
© 2018 Arm Limited

Filippo Spiga
Software and Large Scale Systems

Arm's role in
co-design for the

next generation of
HPC platforms

DiRAC Science Day – September 2018

© 2018 Arm Limited

Introducing Arm &
Arm in HPC

© 2018 Arm Limited 3

Arm is Ubiquitous
• 21 billion chips sold by

partners in 2017 alone

• Mobile/Embedded/IoT/

Automotive/Server/GPUs

Arm Technology Already Connects the World

Partnership is key
• We design IP, not

manufacture chips

• Partners build products for

their target markets

Arm is Ubiquitous
• One size is not always the

best fit for all

• HPC is a great fit for co-

design and collaboration

© 2018 Arm Limited 4

Leading in wearables and

the Internet of Things

Driving the transformation of the

network and data center to an

Intelligent Flexible Cloud

~85% share of

laptops, tablets,

and smartphones

Partnering to deliver

data center efficiency
Taking mobile computing

to the next four billion people

Enabling innovation and creativity

with embedded intelligence

Deploy energy-efficient Arm-based technology, wherever computing happens…

The Arm Business Model

© 2018 Arm Limited 6

Design of intellectual property (IP) and license to anyone who want to use into their chips.

Tuned by Arm for a wide-range of server-class Arm-based platforms

The Arm Business Model

© 2018 Arm Limited 8

Cortex-A CPUs cover a wide variety of markets

• Scale efficiently to substantially higher performance

• Fit even more compute in a smaller footprint with less power

AutomotiveMobile and Consumer Servers and networking IoT and Embedded

Arm application processors are everywhere

© 2018 Arm Limited 10

History of Arm in HPC

2011
Calxada
• 32-bit ARMv7-A
• Cortex A9

2011-2015
Mont-Blanc 1
• 32-bit ARMv7-A
• Cortex A15
• ‘First’ Arm HPC

cluster

2014
AMD Opteron A1100
• 64-bit ARMv8-A
• Cortex A57
• 4-8 Cores

2015
Cavium ThunderX
• 64-bit ARMv8-A
• 48 Cores

2017
Cavium ThunderX 2
• 64-bit ARMv8-A
• 32 Cores

© 2018 Arm Limited 11

Deployments: GW4 “Isambard”

• New Tier-2 HPC system for GW4

• CRAY XC50 “Scout” platform

• 10,000+ Arm cores

• Based on Cavium ThunderX2 processors (top
bin)

• Cray Aries interconnect

• Cray Programming environment
• Arm tools also available

Isambard hardware, photo from ISC18

More info: http://www.goingarm.com/slides/2018/ISC2018/Isambard_ISC_GoingArm_June_2018.pdf

http://www.goingarm.com/slides/2018/ISC2018/Isambard_ISC_GoingArm_June_2018.pdf

© 2018 Arm Limited 12

Deployments: Catalyst UK

“Catalyst UK” program: deployments to accelerate the growth

of the Arm HPC ecosystem in UK. Supported by industry and

EPSRC.

Each machine will have:

• 64 HPE Apollo 70 systems, each with two 32-core Cavium

ThunderX2 (i.e. 4096 cores per system), 128 GByte of memory (8

TByte total)

• Mellanox EDR

• Compute & Storage all Arm-based

• Full SW stack (compilers and libraries, both open-source and

commercial)

Systems will be accessible to all UK communities via access

rules set by each University

Bristol: VASP, CASTEP,

Gromacs, CP2K, Unified

Model, NAMD, Oasis,

NEMO, OpenIFS, CASINO,

LAMMPS

EPCC: WRF, OpenFOAM,

Two PhD candidates

Leicester (DiRAC): Data-

intensive apps, genomics,

MOAB Torque

© 2018 Arm Limited 13

Deployments: Astra (Sandia)

More info: http://www.goingarm.com/slides/2018/ISC2018/HPEGoingArm_SC18.pdf

HPE system tailored for US NNSA application needs

• 2,592 HPE Apollo 70 compute nodes

• Cavium Thunder-X2 ARM SoC, 28 core, 2.0 GHz
• Memory per node: 128 GB (16 x 8 GB DR DIMMs)

• 5,184 CPUs, 145,152 cores
• Aggregate capacity: 324TB

• Aggregate bandwidth: 608TB/s (stream triad)

• 2.3 PFLOPS peak
• InfiniBand EDR, Fat-Tree, Mellanox ConnectX-5

• Liquid cooled, total 1.2MW

http://www.goingarm.com/slides/2018/ISC2018/HPEGoingArm_SC18.pdf

© 2018 Arm Limited 14

Post-K system & first SVE CPU

Announced at
Hot Chips ‘30

in Summer 2018

Fully operational by
2020/2021

© 2018 Arm Limited

Arm SVE
Scalable Vector Extension

© 2018 Arm Limited 17

Evolution of Arm SIMD architectures

Armv6 SIMD
• 12�32-bit integer/core register file
• Integer only 2x16-bit fixed-point data elements

Armv7-A Advanced SIMD (aka Arm NEON)
• 16�128-bit SIMD register file, supporting well-conditioned memory data layouts
• Non-IEEE single-precision floating-point and 8/16/32-bit fixed-point data elements

Armv8-A AArch64 Advanced SIMD was an evolutionary step
• 32�128b SIMD register file, identical memory data layouts
• Full IEEE double-precision floating-point and 64-bit fixed-point data elements

But new markets for AArch64 (HPC) have demanded more radical features…
• Ability to vectorize irregular code and more complex data structures
• Longer vectors to extract more data-level parallelism per cycle

?

© 2018 Arm Limited 18

Scalable Vector Extension (SVE)

SVE does not mandate a single, fixed vector length
• Vector Length (VL) is hardware implementation choice of 128 to 2048 bits

• Vector Length Agnostic (VLA) programming paradigm made possible by the per-lane predication,
predicate-driven loop control, vector partitioning and software-managed speculation

SVE is not a simple extension of AArch64 Advanced SIMD
• A separate, optional architectural extension with a new set of instruction encodings (ARMv8.3)

• Initial focus is HPC and general-purpose server software, not media/image processing

SVE begins to address traditional barriers to auto-vectorization
• Compilers often cannot vectorize due to intra-vector control and data dependencies

• Software-managed speculative vectorization allows more loops to be vectorized by a compiler

© 2018 Arm Limited 19

Example: daxpy (scalar)

void daxpy(double *x, double *y, double a, int n)
{

for (int i = 0; i < n; i++) {
y[i] = a * x[i] + y[i];

}
}

// x0 = &x[0]
// x1 = &y[0]
// x2 = &a
// x3 = &n

daxpy_:
ldrsw x3, [x3]
mov x4, #0
ldr d0, [x2]
b .latch

.loop:
ldr d1, [x0, x4, lsl #3]
ldr d2, [x1, x4, lsl #3]
fmadd d2, d1, d0, d2
str d2, [x1, x4, lsl #3]
add x4, x4, #1

.latch:
cmp x4, x3
b.lt .loop
ret

© 2018 Arm Limited 20

daxpy (scalar) daxpy (SVE)

Q1: How do we handle the non-multiples of VL?

Q2: What happens at different vector lengths?

daxpy_:
ldrsw x3, [x3]
mov x4, #0
whilelt p0.d, x4, x3
ld1rd z0.d, p0/z, [x2]

.loop:
ld1d z1.d, p0/z, [x0, x4, lsl #3]
ld1d z2.d, p0/z, [x1, x4, lsl #3]
fmla z2.d, p0/m, z1.d, z0.d
st1d z2.d, p0, [x1, x4, lsl #3]
incd x4

.latch:
whilelt p0.d, x4, x3
b.first .loop
ret

daxpy_:
ldrsw x3, [x3]
mov x4, #0
ldr d0, [x2]
b .latch

.loop:
ldr d1, [x0, x4, lsl #3]
ldr d2, [x1, x4, lsl #3]
fmadd d2, d1, d0, d2
str d2, [x1, x4, lsl #3]
add x4, x4, #1

.latch:
cmp x4, x3
b.lt .loop
ret

© 2018 Arm Limited 21

SVE Programming

Full ISA Specification: The Scalable Vector Extension for ARMv8-A

Lots of worked examples, see “A sneak peek into SVE and VLA programming”

Arm C Language Extensions for SVE

Arm Scalable Vector Extensions and application to Machine Learning

Auto-vectorization via GCC, Arm Compiler for HPC, Cray, Fujitsu

Hints to the compiler via OpenMP: #pragma omp parallel for simd

Best practice in writing parallel code

Assembly
(not suggested)

Intrinsics
(only if needed)

Compiler

https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/-/media/developer/developers/hpc/white-papers/a-sneak-peek-into-sve-and-vla-programming.pdf?revision=c702475b-6325-41a2-b3d3-d9f244028841
https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
Arm%20Scalable%20Vector%20Extensions%20and%20application%20to%20Machine%20Learning

© 2018 Arm Limited 22

Commercial C/C++/Fortran compiler with best-in-class performance

Tuned for Scientific Computing, HPC and Enterprise workloads
• Processor-specific optimizations for various server-class Arm-based platforms
• Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

Linux user-space compiler with latest features
• C++ 14 and Fortran 2003 language support with OpenMP 4.5*
• Support for Armv8-A and SVE architecture extension
• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm
• Available for a wide range of Arm-based platforms running leading Linux

distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific
Computing and HPC

Latest features and
performance optimizations

Commercially supported
by Arm

© 2018 Arm Limited 23

LLVM and GCC upstreaming roadmap
Develop your user-space applications for future hardware today

Source: Arm HPC Workshop Tokyo 2017 by Linaro

© 2018 Arm Limited 24

The Arm Instruction Emulator (ArmIE)
• ArmIE enables SVE studies in preparation for upcoming silicon

• Emulates SVE instructions on existing Armv8 hardware

• It enables vector length considerations for future micro-architectures and application

optimisations

• As an emulator, it allows for faster application runs and integrates with DBI tools

• Faster than architecture simulators (gem5)

• Enables the study of larger input sizes in a fraction of time

• Simulators can complement ArmIE with timing results

• Ideal for instruction/memory tracing and dynamic binary

instrumentation (DBI)

• Post-processing traces extend application analysis (cache simulator, etc.)

• Helps with SVE-supported application development/optimisation

Armv8-A + SVE binary

Arm Instruction Emulator
(ArmIE)

Converts unsupported instructions to

native Armv8-A instructions

Linux

Armv8-A compatible Platform

© 2018 Arm Limited 25

Instrumenting Aarch64 and SVE

SVE Memtrace Client SVE Inscount Client

DynamoRIO

Armv8-A + SVE Binary

ArmIE
(client)

0x10000 LD
0x20000 ST
0x30000 SVE LD
0x40000 SVE LD
0x50000 SVE ST

...

XX instructions
executed, of
which YY were

SVE instructions

… custom clients …

Support Regions of Interests
Post-Processing &

Simulation

© 2018 Arm Limited 26

Example: SVE Instruction Count Client

Simple SVE loop code example:

Compiling with Arm HPC compiler 18.4
$ armclang –O3 -march=armv8-a+sve sve_example.c -o sve_example

#define N 42
int a[N], b[N], c[N];

int main(void) {
for(int i=0; i<N; ++i){
a[i] = b[i] + b[c[i]];

}
}

© 2018 Arm Limited 27

• Run SVE binary without emulation

$./sve_example

Illegal instruction

• Using ArmIE, full inscount of SVE example (512-bit vectors):

$ armie -msve-vector-bits=512 -i libsve_inscount.so -- ./sve_example

83971 instructions executed of which 22 were SVE instructions

• Exclude shared libraries by adding “-only_from_app” to inscount:

127 instructions executed of which 22 were SVE instructions

Example: SVE Instruction Count Client

© 2018 Arm Limited 28

Exploring SVE for scientific applications

Objective: understand if apps cat benefit from SVE, assess quality and readiness of tools

• Various Arm-based SoC (Huawei Taishan)

• Several applications of interest: QE, KKRnano, GRID, BQCD

• Results on MiniKKR show Arm-based SoC (no SVE) similar performance versus x86

• Estimate performance using instruction/branch counting (dynamic) and critical path analysis (static)

“Early Experience with ARM SVE”, presented at SC’17 Arm SVE User Meeting by D. Pleiter (JSC)
http://www.goingarm.com/slides/2017/SVE_SC17/GoingArm_SVE_SC17_Arm_Dirk.pdf
“Exploring SVE for scientific applications”, presented at HiPEAC’18 by S. Nassyr (JSC)
http://www.goingarm.com/slides/2018/HiPEAC2018/julich_hipeac_goingarm_2018.pdf

http://www.goingarm.com/slides/2017/SVE_SC17/GoingArm_SVE_SC17_Arm_Dirk.pdf
http://www.goingarm.com/slides/2018/HiPEAC2018/julich_hipeac_goingarm_2018.pdf

© 2018 Arm Limited 29

Arm Allinea Studio
A quick glance at what is in Arm Allinea Studio (latest 18.3)

C/C++ Compiler
• C++ 14 support
• OpenMP 4.5 without

offloading
• SVE ready

Fortran Compiler
• Fortran 2003 support
• Partial Fortran 2008

support
• OpenMP 3.1
• SVE ready

Performance Libraries
• Optimized math libraries
• BLAS, LAPACK and FFT
• Threaded parallelism with

OpenMP

Forge (DDT and MAP)
• Profile, Tune and Debug
• Scalable debugging with

DDT
• Parallel Profiling with MAP

Performance Reports
• Analyze your application
• Memory, MPI, Threads,

I/O, CPU metrics

Tuned by Arm for a wide-range of server-class Arm-based platforms

© 2018 Arm Limited 30

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• FFTW compatible interface for FFT routines
• Batch BLAS support

Best serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon

vendors

Validated and supported by Arm Engineers
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best serial and parallel
performance

Validated with
NAG test suite

Commercially supported
by Arm

© 2018 Arm Limited 31

Arm HPC Ecosystem website
House for Arm’s HPC ecosystem, information channels, and collaboration

• Latest events, news, blogs

• Webinars (YouTube), whitepapers and presentations

• Links to OSS & commercial HPC packages

• Recipes for porting HPC apps

• New Arm HPC User Group Forum

www.arm.com/hpc

3232

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!

© 2018 Arm Limited

Thanks to Eric Van Hensbergen, Chris Goodyer, Miguel Tairum-
Cruz, Alex Rico, Jose Joao, Giacomo Gabrielli , Olly Perks

3333 © 2018 Arm Limited

The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may
be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

