Arm's role in

co-design for the !
next generation of
HPC platforms

DiRAC Science Day — September 2018

\ S
N\ \‘
Filippo Spiga
L . | Software and Large Scale Systems

& _——J.‘ — 4~ o N w0 s

+ + + 4 + + v -+ . + + + +

Introducing Arm
Arm in HPC

© 2018 Arm Limited a r+m Re‘.sea rC h+

+ + + 4 + + 4 + 4 4

Arm is Ubiquitous

21 billion chips sold by
partners in 2017 alone

Mobile/Embedded/loT/
Automotive/Server/GPUs

3 © 2018 Arm Limited

Partnership is key

We design IP, not
manufacture chips

Partners build products for
their target markets

Arm is Ubiquitous

One size is not always the
best fit for all

HPC is a great fit for co-
design and collaboration

Ar'M Research

The Arm Business Model

Deploy energy-efficient Arm-based technology, wherever computing happens...

o — ~85% share of | Driving the transformation of thel
Leading in wearables and laptops, tablets, network and data center to an
|_the Internet of Things and smartphones I_Intelligent Flexible Cloud

.

Partnering to deliver

Enabling innovation and creativity—I Taking mobile computing L Ldata center efficiency
| With embedded intelligence o the next four billion people

4 © 2018 Arm Limited a r m Resea rCh

The Arm Business Model
Design of intellectual property (IP) and license to anyone who want to use into their chips.

Licenses technology .
Semiconductor
, Partners
Pays license

Sells chips

Sells final product

Pays royalties per chip

Customers

6 © 2018 Arm Limited a r m Resea rCh

Arm application processors are everywhere

Cortex-A CPUs cover a wide variety of markets

Scale efficiently to substantially higher performance

Fit even more compute in a smaller footprint with less power

{Mobile and Consumer) { Automotive » £ Servers and networking » loT and Embedded

A Ar'M Research

History of Arm in HPC

2014 2 camalll

2011 AMD Opteron A1100 e 2017
Calxada « 64-bit ARMVS-A | THUNDER){ Cavium ThunderX 2
* 32-bit ARMv7-A e Cortex A57 | b * 64-bit ARMV8-A
* Cortex A9 *4-8 Cores ¢ 32 Cores

2011-2015 B— 2015

Mont-Blanc 1 LR : ' Cavium ThunderX

« 32-bit ARMV7-A - | e E « 64-bit ARMVS-A

* Cortex A15 = g * 48 Cores

e ‘First’ Arm HPC S

cluster

10 © 2018 Arm Limited q r m Re Sea rCh

Deployments: GW4 “Isambard”

* New Tier-2 HPC system for GW4

e CRAY XC50 “Scout” platform

* 10,000+ Arm cores

e Based on Cavium ThunderX2 processors (top
bin)

* Cray Aries interconnect

* Cray Programming environment
- Arm tools also available

Isambard hardware, photo from ISC18

More info: http://www.goingarm.com/slides/2018/I1SC2018/Isambard ISC GoingArm June 2018.pdf

oo e e Ar'M Research

http://www.goingarm.com/slides/2018/ISC2018/Isambard_ISC_GoingArm_June_2018.pdf

Deployments: Catalyst UK — ’é Prprp——

Enterprise

“Catalyst UK” program: deployments to accelerate the growth s@

of the Arm HPC ecosystem in UK. Supported by industry and SUSE 0 r m

EPSRC.

Each machine will have: Bristol: VASP, CASTEP.

iversi G , CP2K, Unified

* 64 HPE Apollo 70 systems, each with two 32-core Cavium % léigféiifvooi Mrg(;Z?C;AMD Oar;;s'e
ThunderX2 (i.e. 4096 cores per system), 128 GByte of memory (8 NEMO, OpenII;S CAS'INO
TByte total) 1 AMM’PS ’ ’

e Mellanox EDR

& s " THE UNIVERSITY EPCC: WRF, OpenFOAM,
of EDINBURGH Two PhD candidates

e Compute & Storage all Arm-based

* Full SW stack (compilers and libraries, both open-source and
commercial)

UNIVERSITY OF Leicester (DiRAC): Data-
Systems will be accessible to all UK communities via access LEICESTER Intensive apps, genomics,
. . MOAB Torque
rules set by each University

12 © 2018 Arm Limited q r m Re Sea rCh

Deployments: Astra (Sandia)

HPE system tailored for US NNSA application needs @ ﬁg'l[]igil?al
Laboratories

2,592 HPE Apollo 70 compute nodes

e Cavium Thunder-X2 ARM SoC, 28 core, 2.0 GHz

* Memory per node: 128 GB (16 x 8 GB DR DIMMs)
e 5,184 CPUs, 145,152 cores

* Aggregate capacity: 324TB

* Aggregate bandwidth: 608TB/s (stream triad)

e 2.3 PFLOPS peak

* InfiniBand EDR, Fat-Tree, Mellanox ConnectX-5 \V/A NGUARD
e Liquid cooled, total 1.2MW

More info: http://www.goingarm.com/slides/2018/I1SC2018/HPEGoingArm SC18.pdf

b oo p e Ar'M Research

http://www.goingarm.com/slides/2018/ISC2018/HPEGoingArm_SC18.pdf

Post-K system & first SVE CPU

A64FX Chip Overview

B Architecture Features
* Armv8.2-A (AArch64 only)
SVE 512-bit wide SIMD
48 computing cores + 4 assistant cores*

*All the cores are identical

HBM2 32GiB

» Tofu 6D Mesh/Torus
28Gbps x 2 lanes x 10 ports

PCle Gen3 16 lanes

B 7nm FinFET
« 8,786M transistors
» 594 package signal pins

B Peak Performance (Efficiency)
- >2 7TFLOPS (>90%@DGEMM)
+ Memory B/W 1024GB/s (>80%@Stream Triad)

CMG specification

Mem 8GiB, 256GB/s

<AG64FX>

Tofu
28Gbps 2 lanes 10 ports

FUJITSU

1o
PCle Gen3 16 lanes

Tofu PCle
controller controller

1!11:? _

W

H

A64FX

(Post-K)

SPARC64 XIfx
(PRIMEHPC FX100)

ISA (Base) Armv8.2-A SPARC-V9

ISA (Extension) SVE HPC-ACE2
Process Node nm 20nm

Peak Performance >2 7TFLOPS 1.1TFLOPS

SIMD 512-bit 256-bit

of Cores 48+4 32+2

Memory HBM2 HMC

Memory Peak B/W 1024GB/s 240GB/s x2 (in/out)

14 © 2018 Arm Limited

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

Announced at
Hot Chips ‘30
in Summer 2018

Fully operational by
2020/2021

Ar'M Research

-Arm SVE -
‘Scalable Vector Extension

oo + + | | + | | cn:m Re\‘search+

Evolution of Arm SIMD architectures

Armvé6 SIMD
« 12 X 32-bit integer/core register file
- Integer only 2x16-bit fixed-point data elements

Armv7-A Advanced SIMD (aka Arm NEON)
- 16 X 128-bit SIMD register file, supporting well-conditioned memory data layouts
- Non-IEEE single-precision floating-point and 8/16/32-bit fixed-point data elements

Armv8-A AArch64 Advanced SIMD was an evolutionary step

« 32 X 128b SIMD register file, identical memory data layouts
« Full IEEE double-precision floating-point and 64-bit fixed-point data elements

But new markets for AArch64 (HPC) have demanded more radical features...
- Ability to vectorize irregular code and more complex data structures
- Longer vectors to extract more data-level parallelism per cycle

17 © 2018 Arm Limited

FARCYy

Ar'M Research

Scalable Vector Extension (SVE)

SVE does not mandate a single, fixed vector length
- Vector Length (VL) is hardware implementation choice of 128 to 2048 bits

- Vector Length Agnostic (VLA) programming paradigm made possible by the per-lane predication,
predicate-driven loop control, vector partitioning and software-managed speculation

SVE is not a simple extension of AArch64 Advanced SIMD
- A separate, optional architectural extension with a new set of instruction encodings (ARMv8.3)
- Initial focus is HPC and general-purpose server software, not media/image processing

SVE begins to address traditional barriers to auto-vectorization
- Compilers often cannot vectorize due to intra-vector control and data dependencies

- Software-managed speculative vectorization allows more loops to be vectorized by a compiler

oo p e Ar'M Research

Example: daxpy (scalar)

// x0 = &x[0]
// x1 = &y[0]
// x2 = &a
// x3 = &n
daxpy :
ldrsw x3, [x3]
mov x4, #0
void daxpy (double *x, double *y, double a, int n) ldr do, [x2]
{ b .latch
for (int i = 0; i < n; i++) { 'f;> .loop:
y[i] = a * x[i] + yI[i]; 1dr dl, [x0, x4, 1sl #3]
} 1ldr d2, [x1, x4, 1lsl #3]
} fmadd d2, d1, 40, d2
str d2, [x1, x4, 1lsl #3]
add x4, x4, #1
.latch:
cmp x4, x3
b.1lt .loop
ret

19 © 2018 Arm Limited q r m Resea rCh

daxpy (scalar)

daxpy :
ldrsw
mov
ldr

.loop:
ldr
ldr
fmadd
str
add
.latch:
cmp
b.1t
ret

20 © 2018 Arm Limited

x3, [x3]
x4, #0
do, [x2]
.latch

dl, [x0, x4, 1lsl #3]
d2, [x1, x4, 1lsl #3]
d2, d1, d0, d2

d2, [x1l, x4, 1lsl #3]
x4, x4, #1

x4, x3
.loop

daxpy :

.loop:

.latch:

daxpy (SVE)

ldrsw x3, [x3]

mov x4, #0
whilelt pO0.d, x4, x3
1dlxd z0.d, p0/z, [x2]

1d1d z1l.d, p0/z, [x0, x4, 1lsl #3]
1d1d z2.d, p0/z, [x1, x4, 1lsl #3]
fmla z2.d, p0/m, z1.d, z0.d

stld z2.d, p0, [x1, x4, 1lsl #3]
incd x4

whilelt pO0.d, x4, x3
b.first .loop
ret

Q1: How do we handle the non-multiples of VL?

Q2: What happens at different vector lengths?

Ar'M Research

SVE Programming

Assembly
(not suggested)

Intrinsics
(only if needed)

Compiler

21 © 2018 Arm Limited

Full ISA Specification: The Scalable Vector Extension for ARMv8-A

Lots of worked examples, see “A sneak peek into SVE and VLA programming”

Arm C Language Extensions for SVE

Arm Scalable Vector Extensions and application to Machine Learning

Auto-vectorization via GCC, Arm Compiler for HPC, Cray, Fujitsu
Hints to the compiler via OpenMP: #pragma omp parallel for simd

Best practice in writing parallel code

Ar'M Research

https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/-/media/developer/developers/hpc/white-papers/a-sneak-peek-into-sve-and-vla-programming.pdf?revision=c702475b-6325-41a2-b3d3-d9f244028841
https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
Arm%20Scalable%20Vector%20Extensions%20and%20application%20to%20Machine%20Learning

arm COMPILER

Commercial C/C++/Fortran compiler with best-in-class performance

Tuned for Scientific Computing, HPC and Enterprise workloads

- Processor-specific optimizations for various server-class Arm-based platforms
- Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

(L

Compilers tuned for Scientific
Computing and HPC

Linux user-space compiler with latest features

f /\ - C++ 14 and Fortran 2003 language support with OpenMP 4.5%*
- Support for Armv8-A and SVE architecture extension
Latest features and - Based on LLVM and Flang, leading open-source compiler projects

performance optimizations

Commercially supported by Arm

o - Available for a wide range of Arm-based platforms running leading Linux

distributions — RedHat, SUSE and Ubuntu

Commercially supported
by Arm

oo pe Ar'M Research

LLVM and GCC upstreaming roadmap

Develop your user-space applications for future hardware today

2018

Jan Feb Mar Apr May

Jul Aug Sep Oct Nov Dec

LLVM 7.0

2019

Jan

Feb Mar Apr

May

LLVM 8.0

Partial SVE MC
support

SVE MC support

\ 4

4

¢ 4

Codegen Vectorized
IR

GCC8

4

Initial SVE
Autovec support

Deadline for
new GCC 9 features

\ 4

Full SVE
Autovec support

LLVM

GCC9

\ 4

‘ Automatic SVE
vectorisation

4

Full SVE intrinsics
support

4

23 © 2018 Arm Limited

4

Source: Arm HPC Workshop Tokyo 2017 by Linaro

& —

GCC

Ar'M Research

The Arm Instruction Emulator (ArmlE)

24

ArmlE enables SVE studies in preparation for upcoming silicon

Emulates SVE instructions on existing Armv8 hardware

It enables vector length considerations for future micro-architectures and application

optimisations
As an emulator, it allows for faster application runs and integrates with DBI tools

Faster than architecture simulators (gem5)

« Enables the study of larger input sizes in a fraction of time

« Simulators can complement ArmIE with timing results

|deal for instruction/memory tracing and dynamic binary
instrumentation (DBI)

- Post-processing traces extend application analysis (cache simulator, etc.)

« Helps with SVE-supported application development/optimisation

© 2018 Arm Limited

Armv8-A + SVE binary

-

y N
—h’—

Arm Instruction Emulator
(ArmlE)

Converts unsupported instructions to
native Armv8-A instructions

- —_
-— =
— _—

Linux
-

Armv8-A compatible Platform

Ar'M Research

Instrumenting Aarch64 and SVE

Armv8-A + SVE Binary

SVE Memtrace Client

Ox10000
0x20000
Ox30000

XX instructions
executed, of
which YY were

SVE instructions

Ox40000
Ox50000

l ! ... custom clients ...

Post-Processing &
Simulation Support Regions of Interests

e oo pe e Ar'M Research

Example: SVE Instruction Count Client

Simple SVE loop code example:

#define N 42
int a[N], b[N], c[N];:

int main(void) {
for(int i=0; i<N; ++1){
a[i] = b[i] + b[c[i]];

}
}

Compiling with Arm HPC compiler 18.4

$ armclang -03 -march=armv8-a+sve sve_example.c -0 sve_example

e oo e Ar'M Research

Example: SVE Instruction Count Client

* Run SVE binary without emulation
$./sve_example

ITllegal instruction

e Using ArmilE, full inscount of SVE example (512-bit vectors):

$ armie -msve-vector-bits=512 -i libsve _inscount.so -- ./sve example

83971 instructions executed of which 22 were SVE instructions

* Exclude shared libraries by adding “-only from app” to inscount:

127 instructions executed of which 22 were SVE instructions

s oo pe e Ar'M Research

Exploring SVE for scientific applications

Objective: understand if apps cat benefit from SVE, assess quality and readiness of tools

e Various Arm-based SoC (Huawei Taishan)

Several applications of interest: QE, KKRnano, GRID, BQCD

Results on MiniKKR show Arm-based SoC (no SVE) similar performance versus x86

Estimate performance using instruction/branch counting (dynamic) and critical path analysis (static)

“Early Experience with ARM SVE”, presented at SC'17 Arm SVE User Meeting by D. Pleiter (JSC)
0 JU LICH http://www.goingarm.com/slides/2017/SVE_SC17/GoingArm_SVE _SC17 Arm_Dirk.pdf

rorscruncszeneon - EXPloring SVE for scientific applications”, presented at HIPEAC'18 by S. Nassyr (JSC)
http://www.goingarm.com/slides/2018/HiPEAC2018/julich hipeac goingarm 2018.pdf

28 © 2018 Arm Limited q r m Re Sea rCh

http://www.goingarm.com/slides/2017/SVE_SC17/GoingArm_SVE_SC17_Arm_Dirk.pdf
http://www.goingarm.com/slides/2018/HiPEAC2018/julich_hipeac_goingarm_2018.pdf

Arm Allinea Studio

A quick glance at what is in Arm Allinea Studio (latest 18.3)

4 N/ V4)
C/C++ Compiler Fortran Compiler Performance Libraries || Forge (DDT and MAP) Performance Reports
e C++ 14 support e Fortran 2003 support ® Optimized math libraries e Profile, Tune and Debug * Analyze your application
® OpenMP 4.5 without e Partial Fortran 2008 * BLAS, LAPACK and FFT e Scalable debugging with e Memory, MPI, Threads,
offloading support e Threaded parallelism with DDT I/O, CPU metrics
¢ SVE ready e OpenMP 3.1 OpenMP e Parallel Profiling with MAP
e SVE ready
Tuned by Arm for a wigde-range of server-class Arm-based platformls >
- AN AN AN AN /

o oo pe Ar'M Research

ArmPERFORMANCE LIBRARIES

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries

LN .
2, - Commonly used low-level math routines - BLAS, LAPACK and FFT
- FFTW compatible interface for FFT routines
Commercially supported - Batch BLAS support

by Arm

Best serial and parallel performance

{ /\ - Generic Armv8-A optimizations by Arm

- Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon
Best serial and parallel vendors

performance

Validated and supported by Arm Engineers

- Available for a wide range of server-class Arm-based platforms
- Validated with NAG’s test suite, a de-facto standard

Validated with
NAG test suite

30 © 2018 Arm Limited q r m Resea rCh

Arm HPC Ecosystem website

House for Arm’s HPC ecosystem, information channels, and collaboration

HPC

Welcome to the Arm HPC Ecosystem

Blog News Evens Resources ¥
é .k @

* Latest events, news, blogs

Overview HPC Software ¥

* Webinars (YouTube), whitepapers and presentations

* Links to OSS & commercial HPC packages

Get started Develop Run Collaborate
Learn about HPC on 64-bit Maximum performance for Build and run common HPC Join and share with a growing
. . Arm (AArché4) platforms. your HPC and scientific codes. applications on Arm. community of HPC users.
* Recipes for porting HPC apps
Get started on Arm Learn more Learn more Learn more

* New Arm HPC User Group Forum

Software Ecosystem for HPC on Arm

Learn more about commercial and open-source HPC tools.

www.arm.com/hpc

oo e e Ar'M Research

Thank You!
Danke!

Merci!
ﬁﬁ%ric: Ar'M Research
HUHED!

Gracias!
Kiitos!

Thanks to Eric Van Hensbergen, Chris Goodyer, Miguel Tairum-
32 ©2018 Arm Limited Cruz, Alex Rico, Jose Joao, Giacomo Gabrielli, Olly Perks

The Arm trademarks featured in this q r m R h
presentation are registered trademarks or eseCI I”C
trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. All

rights reserved. All other marks featured may
be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

33 © 2018 Arm Limited

