Charmonium Potential at Non-Zero Temperature

| ntroduction

To learn more about the earlv

universe and structure of supe T““:g

dense stars, the physics of m : uark—gluon
ter at extremely high temperatu ., |3 &2 plasma (QGF)
and density must be understo(Mev E_ g;:

The strong interaction is domina

under these conditions. Hen: ~ |Padronic

_ (confined) 1
the phase diagram of Quantu  |phase ¢ nuclear \ {3 / cFL
. .. IMatLer
Chromodynamics (QCD) is inves vacuum \ freutron|stars) ;
tigated. 310 MeV H
Quark Gluon Plasma
guark guon e g At extremely high temperature
. and density hadrons dissolve into
L j a deconfined system of quarks
P : and gluons, called a quark-gluon
F 10f 1 i 100 107 plasma (QGP).

i i . i“%.,'.q‘ -“._ 1:_‘::..‘._:._ .v.}:
& ’g’*ﬁ*@% e
':' I8l

Experimentally, QGP is investi-
gated by orchestrating heavy ion
collisions In particle accelerators.

Theoretically, a major tool for its study is lattice QCD (LQCD)
Lattice QCD

o QCD formulated on a Euclidean space-time lattice.

o Ambiguous infinite-dimensional functional integral thafides QCD
becomes finite and well defined.

o Evaluate integral using Monte Carlo techniques.

Due to the sign problem, the study of non-zero density LQCRm-h

pered. This makes non-zero temperature LQCD a more acaessibl
means by which to study the QGP. The charmonium potentidl is 0

particular interest becausigy suppression is believed to be a signa-
ture of QGP [1], its calculation from first principles woultsa con-
tribute to a better understanding of the the melting of mestates.

M ethod of Calculation

Assume charm quarks are heavy enough to be treated noivistiedlly.

Solve Schodinger equation to compute the potential.

To obtain the reduced masg.: energy, £, and wavefunction,
Yee(r), Of the ce system analyse split-split correlation functions via
methods 1) and i),
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From analogy with statistical mechanics lattice spacingand size,
Ny, In temporal direction are related to temperature by,
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CalculateV, z(7) for different V; to investigate non-zero temperature
behaviour.

1) Conventional L QCD Hadron Spectroscopy

Express the correlation function of two operators as the euenthe
eigenstates of the Hamiltonian operator labelled by n,
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Define an effective mass,

me(t +1) =1In [

C(t) ]
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Perform a two parameter fit &f'(r,¢) in time interval wherem g
plateaus, her€'(7,t) = Z(7)e~ %0, since the ground state dominates.
0 Z() = Y& (MWEMT) = veol) = V/Z(7)

o 85 — mgé for zero-momentum state.
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I1) Spectral Functions

At zero momentum correlation functions and spectral functions are

related by,
B 0.0 dw ol
C(t) /O —Zﬂp(w)e .

Using this relation can extrapgfw) using Maximum Entropy Method.
Peaks inp(w) atw correspond to states with energy= E°.

Area under peak is proportional to wavefunctiggg(r).

L attice S mulation Details

A Symanzik-improved, two plaquette action [2] generated two flgvour

dynamical, anisotropic gauge configurations for this study [3]:

N[Ny | Negy [T(MeV) [ T/T,| =1 =7.3540.03 GeV
12180/ 250 92 | 0.42 0. = 0.162 fm
12/32/1000 230 | 1.05

1228 10000 263 | 1.20 as/ar =6

1224/ 500 306 | 1.40 mz/m, = 0.54 [4]
121201000 368 | 1.68

12/16/1000 459 | 2.09

Chroma [5] Is used to apply an anisotropic clover fermion action [6]
to obtain the correlation functions of several different operators:

Operator O;, Rep.| Lowest.J"¢ | Channel NameParticle Name
1 Al O++ a 3P0<Xco>
Y5 Al 0~ * I 1S()(776>
Vi Ty 17~ p 2So(J/)
V57Yi 1 1+ a SPi(Xe1)
ViV T 17~ by LPy(he)
’YZVZ Al O—H_ pP X V,Al SP()(XC())
€ijkYj Vk E 1+ p X V. SPi(Xe1)
SiikViVik | 12 27 p x VT SP(Xe2)

Preliminary Results

Spectroscopy:

The N; = 80 w-channel correlation functions,
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become noisier asincreases - a generic observation.

Corresponding effective mass plot 0 1ag,
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Yee(T) can be successfully extracted,
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Comparing potential obtained fd¥; = 16 and N+ = 80,
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see evidence that potential flattens for higher temperature in-agree

ment with deconfinement.

However, data points for greatérhave larger errors - as expected
from noisier correlation functions. This makes temperature depen-
dence of potential difficult to discern when results for/éllare plot-

ted.
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Spectral Functions:

Ny = 32 w-channel spectral function for= las,
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conv=.10E-04 mu_test=.10 sing=.10E-14 amin=.10E-01
w=.00-3.00 n_w= 500 m(w)=m0*(1+w) Prior=L Kernel=K*w/2T
default model: m0=.221213 chi*2=.120314E+07

the energy of the ground state indicated by the centre of the first peak
IS similar to that indicated by th&; = 80 effective mass plot.

As a first step plot area under spectral function ground state peak
against, which is proportional ta).(7),
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spurious pointe 7 = 0.8 where peak could not be resolved. Once
this problem is overcome will proceed to calculate potential.

Summary

Charmonium wavefunction using method 1) and i) and potential us-
INg method 1) can be successfully extracted. Potential using method
1) will follow after more analysis.

Observe a temperature dependence of the charmonium potential in
agreement with deconfinement but need to increase reliability of this
claim.

Will increase statistics on?2? lattices and move t82° lattices to
achieve this.
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