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Thermal bath at 
temperature T �̂0(x)

�̂ |�0(x)i = �0(x)|�0(x)i

Features of BET

Any thermal observable can be constructed by integrating the

appropriate functional of �0(x) over the fields �0(x) weighted by

the corresponding diagonal element of the density matrix.

To each dynamical configuration �(⌧,x) there corresponds a static configuration

�0(x) = �(0,x) = �(�,x).

We say that �0(x) is the (time) boundary value of �(⌧,x).

Natural separation of infrared modes

In a recent paper, we have proposed an alternative approach to thermal field theories, denoted by

boundary e↵ective theory (BET). The central idea of the method is to respect the double integral structure

of the partition function in the functional integral formalism,

Z =

Z
[D�0(x)] ⇢[�;�0,�0] ,

where

⇢[�;�0,�0] =

Z

�(0,x)=�(�,x)=�0(x)

[D�(⌧,x)] e�S[�]

Therefore, the e↵ective theory encoded in ⇢[�;�0,�0] contains all the infrared physics, and the double

integral structure of Z naturally separates the potentially divergent modes.

Saddle-point approximation

ZR =

Z
[D�0(x)]

Z

⌘(0,x)=⌘(�,x)=0

[D⌘(⌧,x)] e�S[�c+⌘] + C.T

The field �0(x) has still another remarkable property: it is the zero (static) component of the

dynamical field �(⌧,x):
�(⌧,x) = �0(x) + ⌘(⌧,x)

In the vicinity of �c, the action is approximately quadratic,

S[�c + ⌘] = S[�c] +
1

2

Z
(d

4
x)E ⌘(x)

h
⇤E +m

2
0 + U

00
(�c(x))

i
⌘(x) + O(⌘

3
) .

The 1-loop effective action

�

(2⇡)3�(p1 + p2)
�(2)
R (p1,p2;µ) = 2|p1| tanh

�|p1|
2

+ �m2(|p1|;�) ,

�m2(k;�) =
�

24�

tanh�k/2

�k

✓
1 +

�k

sinh�k

◆
.

The pressure to lowest order in BET

Performing the quadratic integration over �0, one obtains the saddle-point approximation for Z,

Psp(�) =
⇡2

90�4
� 1

2�
lim

⇤!1

Z ⇤ d3k

(2⇡)3
log

✓
1 + �m2

(k;�)
coth�k/2

2k

◆

Finally, the renormalized pressure is given by

PBET (�) =
⇡2

90�4
� �

1152�4
� 1

2�
lim

⇤!1

Z ⇤ d3k

(2⇡)3

⇢
log

✓
1 +

�m2
(k;�)

2

coth�k/2

k

◆
� �m2

(k;�)

2

coth�k/2

k

�
.

Results and comparison with weak-coupling and SPT

ZR[�] ⇡
Z
[D�0(x)] e

�S[�c] + C.T(detG⌘[�c])
1/2

Fluctuations of the boundary field produce a new determinant.

Gathering all the 1-loop contributions, we obtain:

The second term on the r.h.s. of the previous equation can be identified with a series of daisy-diagrams,

where the petal is given by �m2
. As one can easily check, the O(�) term in Psp is UV divergent. The

2-loop diagram carries the divergence. Such a spurious divergence is removed when we consistently add

the remaining 2-loop corrections to the saddle-point approximation for the integration over ⌘.

The 1-loop effective potential

For a detailed discussion of the e↵ective potential for scalar theories with single and double-well

interactions, visit the poster by Daniel Kro↵.
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We are working on the first correction to PBET and the interesting application to the theory with

Yukawa and ��4
interactions. The challenging extension of BET to gauge theories is under investigation.

[1] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Nucl. Phys. B 458, 90 (1996).
[2] U. Kraemmer and A. Rebhan, Rept. Prog. Phys. 67, 351 (2004).
[3] J. O.Andersen and M. Strickland, Annals Phys. 317, 281 (2005).
[4] A. Gynther, M. Laine, Y. Schroder, C. Torrero and A. Vuorinen, JHEP 0704, 094 (2007).
[5] J. O. Andersen and L. Kyllingstad, Phys. Rev. D 78, 076008 (2008).
[6] J. O. Andersen, L. Kyllingstad and L. E. Leganger, JHEP 0908, 066 (2009).

References in BET

A. Bessa, C. A. A. de Carvalho, E. S. Fraga and F. Gelis, JHEP 0708, 007 (2007).
A. Bessa, F. T. Brandt, C. A. A. de Carvalho and E. S. Fraga,  Phys. Rev D. 82, 065010 (2010).
A. Bessa, F. T. Brandt, C. A. A. de Carvalho and E. S.Fraga, Phys. Rev D. 83, 085024 (2011)
A. Bessa, C. A. A. de Carvalho, E. S. Fraga and F. Gelis, Phys. Rev. D. 83, 125016 (2011).

Comparison of the normalized pressure obtained using BET

and SPT calculations at two, three, and four loops reported in

Ref. [5]. The renormalization scale is µ = 2⇡T .

Pressure normalized by Pideal as a function of the coupling

constant g =

p
� in BET and weak-coupling formalisms (Ref.

[6]). The renormalization scale is µ = 2⇡T .

where �F is the usual thermal propagator and


