.

In the context of G2-holonomy compactifications
we saw that special kinds of singularities

of the extra dimensions lead to chiral fermions

in four dimensions, so it is natural to ask if
something similar happens in Freund-Rubin
compactifications?

This is the question posed in [BA,F. Denef,C.
Hofman, N.Lambert hep-th/0308046]

Well, the chiral fermion singularities are a very
local concept, so if R > 0 Einstein 7-manifolds exist
with locally the same singularities as we discussed
above, we will have Freund-Rubin vacua with chiral
fermions.



Here is an example which illustrates many of the
important features.

We begin with the metric of N membranes:

2

ds’=H *(r)g,,, + HS(r)[dr2+r2g7(Y)]

6
H=1—|—a—6; a’~ N
r VOI(Y)

This describes N membranes in the background
ds’=g, +dr'+rig,(Y)

In the large N limit this metric becomes
ds’=g(AdS,)+a’ g, (W)

where AdS4 has A~qa °. This is the Freund-Rubin
solution.

Now, let
ds’=dy’+y’ g, (W) be a G2-holonomy cone.

(there are several explicit examples)



Now,
ds’=g, , + d’ + &y’ + y g (W) isa
background

for M theory. So we can consider N membranes in
this background. To do this we need to identify a
good " radial”" coordinate. This is provided by

the following equality

dx2+dy2+y2g6(W)=dr2+r2[d (xz—l—sinz(xg()(W)}
where O0<« <

So, we can use r as the variable in the membrane

metric. This gives a Freund-Rubin metric at large

N for which the Einstein metric on the extra
dimensions is

g(Y)=do’+sin’x g (W)

At « = 0 , 7 there are conical singularities
of the form

do’+o’ g (W) exactly as in the G2-holonomy case.

So, if W is such that we get chiral fermions
in that case, they will also be present here.



However,

in these, simplest examples, the chiral fermion at 0
is CPT conjugate to that at m, so the full

spectrum is non-chiral.

By some fancier arguments, however, we were able
to demonstrate the existence of genuinely chiral
examples.

Instead of getting bogged down in those details,
I want to emphasise some general points.

In all the examples we constructed, the rank of
the four-dimensional gauge group is a free
parameter.

Classically, the cosmological constant (or N, the
membrane number) is also a free parameter.

All of these Freund-Rubin examples have a
holographic dual - a 3d SCFT.

In simple cases one can explicitly write the metric
for the supergravity solution.

All of these features are in contrast to the G2-
holonomy and Calabi-Yau vacua. There one



cannot explicitly write the metric. The rank of the
gauge group is fixed.

Since the manifolds (although singular) involved
in the Freund-Rubin vacua are so simple compared
to the special holonomy vacua, the examples do not
admit K3-fibrations (although perhaps some do).

For these and probably other reasons I think that
the generic Freund-Rubin vacua in our space are
totally disconnected from the G2-holonomy or
Calabi-Yau vacua.

My bet is that there are also other classes of vacua in
our space which are not dual to either the Freund-
Rubin vacua or the special holonomy vacua.

This means that we have to carefully study the
physics of Freund-Rubin (and would be other classes
of) vacua to address whether or not they can fail to
be realistic at a finer level.

In some sense it would be more satisfying if one
could show that Freund-Rubin vacua cannot actually
describe the real world.

Failing that....



Since there seem to be completely disconnected
components of the space of vacua

and, moreover, since there appear to be many vacua
in each disconnected component, we ought to be
worried about what we should do to make
predictions.

Instead of running around like headless chickens
searching for a single realistic vacuum,

perhaps we should ask questions about the generic,
model independent predictions of vacua of the
various types.

For instance, we already argued that generic G2-
holonomy compactifications will have gravity
mediated supersymmetry breaking, if atall.

A more abstract, statistical approach might also
be used to demonstrate the existence of vacua with
certain properties (Douglas).



An important outstanding problem.

The Freund-Rubin vacua classically have a negative
cosmological constant.

Can quantum effects generate corrections to the
potential which allow a de Sitter vacuum?

Actually this is not just a problem for Freund and
Rubin.

Generically all of the vacua in our space will
suffer from this problem.

The reason is that N=1 supersymmetry in four
dimensions allows very non-trivial non-perturbative
effects and generically such a system will have

a non-trivial potential which arises via a
superpotential, W.

The conditions for unbroken supersymmetry with
non-zero (always < 0) cosmological constant are

p equations for p unknowns and will typically have
solutions.

This is unlike the case of zero c.c. which is an
overdetermined system.



I also want to emphasise that KKLT gave a
proposal for the existence of de Sitter vacua
in Type 1IB string theory.

Attempting to implement this proposal leads
to difficulties. So, we dont have a single example
of a de Sitter vacuum.

Maybe string theory predicts that the acceleration
of the universe is not due to a cosmological constant.



