
N = 4 super Yang-Mills plasma
Alina Czajka & Stanisław Mrówczyński
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1 Introduction
The AdS/CFT duality of the five-dimensional gravity in the anti de Sitter ge-

ometry and the conformal field theories offers a unique tool to study strongly
coupled theory such as N = 4 super Yang-Mills. Some intriguing features
of strongly coupled systems have been revealed but relevance of the results
for non-supersymmetric systems, which are of our actual interest, remains an
open issue. In particular, one asks how properties of the N = 4 super Yang-
Mills plasma (SYMP) are related to those of usual quark-gluon plasma (QGP)
studied experimentally in relativistic heavy-ion collisions. While such a com-
parison is, in general, a difficult problem, a systematic comparative analysis
can be performed in the domain of weak coupling where perturbative methods
are applicable. Our rather detailed comparison is presented in [1] and here we
show our main results.

2 Collective excitations
Dispersion equations

The collective excitations ofN = 4 super Yang-Mills plasma are determined
by the dispersion equations which for gluons, fermions and scalars read

det
[
k2gµν − kµkν − Πµν(k)

]
= 0, det

[
k/ − Σ(k)

]
= 0, k2 + P (k) = 0,

where Πµν(k), Σ(k), and P (k) are the retarded self-energies of gluons,
fermions and scalars. The self-energies were computed perturbatively at one-
loop level via Keldysh-Schwinger formalism [2]. Since collective modes were
looked for, the Hard Loop Approximation was applied.

Gluon collective excitations
The contributions to the polarization tensor are given by the diagrams

which in Hard Loop Approximation give

Π
µν
ab (k) = g2Ncδab

∫
d3p

(2π)3

f (p)

Ep

k2pµpν − (kµpν + pµkν − gµν(k · p))(k · p)

(k · p + i0+)2
(1)

where
f (p) ≡ 2ng(p) + 8nf (p) + 6ns(p) (2)

is the effective distribution function of plasma constituents. The polarization
tensor (1) has exactly the same form as in the quark-gluon plasma. So are the
gluon collective excitations.

Fermion collective excitations
The contributions to the fermion self-energy are given by the diagrams

which give the fermion self-energy as

Σ
ij
ab(k) =

g2

2
Ncδabδ

ij
∫

d3p

(2π)3

f (p)

Ep

p/

k · p + i0+ (3)

which, as the polarization tensor (1), depends on the effective distribution
function (2). The fermion self-energy (3) has the same structure as in the
usual QCD plasma of quarks and gluons. So are the fermion collective exci-
tations.

Scalar collective excitations
Finally, the diagrams

contribute to the scalar self-energy which equals

PABab (k) = −2g2Ncδabδ
AB

∫
d3p

(2π)3

f (p)

Ep
. (4)

It depends, as Π and Σ, only on the effective distribution function (2).
The scalar dispersion relation is like that of massive relativistic particle i.e.
Ep = ±

√
m2

eff + p2.

Effective action

Since the self-energy of a given field is the second functional derivative of
the action with respect to the field, we can find the Hard Loop effective actions
of N = 4 super Yang-Mills as

L(Aa
µ)

2 (x) =
1

2

∫
d4y Aaµ(x)Π

µν
ab (x− y)Abν(y), (5)

L(Ψa
i )

2 (x) =

∫
d4y Ψ̄ai (x)Σ

ij
ab(x− y)Ψbj(y), (6)

L(Φa
A)

2 (x) =

∫
d4y ΦaA(x)PABab (x− y)ΦbB(y). (7)

The form of the above effective actions appear to be unique. Consequently,
the properties of the plasma, which are controlled by the Hard Loop dynam-
ics, are unique as well.

3 Collisional processes

Since temperature (T ) is the only dimensional parameter which character-
izes the equilibrium plasma of massless constituents, the transport coefficients
are all expressed through powers of T and only numerical coefficients can
differ for different systems. In the paper [3] we considered the collisional
energy loss and momentum broadening of a particle traversing the equilib-
rium plasma. The dimensional argument does not work here because the two
quantities depend not only on the plasma temperature but on the energy of
test particle as well.

We computed the energy loss and momentum broadening due to the pro-
cesses, like the Compton scattering on selectrons, the matrix element of which
is independent of momentum transfer. In the limit of high energy of test par-
ticle, the two quantities were found as

dE

dx
= − e4

253π
T 2, q̂ =

e4ζ(3)

12π3
T 3 . (8)

In QED and QCD plasma the energy loss and momentum broadening appear
to be strongly dominated by the Coulomb-like interactions i.e. the contribu-
tions from the matrix elements squared of elementary processes, which grow
as t−2 for t→ 0. Nevertheless the two quantities (up to the logarithmic terms)
are similar to those corresponding to the momentum independent matrix ele-
ments. The table explains why the similarity occurs.

Contact Coulomb
|M|2 ∼ e4 |M|2 ∼ e4s2

t2

energy change in single collision ∆E ∼ E ∼ e2T

cross section σ ∼ e4

ET ∼ e2

T 2

density ρ ∼ T 3 ∼ T 3

inverse mean free path λ−1 = σρ ∼ e4T 2

E ∼ e2T

energy loss dE
dx ∼

∆E
λ ∼ e4T 2 ∼ e4T 2

The estimate shows that the two interactions corresponding to very different
differential cross sections lead to very similar energy losses.

4 Conclusion
The dynamics of QCD is obviously rather different than that ofN = 4 super

Yang-Mills theory. Nevertheless the two plasmas in the weak coupling regime
are surprisingly similar at the leading order. The form of gluon collective ex-
citations is identical and the same is true for the fermion (quark) modes. The
scalar modes in SYMP are as of massive relativistic particle. The energy loss
and momentum broadening of a highly energetic test particle are rather sim-
ilar in the two plasma systems. The differences mostly come from different
numbers of degrees of freedom in both plasmas.
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