How DiRAC helps us measure black holes

Mark Hannam Cardiff University

DiRAC Day, Swansea September 12 2018

First observing run (OI) (September 2015—January 2016)

First observing run (OI) (September 2015—January 2016)

First GW Detection!

First binary-black-hole!

Both black holes 10s of solar masses!

First direct observation of a BH?

First observing run (O1) (September 2015—January 2016)

The fish we threw back.

LVT = "LIGO-Virgo Transient"

First observing run (O1) (September 2015—January 2016)

Second observing run (O2) (December 2016—August 2017)

Second observing run (O2) (December 2016—August 2017)

Enter Virgo!

Second observing run (O2) (December 2016—August 2017)

Enter Virgo!

Binary neutron stars!

A rare event

- I0x closer than GWI509I4; loudest yet (SNR ~32)
- BNS identified as source of short GRBs
- Constraints on NS tidal deformability (i.e, EOS, radius, etc)
- Independent measurement of Hubble constant

How to do GW astronomy

- Build a network of sensitive detectors
- Comb the data for signals until you find one (e.g., convolve with a template bank of theoretical BBH signals)
- Carefully compare with theoretical predictions, to measure signal parameters.
 (e.g., Bayesian MCMC codes identify range of BBH masses, spins, etc., that best match data)
- Need accurate, complete theoretical signals!

(equal-mass, nonspinning, 50M_☉, face-on, 100Mpc)

Numerical relativity

numerically solve full Einstein equations on 3D (mesh-refined) grids

Requires weeks to months on 100s of cores.

Masses: m_1 , m_2 Spins: S_1 , S_2

(8 parameters)

useful combinations:

$$M = m_1 + m_2$$

$$q = m_2 / m_1$$

$$\eta = m_1 m_2 / M^2$$

$$\chi = S/m^2$$

Plus: distance, sky location, orientation, polarisation

Aligned spins

(Dominant spin effect is a weighted sum of the spins)

IMRPhenom

(frequency domain)

(time domain)

- (a) PN-based ansatz
- (b) phenomenological fit (based on NR behaviour)
- (c) FFT of ringdown waveform (Lorentzian)
- Analytic: fast

- (a) EOB + terms tuned to NR waveforms
- (b) Smooth transition to ringdown
- Includes both spins
- Numerically solve ODEs: slow
- Speed-up: Reduced-order models

DiRAC

Orbital precession

Newtonian gravity: L, S₁, S₂ remain fixed

Orbital precession

General relativity (L, S₁, S₂) precess around J

Orientation dependence

$$q=3$$
, $|S_2| = 0.75$ (in plane)

Observer aligned with J

Orientation dependence

q=3, $|S_2| = 0.75$ (in plane)

Observer aligned with J

Observer inclined $\pi/6$ to J

Observer inclined $\pi/3$ to J

Observer inclined $\pi/2$ to J

Precession models

- Main idea: "twist" non-precessing models
- "IMRPhenomP" [Hannam, et al. (2014)] (Analytic frequency-domain fast)
 - Use PN approximation of precession
 - Use degeneracies (two spin parameters)

!!! No tuning to precessing NR simulations !!!

Standard generic model used for all LVC observations

Observing Run 3:2019

- One signal per month... or week!
- Much stronger signals are likely!

Model improvements

- Include tidal effects (for BNS)
- Approximate higher modes (PhenomHM)
- Improved two-spin inspiral precession
- Combine: higher-mode precessing model

Code improvements

NR-tuned precession: Precessing simulations

- Mass ratios 1, 2, 4, 8
- Spin magnitudes 0.4 & 0.8.
- Spin angles: 30, 60, 90, 120, 150 degrees.
- 40 configurations in total.

Conclusions

- Over the next decade, we will observe 10s-100s of BHs
- Expect to observe ~10s of BNS systems
- Current signal models **not** tuned to precessing NR
- Ongoing DiRAC simulation campaign will fix that!
- Longer-term: two-spin effects, recoils, greater precision