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    Energy loss of a fast parton in an unstable QGP 

 

  

When a highly energetic parton travels through the quark-gluon 

plasma (QGP), it losses its energy due to interactions with plasma 

constituents. This leads to the jet quenching observed in 

relativistic heavy-ion collisions. The problem of energy loss is 

rather well understood in the case of equilibrium plasma. 

However, the quark-gluon plasma produced in high-energy 

collisions reaches the state of local equilibrium only after a short 

but finite time interval. During this period the momentum 

distribution of plasma partons is anisotropic and such a plasma 

appears to be unstable, see the review [1]. We show here how to 

compute the energy loss of a parton in unstable plasma as an 

initial value problem. Our approach and preliminally  result are 

described in [2].  

We calculate the  energy loss by treating the parton as an energetic 

classical particle with SU(NC) color charge. Its motion across            

the quark-gluon plasma is described by the Wong equations 
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where ,  x(), u() and p() are, respectively, the parton’s  proper 

time, its trajectory, four-velocity, and four-momentum; Fa
 and 

Ab
 denote  the chromodynamic field strength tensor and four 

potential, Qa is the classical color charge of the parton; g is the 

coupling constant. We choose a gauge where the potential 

vanishes along the parton’s trajectory: 
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The  classical formula of the energy loss per unit time reads: 
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We use  the one-side Fourier transformation defined as:  
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The linearized (Hard Loop) Yang-Mills equations take the form: 

Applying the one-side Fourier transformation and using                  

the Yang-Mills equations, we get  the  energy loss per unit time as 

where  ij(,k)-k2 ij+kikj+2 ij(,k) with  ij(,k) being the dielectric 

tensor. det[(,k)]=0 is the dispersion equation which gives 

collective modes in the plasma. The energy-loss formula needs to 

be treated differently for stable and for unstable plasma. 
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When the plasma is stable, all modes are damped, that is the poles of -1(,k) are located in the lower half-plane of the complex 

. Consequently, the contribution to the energy loss which corresponds to the poles of -1(,k), exponentially decays in time. 

The stationary contribution is given by the pole ==kv which comes from the current ja(,k). We can also neglect the terms 

which include the initial values of the field. When we assume that the plasma is isotropic, the dielectric tensor can be  

expressed through its longitudinal and transverse components and in such a case the energy loss of a fast parton traversing 

the stable plasma is given as: 
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which agrees with the textbook result [3]. 

When the plasma is unstable, there are modes which exponentially grown in time. The poles of -1(,k) corresponding to the 

instabilities are located in the upper half-plane of complex . Expressing the initial values D0 and B0 through the current j, we 

obtain 
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First  we consider  the two-stream system and we assume that the chromodynamic field is dominated by  the longitudinal 

chromoelectric field, that is B(,k)=0 and E(,k)=k(k  E(,k))/ k2. This gives 

The distribution function of the two stream system is chosen to be: 

The energy loss per unit lenght for the two-stream system simplifies to: 

This equation gives a non-zero energy loss in the vacuum limit when L1 which should be subtracted. 
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Conclusions 

➮ We have developed a formalism where the 

energy loss of a fast parton in a plasma medium 

is found as a solution of initial value problem. 

 

➮ In case of stable plasma, we reproduce 

correctly the standard energy-loss formula. 

 

➮ In case of unstable plasma the energy loss  

per unit length is not constant, as in an 

equilibrium plasma, but it exhibits a strong time 

and directional  dependence. 

Prolate  system 

When the momentum distribution is elongated along the beam, the system is called PROLATE. The  distribution function of 

extremely prolate system can be written as:                                where n is the unit vector along which the distribution is 

elongated. 

Since the matrix  is symetric and it depends only on two vectors n and k, it can be decomposed as: 

where the  tensors are defined as: 
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The parton energy loss per unit length as a function of time for several 

angles  between the parton's velocity v and stream velocity u.  
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The coefficients a, b, c, d  are found from the equations: 
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The poles of the inverse matrix sigma give the dispersion equations, which determine the locations of singularities of the 

integrand of  the  energy loss in the prolate system. The dispersion equation can be  written as: 

Stable  system 
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with the following vector nT  

The inverse matrix  equals: 
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