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Abstract

We present a numerical study of spectroscopic observabltég iSU(2) gauge the-
ory with two adjoint fermions. We compare our results usimgioved source and
sink operators with previous determinations of massesused point sources and
sinks and investigate possible systematic effects in badglbes We discuss the finite
volume effects on the spectrum, investigated by varyingsthe of the lattice and

by changing the boundary conditions.

Introduction

Minimal walking technicolor (MWT), with gauge grougJ(2) and
two flavours of adjoint Dirac fermions, is a candidate theafrglec-
troweak symmetry breaking. The evidence accumulated stofar
this theory favours a conformal or near-conformal scenatmwvever,
more systematic studies need to be performed before thelbedres
of the theory can be determined with confidence.

Lattice studies can identify conformal or near-conformahdviour
by studying the mass-dependence of the spectrum. The stawds

to extract masses from lattice simulations is to look at tk@oaen-
tial decay of correlators of operators with the quantum nerslof
Interest. At finite time extent, there will be correctiongda excited
states. The finite spatial extension of the lattice can alsogjzeable
corrections to the spectral masses. Below we systematiegipre
the effects of these corrections.

The simplest source and sink observables to study for mes@ns
fermion bilinears in which the two fermion fields are at thensdat-
tice point point sources). Experience from lattice QCD favours the
use ofextended sources, which prove to be affected by smaller sys-
tematic errors. Here we investigate whether this is alsfstMWT.
Our computations were performed using tHeRep code and the
Chroma suite of lattice software [1]. We used the Wilson gauge ac
tion, and the Wilson fermion formulation with the RHMC algam.
The coupling wag3 = 2.25. Further details of some of these results
have been published in/[2].

Smearing effects

We systematically compared local, gaussian and wall-sedear
sources on our ensembles. At our lightest masses, the mabi®d
sources have the largest overlap with the ground state,hwhice-
flected in the flattest effective masses. In Fig. 1 we show BefP
fective masses computed with the three methods.
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FIGURE 1: Comparison of the pseudoscalar mass from differ-
ent smearings amy = —1.175, on a 16« 8° lattice (left) and a
24 x 128 lattice (right).

Smeared sources are more sensitive to the algorithm’s @uéba-
tion time. We study this by grouping th¢ data intoN /b blocks

of lengthb and averaging over each block. A bootstrap analysis IE

then performed on the reduced dataset. When the block skag-is
ger than the autocorrelation we expect to see a plateau iapgpea

the standard deviation. We observe that the plateau staat®lack

Size corresponding to an integrated autocorrelation tifnerder 1.

Our analysis of the autocorrelation is illustrated in FigoRthe PS

effective mass.
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FIGURE 2: Autocorrelatlon analysis on a 2412° lattice at
amg = —1.175, for the PS effective mass in two temporal
points. Left, integrated autocorrelation time; rightatele error.
Plateaux of the relative error highlighted with faint reqi&es.

We see that the measured autocorrelation times for the schear
sults are larger than for the local results, and that thedst@hdevia-
tion increases up to a point where it appears to reach a plaidse
value ofb where this plateau sets in is interpreted as the length
simulation time over which the data are uncorrelated. ThuRipe Is
replicated across our ensembles. We have accounted fdntluisn-
ducting our bootstrap analyses over appropriately redda&akets.
To quantify the flatness of the effective mass we define the:rat

where we see that the results for different boundary conditions ap-

_At) — L./2 . -
Amps _ |Mps(Lt/2—At) — Mpg(Lt/2) (1) pear to be heading towards convergencelfppr 24, in agreement

At a with our results for the effective mass in Fig. 5 above.
A value forAmps/At compatible with zero implies that the plateau in
. . . . . ° iodic b
the effective mass is long at least points. In Fig. 3, the quantity * wisted bes.
Amps/At is plotted for pseudoscalar effective masses.
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FIGURE 3: Incremental ratidAmps/At as a function of the bare "~ e s o= 1% I |
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One expects that at small masses the wave function of the psqu- 050 | | s
doscalar meson is more spread, hence the wall-smeared sourag shul o 48 32 24 16 12 8

have a larger overlap with the ground state. whereas at large masfes

the local sources should work better. We see that this is indeed the

case. The same analyses using the effective V meson mass andjthe FIGURE 6: PS mass for periodic and twisted boundary condi-
effective PS decay constant produce very similar results. tions for various lattice sizes atnp = —1.15.

We can use our analysis of the finite-volume effects to estimate the
size of the remaining errors. As an _examp_le_ we MetMpsin Fig. 7.

We see we have enough points with sufficiently small errors to con-

firm the existence of a plateau, despite larger errors on some points.
We have calculated the PS and V masses, their ratio and PS degay
constant on the 18 8% and 24x 128 lattices foramy, = —1.05, both
from local and wall-smeared sources. We find that the volume dg-
pendence appears to strengthen with wall-smeared sources.r-To cja
Ify this, we look at the effective PS mass in Fig. 4. By comparing P i
the effective masses on the 2412° and 64x 83 lattices it is clear i }
that the finite volume makes the pseudoscalar meson lighter. On the L o4 JT]
16 x 83 lattice the mass estimated with the local sources is affectdd
by two relatively large effects: the finite volume, which decredbke
mass and the bad determination of the plateaux, which increases jhe ! |
mass. These two effects almost cancel each other. Thereforeitae fi 1.00 - =
volume effects are actually larger than estimated using just thé loge
sources, and they are better estimated using wall-smeared satirceg 0.98 |- -
light enough masses. These conclusions are valid also for the vedjor )

meson mass and for the ratiy, /Mps. 096 5 Toz oal [os [os| 10 [z 14 |16
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FIGURE 7: Ratio ofMy to Mpg, with an estimate of the remain-
Ing finite-volume errors.
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® | 24x12° : Finally, we have investigated finite volume effects in the gluonie sec
1.24 s ° L64x833 - tor. These appear to be larger than for mesons. We plot the string
_ o 0 W68 tension and glueball masses in Fig. 8. Despite the larger pseudoscala
2 s oW caxls mass, it appears we nekgup to 32 to control the 2" glueball mass.
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FIGURE 4: Effective PS mass on different volumes fon, = 0-501= ¢ : - 7
—1.05 (L=local, W=wall). -
Having understood the effects of smearing and inadequate platea}ix, 0.00 _
we have extended our calculations to lighter masses and larger vpl- 7 P — :
umes. We show the effective PS masamay = —1.15 in Fig. 6. We )
see that fot.s > 24 there is good agreement. Furthermorelfet 80 FIGURE 8: Finite volume effects for gluonic observables (string
there is a very long plateau which agrees with the plateaux fer64. tension and glueball masses) angs atamy; = —1.05.
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IEE o T T RIIEITIRIET . We have investigated the effects of both smearing and finite volumes
X HHEH T I on determinations of the spectrum of minimal walking technicolor.
el TERRRiREiEIIIL | We have found wall-smearing leads to better plateaux, at the cost of
2 HHHH} pp larger autocorrelation times. Finite volume effects can be underes-
1] Tl L=12 timated if only local sources are used. In general, larger volumes
L | (compared to experience from QC_D) are needed to control finite vol-
| L=48 | ume effects, especially for gluonic observables. Nevertheless, our
Hl SEE2RARRRRREAR TSR | conclusions regarding the near-conformal dynamics of this theory are
LI L] T1eleT robust.
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