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Introduction
To learn more about the early
universe and structure of super-
dense stars, the physics of mat-
ter at extremely high temperature
and density must be understood.
The strong interaction is dominant
under these conditions. Hence
the phase diagram of Quantum
Chromodynamics (QCD) is inves-
tigated.

Quark Gluon Plasma
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At extremely high temperature
and density hadrons dissolve into
a deconfined system of quarks
and gluons, called a quark-gluon
plasma (QGP).

Experimentally, QGP is investi-
gated by orchestrating heavy ion
collisions in particle accelerators.

Theoretically, a major tool for its study is lattice QCD (LQCD).

Lattice QCD

◦ QCD formulated on a Euclidean space-time lattice.

◦Ambiguous infinite-dimensional functional integral that defines QCD
becomes finite and well defined.

◦ Evaluate integral using Monte Carlo techniques.

Due to the sign problem, the study of non-zero density LQCD is ham-
pered. This makes non-zero temperature LQCD a more accessible
means by which to study the QGP. The charmonium potential is of
particular interest becauseJ/ψ suppression is believed to be a signa-
ture of QGP [1], its calculation from first principles would also con-
tribute to a better understanding of the the melting of mesonstates.

Method of Calculation
Assume charm quarks are heavy enough to be treated non-relativistically.

Solve Schr̈odinger equation to compute the potential.

Vcc̄(~r) =
1

2µcc̄

∇2ψcc̄(~r)

ψcc̄(~r)
+ Ecc̄

To obtain the reduced mass,µcc̄, energy,Ecc̄, and wavefunction,
ψcc̄(~r), of the c-̄c system analyse split-split correlation functions via
methods i) and ii),

(�r, 0) (�r, t)

(�0, t)(�0, 0)

c

c̄
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SOURCE SINK

From analogy with statistical mechanics lattice spacing,aτ , and size,
Nt, in temporal direction are related to temperature by,

aτNt =
1

T

CalculateVcc̄(~r) for differentNt to investigate non-zero temperature
behaviour.

i) Conventional LQCD Hadron Spectroscopy

Express the correlation function of two operators as the sumover the
eigenstates of the Hamiltonian operator labelled by n,

C(~r, t) = 〈Occ̄(~r, t)Ōcc̄(~r, 0)〉

=
∑

n

〈0|Ôcc̄(~r, t)|n〉〈n|
ˆ̄Occ̄(~r, 0)|0〉e

−tEcc̄
n ,

Define an effective mass,

meff(t + 1) = ln

[

C(t)

C(t + 1)

]

.

Perform a two parameter fit ofC(~r, t) in time interval wheremeff
plateaus, hereC(~r, t) = Z(~r)e−tE0, since the ground state dominates.

◦ Z(~r) = ψsrccc̄ (~r)ψsnkcc̄ (~r) =⇒ ψcc̄(~r) =
√

Z(~r)

◦ Ecc̄0 = mcc̄
0 for zero-momentum state.

ii) Spectral Functions

At zero momentum correlation functions and spectral functions are
related by,

C(t) =

∫ ∞

0

dω

2π
ρ(ω)e−ωt.

Using this relation can extractρ(ω) using Maximum Entropy Method.

Peaks inρ(ω) atω correspond to states with energyω = Ecc̄n .

Area under peak is proportional to wavefunction,ψcc̄(~r).

Lattice Simulation Details

A Symanzik-improved, two plaquette action [2] generated two flavour,
dynamical, anisotropic gauge configurations for this study [3]:

Ns Nt Ncfg T (MeV ) T/Tc
12 80 250 92 0.42
12 32 1000 230 1.05
12 28 1000 263 1.20
12 24 500 306 1.40
12 20 1000 368 1.68
12 16 1000 459 2.09

a−1
τ = 7.35± 0.03 GeV
as = 0.162 fm
as/aτ = 6
mπ/mρ = 0.54 [4]

Chroma [5] is used to apply an anisotropic clover fermion action [6]
to obtain the correlation functions of several different operators:

OperatorOh Rep. LowestJPC Channel NameParticle Name
1 A1 0++ a0

3P0(χc0)
γ5 A1 0−+ π 1S0(ηc)
γi T1 1−− ρ 3S0(J/ψ)
γ5γi T1 1++ a1

3P1(χc1)
γiγj T1 1+− b1

1P1(hc)
γi∇i A1 0++ ρ×∇ A1

3P0(χc0)
ǫijkγj∇k E 1++ ρ×∇ T1

3P1(χc1)
sijkγj∇k T2 2++ ρ×∇ T1

3P2(χc2)

Preliminary Results
Spectroscopy:

TheNt = 80 π-channel correlation functions,
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become noisier as~r increases - a generic observation.

Corresponding effective mass plot for~r = 1as,
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ψcc̄(~r) can be successfully extracted,
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Comparing potential obtained forNt = 16 andNt = 80,
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see evidence that potential flattens for higher temperature in agree-
ment with deconfinement.

However, data points for greater~r have larger errors - as expected
from noisier correlation functions. This makes temperature depen-
dence of potential difficult to discern when results for allNt are plot-
ted.
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Spectral Functions:

Nt = 32 π-channel spectral function for~r = 1as,
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conv= .10E-04 mu_test= .10     sing= .10E-14 amin= .10E-01  

w= .00-3.00  n_w= 500  m(w)=m0*(1+w)  Prior=L  Kernel=K*w/2T

default model: m0= .221213     chi^2= .120314E+07           

the energy of the ground state indicated by the centre of the first peak
is similar to that indicated by theNt = 80 effective mass plot.

As a first step plot area under spectral function ground state peak
against~r, which is proportional toψcc̄(~r),
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spurious point≈ ~r = 0.8 where peak could not be resolved. Once
this problem is overcome will proceed to calculate potential.

Summary
Charmonium wavefunction using method i) and ii) and potential us-
ing method i) can be successfully extracted. Potential using method
ii) will follow after more analysis.

Observe a temperature dependence of the charmonium potential in
agreement with deconfinement but need to increase reliability of this
claim.

Will increase statistics on123 lattices and move to323 lattices to
achieve this.
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