Lattice QCD calculations for high-precision tests of the Standard Model of Particle Physics

Vera Gülpers

School of Physics and Astronomy
University of Southampton

September 12, 2018
RBC/UKQCD Collaboration

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

UC Boulder
Oliver Witzel

Columbia University
Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiun Tu
Bigeng Wang

University of Connecticut
Tianle Wang
Evan Wickenden
Yidi Zhao

University of Liverpool
Nicolas Garron

MIT
David Murphy

Peking University
Xu Feng

University of Southampton
Jonathan Flynn
Vera Gülpers
James Harrison
Andreas Jüttner
James Richings
Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

York University (Toronto)
Renwick Hudspith

International Collaboration: UK/US/China/Japan
The Standard Model of Particle Physics

- Theory to describe the (known) elementary particles and their interactions
- quarks: \(u, c, t \) (up, charm, top) and \(d, s, b \) (down, strange, bottom)
 - gauge bosons: \(\gamma \) (photon), \(g \) (gluon), \(W^\pm, Z \) bosons
- leptons: \(e, \mu, \tau \) (electron, muon, tau) and \(\nu_e, \nu_\mu, \nu_\tau \) (electron neutrino, muon neutrino, tau neutrino)
- fundamental interactions
 - electro-magnetism, mediated by photons
 - weak interaction, mediated by \(W^\pm, Z \) bosons, e.g. \(\beta \)-decays
 - strong interaction, mediated by gluons, e.g. binds Nuclei together
- Higgs boson, discovered 2012 at LHC, predicted over 50 years ago (Noble Prize 2013 for Higgs, Englert)
Physics Beyond the Standard Model

- very successful theory, but:
- open questions
 - What is dark matter? Or dark energy?

- Why is there more matter than antimatter in the Universe?
- Why are there three generations of fermions?
- Why is there such a hierarchy of masses?
- ...

- search for physics beyond the Standard Model
 - high-energy searches in colliders, e.g. LHC
 - new physics enters in low energy as small corrections due to quantum loops
 → high precision tests to find deviations from SM predictions
QCD and confinement

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

\begin{align*}
\alpha_s(M_Z) &= 0.1181 \pm 0.0011 \\
\text{pp} \rightarrow \text{jets} &\text{ e.w. precision fits (N}^3\text{LO)} \\
0.1 &\quad 0.2 &\quad 0.3 \\
\alpha_s(Q^2) &\quad 1 &\quad 10 &\quad 100 \\
Q \text{ [GeV]} &\quad 1000 \\
\text{DIS jets (NLO)} &\quad \tau \text{ decays (N}^3\text{LO)} \\
\text{Heavy Quarkonia (NLO)} &\quad e^+e^- \text{ jets & shapes (res. NNLO)} \\
\text{e.w. precision fits (N}^3\text{LO)} &\quad p\bar{p} \rightarrow \text{jets (NLO)} \\
\text{pp} \rightarrow \text{tt (NNLO)}
\end{align*}

- quarks and gluons confined to bound states (hadrons)

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]
QCD and confinement

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

\begin{align*}
\alpha_s(M_Z) &= 0.1181 \pm 0.0011 \\
pp \rightarrow \text{jets} &\quad \text{e.w. precision fits (N}^3\text{LO)} \\
\begin{array}{c}
\tau \text{ decays (N}^3\text{LO)} \\
\text{DIS jets (NLO)} \\
\text{Heavy Quarkonia (NLO)} \\
e^+e^- \text{ jets & shapes (res. NNLO)} \\
\text{e.w. precision fits (N}^3\text{LO)} \\
pp \rightarrow \text{jets (NLO)} \\
pp \rightarrow \tau \text{ (NNLO)} \\
\end{array}
\end{align*}

- quarks and gluons confined to bound states (hadrons)

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]
QCD and confinement

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

\[\alpha_s(M_Z) = 0.1181 \pm 0.0011 \]

\[\text{pp} \rightarrow \text{jets} \]

\[\text{e}^+\text{e}^- \text{ precision fits (N}^3\text{LO)} \]

\[\tau \text{ decays (N}^3\text{LO)} \]

\[\text{DIS jets (NLO)} \]

\[\text{Heavy Quarkonia (NLO)} \]

\[\text{e}^+\text{e}^- \text{ jets & shapes (res. NNLO)} \]

\[\text{e.w. precision fits (N}^3\text{LO)} \]

\[\text{pp} \rightarrow \text{tt (NNLO)} \]

- quarks and gluons confined to bound states (hadrons)
QCD and confinement

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

\[
\alpha_s(M_Z) = 0.1181 \pm 0.0011
\]

![plot of $\alpha_s(Q^2)$ vs Q [GeV]]

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

- quarks and gluons confined to bound states (hadrons)
QCD and confinement

- Quantum Chromo Dynamics (QCD) theory of the strong interaction

- strong coupling α_s

\[
\alpha_s(M_Z) = 0.1181 \pm 0.0011
\]

- quarks and gluons confined to bound states (hadrons)

- each additional gluon line or quark-antiquark pair comes with α_s ($\alpha_s \sim O(1)$ at small energies)

\rightarrow Monte Carlo sampling

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]
QCD on the lattice

- Wick rotation \((t \rightarrow -ix_0) \) to Euclidean space-time
- Discretize space-time by a hypercubic lattice \(\Lambda \)
- Quantize QCD using Euclidean path integrals

\[
\langle A \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}] \mathcal{D}[U] e^{-S_E[\psi, \bar{\psi}, U]} A(U, \psi, \bar{\psi})
\]

- can be split into fermionic and gluonic part

- Calculate gluonic expectation values using Monte Carlo techniques:

\[
\langle \langle A \rangle_F \rangle_G = \int \mathcal{D}[U] \langle A \rangle_F P(U) \approx \frac{1}{N_{\text{cfg}}} \sum_{n=1}^{N_{\text{cfg}}} \langle A \rangle_F
\]

average over gluonic gauge configurations \(U \) distributed according to

\[
P(U) = \frac{1}{Z} (\det D)^{N_f} e^{-S_G[U]}
\]

- extrapolate to the continuum \((a \rightarrow 0) \) and infinite volume \((V \rightarrow \infty) \)
Computational Challenges

- two energy scales in the problem, box size L, lattice spacing a
 \[\mathcal{O}(1/L) \ll E \ll \mathcal{O}(1/a) \]
- typical size of a lattice
 \[N = L^3 \times T = 64^3 \times 128 \sim \mathcal{O}(10^7 - 10^8) \]
- Dirac-operator D: matrix of size $N \times N$
- calculate quark propagators \rightarrow need the inverse D^{-1}
 \rightarrow solve the Dirac equation using appropriate sources η
 \[D \phi = \eta \]
- solve numerically using Conjugate Gradient
Overview

- use Monte Carlo methods to calculate QCD observables at low energies on a space-time lattice
- compare results from calculations (i.e. Standard Model predictions) with experimental results
 → low-energy tests of the Standard Model
 → high precision to find hints for (small) deviations from Standard Model
- code development and optimisation
 ▶ GRID https://github.com/paboyle/Grid
 ▶ Hadrons (Grid-powered Workflow Management System) [P. Boyle et al]
 ▶ [A. Portelli et al]

Outline

- The anomalous magnetic moment of the muon
- Flavour physics
 ▶ CKM matrix and leptonic Meson decays
 ▶ rare Kaon decays
- Conclusions
Outline

Standard Model of Particle Physics

The anomalous magnetic moment of the muon

Flavour physics
 CKM matrix and leptonic Meson decays
 rare Kaon decays

Conclusions
Magnetic moment of leptons (e, μ, τ)

- magnetic moment $\vec{\mu}$ of the lepton ℓ due to its spin \vec{s} and electric charge e

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$

- torque $\vec{\tau} = \vec{\mu} \times \vec{B}$

- gyromagnetic factor (g-factor)

- without quantum fluctuations for a lepton one finds $g = 2$

- deviation from the value “2” due to quantum loops
 \rightarrow anomalous magnetic moment of lepton ℓ

$$a_\ell = \frac{g_\ell - 2}{2}$$
The anomalous magnetic moment of the muon

\(a_\mu : \) Experiment vs. Theory

- \(a_\mu = (g_\mu - 2)/2 \)
- Measured and calculated very precisely \(\rightarrow \) test of the Standard Model
- Experiment: polarized muons in a magnetic field \[\text{[Bennet et al., Phys.Rev. D73, 072003 (2006)]} \]
 \[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]

- New experiments at Fermilab and JPARC \(\rightarrow \) reduce error by \(\approx 4 \)
 \(\rightarrow \) first result from Fermilab expected 2019

\[\omega_a = a_\mu \frac{eB}{m_\mu} \]
The anomalous magnetic moment of the muon

a_μ: Experiment vs. Theory

- $a_\mu = (g_\mu - 2)/2$
- measured and calculated very precisely \longrightarrow test of the Standard Model

\[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]

[http://muon-g-2.fnal.gov/bigmove/gallery.shtml]

- new experiments at Fermilab and JPARC \rightarrow reduce error by ≈ 4
- \rightarrow first result from Fermilab expected 2019

[Credit: Brookhaven National Laboratory]
[Credit: Fermilab]
The anomalous magnetic moment of the muon

a_μ: Experiment vs. Theory

- $a_\mu = (g_\mu - 2)/2$
- measured and calculated very precisely \rightarrow test of the Standard Model
- experiment: polarized muons in a magnetic field $[\text{Bennet et al., Phys.Rev. D73, 072003 (2006)}]$

 \[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]

- Standard Model
a_μ: Experiment vs. Theory

- $a_\mu = (g_\mu - 2)/2$
- measured and calculated very precisely \rightarrow test of the Standard Model
- experiment: polarized muons in a magnetic field $[\text{Bennet et al., Phys.Rev. D73, 072003 (2006)}]$

 \[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]

- Standard Model

 $\text{em} \quad (11658471.895 \pm 0.008) \times 10^{-10} \quad [\text{Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)}]$
The anomalous magnetic moment of the muon

\[a_\mu : \text{ Experiment vs. Theory } \]

- \[a_\mu = (g_\mu - 2) / 2 \]
- measured and calculated very precisely \(\rightarrow \) test of the Standard Model
- experiment: polarized muons in a magnetic field \[\text{[Bennet et al., Phys.Rev. D73, 072003 (2006)]} \]
 \[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]
- Standard Model
 - em \((11658471.895 \pm 0.008) \times 10^{-10} \) \[\text{[Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]} \]
 - weak \((15.36 \pm 0.10) \times 10^{-10} \) \[\text{[Gnendinger et al., Phys.Rev. D88, 053005 (2013)]} \]

\[\nu_\mu \]

\[\mu \]

\[\mu \]

\[Z \]

\[H \]
The anomalous magnetic moment of the muon

\[a_\mu : \text{Experiment vs. Theory} \]

\[a_\mu = (g_\mu - 2)/2 \]

- measured and calculated very precisely \(\rightarrow \) test of the Standard Model

\[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]

- Standard Model
 - em \((11658471.895 \pm 0.008) \times 10^{-10} \) [Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]
 - weak \((15.36 \pm 0.10) \times 10^{-10} \) [Gnendinger et al., Phys.Rev. D88, 053005 (2013)]
 - HVP \((692.3 \pm 4.2 \pm 0.3) \times 10^{-10} \) [Davier et al., Eur.Phys.J. C71, 1515 (2011)]
 - HVP(\(\alpha^3 \)) \((-9.84 \pm 0.06) \times 10^{-10} \) [Hagiwara et al., J.Phys. G38, 085003 (2011)]
a_μ: Experiment vs. Theory

- $a_\mu = (g_\mu - 2)/2$
- measured and calculated very precisely \rightarrow test of the Standard Model

$$a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10}$$

- Standard Model
 - em (11658471.895 ± 0.008) x 10^{-10} [Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]
 - $weak$ (15.36 ± 0.10) x 10^{-10} [Gnendinger et al., Phys.Rev. D88, 053005 (2013)]
 - HVP (692.3 ± 4.2 ± 0.3) x 10^{-10} [Davier et al., Eur.Phys.J. C71, 1515 (2011)]
 - $HVP(\alpha^3)$ (−9.84 ± 0.06) x 10^{-10} [Hagiwara et al., J.Phys. G38, 085003 (2011)]
The anomalous magnetic moment of the muon

\[a_\mu: \text{Experiment vs. Theory} \]

- \[a_\mu = (g_\mu - 2)/2 \]
- measured and calculated very precisely \(\rightarrow \) test of the Standard Model
- experiment: polarized muons in a magnetic field \[[\text{Bennet et al., Phys.Rev. D73, 072003 (2006)}] \]
 \[a_\mu = 11659208.9(5.4)(3.3) \times 10^{-10} \]
- Standard Model
 - em \[(11658471.895 \pm 0.008) \times 10^{-10} \] \[[\text{Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)}] \]
 - weak \[(15.36 \pm 0.10) \times 10^{-10} \] \[[\text{Gnendinger et al., Phys.Rev. D88, 053005 (2013)}] \]
 - HVP \[(692.3 \pm 4.2 \pm 0.3) \times 10^{-10} \] \[[\text{Davier et al., Eur.Phys.J. C71, 1515 (2011)}] \]
 - HVP(\(\alpha^3 \)) \[(-9.84 \pm 0.06) \times 10^{-10} \] \[[\text{Hagiwara et al., J.Phys. G38, 085003 (2011)}] \]
 - LbL \[(10.5 \pm 2.6) \times 10^{-10} \] \[[\text{Prades et al., Adv.Ser.Direct.High Energy Phys. 20, 303 (2009)}] \]

- Comparison of theory and experiment: \(3.6\sigma \) deviation

\[\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 28.8(6.3)^{\text{Exp}}(4.9)^{\text{SM}} \times 10^{-10} \]

- new physics?
Hadronic Vacuum Polarisation (HVP) from the R-ratio

- current best theoretical estimate uses experimental data
- optical theorem

\[R(s) = \frac{\sigma(e^+ e^- \rightarrow \text{hadrons}, s)}{\sigma(e^+ e^- \rightarrow \mu^+ \mu^-, s)} \]

- R-ratio

- first principles calculation of HVP \(\rightarrow \) lattice QCD
The anomalous magnetic moment of the muon

Hadronic Vacuum Polarisation (HVP) from the lattice

- calculate hadronic part on the lattice

\[C_{\mu \nu}(t) = \sum_{\vec{x}} \langle J_{\mu}(t, \vec{x}) J_{\nu}(0) \rangle \]

- vector two-point function

- electromagnetic current

\[J_{\mu} = \frac{2}{3} u\gamma_{\mu} u - \frac{1}{3} d\gamma_{\mu} d - \frac{1}{3} s\gamma_{\mu} s + \ldots \]

\[a_{\mu} = \sum_{t} w_{t} C_{ii}(t) \quad \text{for } i = 0, 1, 2 \]
Hadronic Vacuum Polarisation (HVP) from the lattice

- calculate hadronic part on the lattice

- vector two-point function

\[C_{\mu\nu}(t) = \sum_{\vec{x}} \langle J_{\mu}(t, \vec{x}) J_{\nu}(0) \rangle \]

- electromagnetic current

\[J_{\mu} = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \ldots \]

\[a_\mu = \sum_t w_t C_{ii}(t) \quad i = 0, 1, 2 \]

- for the first time included electromagnetic corrections in the calculation

\[\rightarrow \text{quarks have electric charge} \]

\[\rightarrow O(\alpha) \text{ with } \alpha \approx 1/137 \text{ fine structure constant} \]
Comparison of results

\[e^+ e^- \rightarrow \text{hadrons} \]

\[R\text{-ratio/lattice combined} \]

\[\text{lattice} \]

\[a_\mu^{\text{HVP}} \cdot 10^{10} \]

Jegerlehner 2017
Davier \textit{et al} 2017
Teubner \textit{et al} 2017
RBC/UKQCD 2018
BMW 2017
CLS Mainz 2017
HPQCD 2016
ETMC 2018

Most precise determination to date!
Comparison of results

\[e^+ e^- \rightarrow \text{hadrons} \]

Jegerlehner 2017
Davier \textit{et al} 2017
Teubner \textit{et al} 2017

\[R\text{-ratio/lattice combined} \]
RBC/UKQCD 2018
RBC/UKQCD 2018
BMW 2017
CLS Mainz 2017
HPQCD 2016
ETMC 2018

\[a_\mu^{\text{HVP}} \cdot 10^{10} \]

most precise determination to date!

Vera G"ulpers (University of Southampton)
Outline

Standard Model of Particle Physics

The anomalous magnetic moment of the muon

Flavour physics
- CKM matrix and leptonic Meson decays
- rare Kaon decays

Conclusions
Introduction

- charged weak interaction (W^\pm): changes “up”-type quarks into a “down”-type quarks
- mixes different generation of quarks
- quark-mixing Cabibbo–Kobayashi–Maskawa (CKM) matrix

\[
V_{\text{CKM}} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]
Unitarity of the CKM matrix

- within the Standard Model CKM matrix is unitary $V_{CKM} V_{CKM}^\dagger = 1$
- example

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

\[\begin{vmatrix}
V_{ud} & V_{ub}^* \\
V_{cd} & V_{cb}^*
\end{vmatrix} = 1 \]

\[\begin{vmatrix}
V_{td} & V_{tb}^*
\end{vmatrix} \]

[PDG]
\(V_{us} \) from leptonic Kaon decays

- leptonic Kaon decay \(K^+ \rightarrow \ell^+ \nu_\ell \)

\[
\begin{align*}
\text{K}^+ & \quad \quad \text{u} \quad \quad \rightarrow \quad \text{W}^+ \\
\text{W}^+ & \quad \quad \text{u} \quad \quad \rightarrow \quad \ell^+ \\
\text{u} & \quad \quad \text{f} \quad \quad \rightarrow \quad \nu_\ell
\end{align*}
\]

- effective weak Hamiltonian

\[
\begin{align*}
\overline{\text{u}} & \quad \quad \text{W}^+ \\
\text{W}^+ & \quad \quad \text{f} \quad \quad \rightarrow \quad \ell^+ \\
\text{f} & \quad \quad \text{G}_F \quad \quad \rightarrow \quad \nu_\ell
\end{align*}
\]

- decay rate (can be measured experimentally)

\[
\Gamma(K^+ \rightarrow \ell^+ \nu_\ell) = \frac{G_F^2 |V_{us}|^2 f_K^2}{8\pi} m_K m_\ell^2 \left(1 - \frac{m_\ell^2}{m_\pi^2}\right)^2
\]

- known factors (Fermi constant \(G_F \), masses \(m \))
- kaon decay constant \(f_K \), can be calculated on the lattice
- CKM matrix element \(V_{us} \)

\(\rightarrow \) need both - experiment to determine \(\Gamma \) and lattice to determine \(f_K \)
\(f_K / f_{\pi} \) from the lattice

\[f_{K^\pm} / f_{\pi^\pm} \]

- **1% precision → electro-magnetic corrections become important**

- **RBC/UKQCD work in progress, see poster by J. Richings**
RBC/UKQCD Flavour Physics Program

- leptonic and semi-leptonic Kaon decays (in progress: include electromagnetic corrections) → determine V_{us}

- charm physics
 - D meson decays constants [J. T. Tsang et al., JHEP 1712 (2017) 008]

 \[
 \begin{aligned}
 &D/D_s \\
 \rightarrow & \text{determine } V_{cd}, V_{cs}
 \end{aligned}
 \]

 - semi-leptonic D decays, determination of charm quark mass

- bottom physics, leptonic and semi-leptonic decays

- $K \rightarrow \pi\pi$, e.g.
 → Ken Wilson Lattice award 2012

- $K^0 - \bar{K}^0$ mixing (including beyond the Standard Model, poster by J.Kettle)
 → ...

- rare Kaon decays
rare Kaon decays

- rare Kaon decay $K \rightarrow \pi e^+ e^-$
- Flavor changing neutral current
 \rightarrow forbidden in Standard Model at “tree-level”, i.e.
rare Kaon decays

- Rare Kaon decay $K \rightarrow \pi e^+ e^-$
- Flavor changing neutral current
 \rightarrow forbidden in Standard Model at “tree-level”, i.e.

$$\begin{align*}
K^+ &\rightarrow \pi^+ e^+ e^- \\
\downarrow &
\end{align*}$$

\Rightarrow no Standard Model process
rare Kaon decays

- rare Kaon decay $K \rightarrow \pi e^+e^-$
- Flavor changing neutral current
 - forbidden in Standard Model at “tree-level”, i.e.
 - \rightarrow no Standard Model process
 - s to d transition in Standard Model only via loop-processes, e.g.
 - extremely rare in the Standard Model \rightarrow sensitive to new physics
rare Kaon decays

- rare Kaon decay $K \rightarrow \pi e^+ e^-$
- Flavor changing neutral current
 \rightarrow forbidden in Standard Model at “tree-level”, i.e.

\Rightarrow no Standard Model process
rare Kaon decays

- rare Kaon decay $K \rightarrow \pi e^+ e^-$
- Flavor changing neutral current
 \rightarrow forbidden in Standard Model at “tree-level”, i.e.

\Rightarrow no Standard Model process
lattice QCD for rare Kaon decays

- experiments at NA62 & LHCb (CERN), J-PARC (Koto) to measure rare Kaon decays

\[K \rightarrow \pi e^+e^- \quad K \rightarrow \pi \nu\bar{\nu} \]

- Standard Model prediction requires calculation of hadronic amplitudes
 \rightarrow Lattice QCD for long distance contributions, e.g.

\[e^+ + e^- \rightarrow K^+ + \pi^+ + W^+ + \rightarrow RBC/UKQCD developed method, currently only ones to calculate this \]

- RBC/UKQCD exploratory study (small lattice, unphysical quark-masses)

- influenced NA62 to look into \(K \rightarrow \pi \ell^+\ell^- \)

- work in progress: study the optimal setup for physical point calculation,
 \rightarrow see poster by F. Ó hÓgáin
Outline

Standard Model of Particle Physics

The anomalous magnetic moment of the muon

Flavour physics
 CKM matrix and leptonic Meson decays
 rare Kaon decays

Conclusions
Conclusions

- Standard Model very successful model to describe elementary particles and their interactions, but many open questions
- low-energy precision test of the standard model
 \[\rightarrow \text{QCD: first principles calculations using Monte Carlo (Lattice QCD)} \]
- hadronic contribution to the magnetic moment of the muon (including electro-magnetic effects)
- broad flavour physics program
 - leptonic meson decays (including electro-magnetic effects)
 - rare Kaon decays
 - \(\ldots \)
- QED corrections to \(K \rightarrow \ell \nu \), rare \(K \) decays currently using \(60\% \) of Tesseract project dp008