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Abstract

We present a numerical study of spectroscopic observables in the SU(2) gauge the-

ory with two adjoint fermions. We compare our results using improved source and

sink operators with previous determinations of masses thatused point sources and

sinks and investigate possible systematic effects in both cases. We discuss the finite

volume effects on the spectrum, investigated by varying thesize of the lattice and

by changing the boundary conditions.

Introduction

Minimal walking technicolor (MWT), with gauge groupSU(2) and
two flavours of adjoint Dirac fermions, is a candidate theoryof elec-
troweak symmetry breaking. The evidence accumulated so farfor
this theory favours a conformal or near-conformal scenario. However,
more systematic studies need to be performed before the IR properties
of the theory can be determined with confidence.
Lattice studies can identify conformal or near-conformal behaviour
by studying the mass-dependence of the spectrum. The standard way
to extract masses from lattice simulations is to look at the exponen-
tial decay of correlators of operators with the quantum numbers of
interest. At finite time extent, there will be corrections due to excited
states. The finite spatial extension of the lattice can also give sizeable
corrections to the spectral masses. Below we systematicallyexplore
the effects of these corrections.
The simplest source and sink observables to study for mesonsare
fermion bilinears in which the two fermion fields are at the same lat-
tice point (point sources). Experience from lattice QCD favours the
use ofextended sources, which prove to be affected by smaller sys-
tematic errors. Here we investigate whether this is also true for MWT.
Our computations were performed using theHiRep code and the
Chroma suite of lattice software [1]. We used the Wilson gauge ac-
tion, and the Wilson fermion formulation with the RHMC algorithm.
The coupling wasβ = 2.25. Further details of some of these results
have been published in [2].

Smearing effects

We systematically compared local, gaussian and wall-smeared
sources on our ensembles. At our lightest masses, the wall-smeared
sources have the largest overlap with the ground state, which is re-
flected in the flattest effective masses. In Fig. 1 we show the PS ef-
fective masses computed with the three methods.
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FIGURE 1: Comparison of the pseudoscalar mass from differ-
ent smearings atam0 = −1.175, on a 16×83 lattice (left) and a
24×123 lattice (right).

Smeared sources are more sensitive to the algorithm’s autocorrela-
tion time. We study this by grouping theN data intoN/b blocks
of lengthb and averaging over each block. A bootstrap analysis is
then performed on the reduced dataset. When the block size isbig-
ger than the autocorrelation we expect to see a plateau appearing in
the standard deviation. We observe that the plateau starts at a block
size corresponding to an integrated autocorrelation time of order 1.
Our analysis of the autocorrelation is illustrated in Fig. 2for the PS
effective mass.
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FIGURE 2: Autocorrelation analysis on a 24× 123 lattice at
am0 = −1.175, for the PS effective mass in two temporal
points. Left, integrated autocorrelation time; right, relative error.
Plateaux of the relative error highlighted with faint rectangles.

We see that the measured autocorrelation times for the smeared re-
sults are larger than for the local results, and that the standard devia-
tion increases up to a point where it appears to reach a plateau. The
value of b where this plateau sets in is interpreted as the length in
simulation time over which the data are uncorrelated. This picture is
replicated across our ensembles. We have accounted for thisby con-
ducting our bootstrap analyses over appropriately reduceddatasets.
To quantify the flatness of the effective mass we define the ratio:
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A value for∆mPS/∆t compatible with zero implies that the plateau in
the effective mass is long at least∆t points. In Fig. 3, the quantity
∆mPS/∆t is plotted for pseudoscalar effective masses.
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FIGURE 3: Incremental ratio∆mPS/∆t as a function of the bare
mass.

One expects that at small masses the wave function of the pseu-
doscalar meson is more spread, hence the wall-smeared source should
have a larger overlap with the ground state. whereas at large masses
the local sources should work better. We see that this is indeed the
case. The same analyses using the effective V meson mass and the
effective PS decay constant produce very similar results.

Finite Volume Effects

We have calculated the PS and V masses, their ratio and PS decay
constant on the 16×83 and 24×123 lattices foram0 = −1.05, both
from local and wall-smeared sources. We find that the volume de-
pendence appears to strengthen with wall-smeared sources. To clar-
ify this, we look at the effective PS mass in Fig. 4. By comparing
the effective masses on the 24× 123 and 64× 83 lattices it is clear
that the finite volume makes the pseudoscalar meson lighter. On the
16× 83 lattice the mass estimated with the local sources is affected
by two relatively large effects: the finite volume, which decreases the
mass and the bad determination of the plateaux, which increases the
mass. These two effects almost cancel each other. Therefore the finite
volume effects are actually larger than estimated using just the local
sources, and they are better estimated using wall-smeared sourcesat
light enough masses. These conclusions are valid also for the vector
meson mass and for the ratioMV/MPS.
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FIGURE 4: Effective PS mass on different volumes foram0 =
−1.05 (L=local, W=wall).

Having understood the effects of smearing and inadequate plateaux,
we have extended our calculations to lighter masses and larger vol-
umes. We show the effective PS mass atam0 = −1.15 in Fig. 6. We
see that forLs ≥ 24 there is good agreement. Furthermore, forLt = 80
there is a very long plateau which agrees with the plateaux forLt = 64.
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FIGURE 5: Effective PS mass on different volumes foram0 =
−1.15.

Another way to investigate finite volume effects is to vary the bound-
ary conditions. For sufficiently large lattice we should see no dif-
ference between observables calculated with periodic and twisted
boundary conditions. We illustrate this for the PS mass in Fig. 6,

where we see that the results for different boundary conditions ap-
pear to be heading towards convergence forLs ≥ 24, in agreement
with our results for the effective mass in Fig. 5 above.
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FIGURE 6: PS mass for periodic and twisted boundary condi-
tions for various lattice sizes atam0 =−1.15.

We can use our analysis of the finite-volume effects to estimate the
size of the remaining errors. As an example we plotMv/MPS in Fig. 7.
We see we have enough points with sufficiently small errors to con-
firm the existence of a plateau, despite larger errors on some points.
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FIGURE 7: Ratio ofMV to MPS, with an estimate of the remain-
ing finite-volume errors.

Finally, we have investigated finite volume effects in the gluonic sec-
tor. These appear to be larger than for mesons. We plot the string
tension and glueball masses in Fig. 8. Despite the larger pseudoscalar
mass, it appears we needLs up to 32 to control the 2++ glueball mass.
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FIGURE 8: Finite volume effects for gluonic observables (string
tension and glueball masses) andmPS at am0 =−1.05.

Summary

We have investigated the effects of both smearing and finite volumes
on determinations of the spectrum of minimal walking technicolor.
We have found wall-smearing leads to better plateaux, at the cost of
larger autocorrelation times. Finite volume effects can be underes-
timated if only local sources are used. In general, larger volumes
(compared to experience from QCD) are needed to control finite vol-
ume effects, especially for gluonic observables. Nevertheless, our
conclusions regarding the near-conformal dynamics of this theory are
robust.
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