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CP violation in the Standard Model

I Resides in Yukawa couplings; requires at least three fermion families.
I For three families exactly one complex phase in the CKM matrix V .
I All CP-violating effects proportional to the Jarlskog invariant,

J =
∣∣Im(VijVk`V∗i`V

∗
kj)
∣∣≈ 3×10−5.

I No CP violation in case of horizontal degeneracy of quark masses.

(Cold) electroweak baryogenesis

I Current baryon asymmetry normalized to the CMB photon density:

nB/nγ ≈ 6×10−10.

I Sakharov conditions for baryon asymmetry generation in early Universe:
. Baryon number violation.
. C and CP violation.
. Departure from thermal equilibrium.

I Problems with the “standard” electroweak baryogenesis scenario:
. Particle physics lower bound on the Higgs mass implies a crossover
electroweak phase transition⇒ not far enough off equilibrium.
. Perturbatively, CP-violating effects suppressed by the Jarlskog determinant
J∆/v12 ≈ 10−24, where v≈ 246 GeV is the Higgs expectation value and
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I Cold electroweak baryogenesis scenario:
. Satisfies the off-equilibrium condition by means of low-scale inflation [1].
. Electroweak transition triggered by the Higgs coupling to the inflaton
at the end of the inflation period, well below the electroweak scale.
. Thanks to low temperature, infrared enhancement invalidates the naive
perturbative estimate and allows for sizable CP violation effects [2, 3].

Results available in literature

I General strategy: integrate out quarks and simulate the resulting effective
theory for Standard Model bosons numerically on the lattice.

I Use derivative expansion to identify the leading CP-violating operators.
I Smit [2] showed that there is no CP violation up to the fourth order;

no CP violation is thus induced by the P-odd anomalous term in the action.
I Two independent calculations of CP-violating operators at sixth order:
. [4] use worldline formalism and find CP-odd, P-odd (C-even) contributions.
. [5] use method of symbols and find only CP-odd, P-even contributions;
first CP-odd, P-odd contribution only appears at the next, eighth order [6].

I The two available calculations give qualitatively different results.
I Moreover, all previous calculations were restricted to zero temperature.
I Goal of our project: resolve the discrepancy and extend the results

to nonzero temperature.

Method of (covariant) symbols

I Calculate Tr log of the Dirac operator in background gauge and Higgs fields.
I Perform an expansion in number of external gauge legs and derivatives.
I Method of symbols: convenient way to calculate traces of differential

operators. For a (matrix) function M(x) and a (covariant) derivative Dx,

Tr f (M(x),Dx) =
∫

x,p
tr
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]
.

I Loses manifest covariance due to appearance of “free” covariant derivatives.
I Method of covariant symbols [5] makes the expansion manifestly

covariant already on the level of the integrand,
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I Apart from a rescaling factor, Higgs field appears in the result as ϕµ =
1
φ
∂µφ.

I Charged weak boson fields appear in the result in covariant derivatives,

W±µν = ∂µW±ν ±g′BµW±ν .

Effective action at nonzero temperature

I The Euclidean effective action for the Standard Model bosons acquires
first CP-violating contributions at the sixth order of the derivative expansion.

I Our calculation [7] fully confirms the zero-temperature result of [5].
I Lorentz-invariant part of the result:
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Temperature dependence of the couplings

I The couplings only depend on Teff ≡ Tv/φ.
I Contributions from regions with φ� v are thus suppressed.
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Conclusions and outlook

I Using the previous zero-temperature result leads to baryon asymmetry
four orders of magnitude larger than the observed value [3].

I The steep dependence of the couplings on temperature constrains the
applicability of the cold electroweak baryogenesis scenario to T . 1 GeV.

I Within the cold electroweak baryogenesis scenario, Standard Model still
seems capable to generate sufficient baryon asymmetry in the early Universe!

I Follow-up work is currently under way.
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