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I. Introduction

The Debye mass in hot QCD (forNf = 0) is determined to

three-loop order as a matching coefficient of dimensionally

reduced electrostatic QCD. The expansion in terms of both

the strong coupling and the momentum requires the eval-

uation of 107 sum-integrals which are reduced via IBP

relations to a small number of master sum-integrals. These

are then solved, using the method pioneered by Arnold and

Zhai [1].

II. Dimensionally reduced effective QCD

Thermal QCD exhibits three different scales (2πT , gT and

g2T ) of which the “ultra-soft” color-magnetic mode (g2T )

leads to a breakdown of the ordinary perturbative expansion

[2].

The standard procedure for dealing with the scale hierar-

chy of thermal QCD is scale separation by isolating the soft

and ultra-soft modes into 3d effective theories (EQCD and

MQCD) [3]. In order to relate the effective theories to each

other, a matching computation of the effective parameters is

required. These theories can be studied non-perturbatively

via lattice simulations.

The 3d EQCD Langrangian reads:

L3d
EQCD =− 1

4
F aijF

a
ij + Tr[Di, A0]2 + m2

ETr[A2
0]

+ λ
(1)
E (Tr[A2

0])2 + ...

Di =∂i − igEAi, i, j = 1, 2, 3,

where A0 and Ai now correspond to the original electrostatic

and magnetostatic gluon fields of QCD. Our task is to com-

pute the effective mass parameter of EQCD mE, to 3-loop

order.

III. Matching computation

The general prescription is to require that various static

quantities computed in both theories, match to the given

order in a strict perturbative expansion with respect to the

gauge coupling g. By using the background field gauge, we

make sure that only the coupling constant g has to be renor-

malized in the end.

In practice, we define the screening mass mel as the pole of

the propagator of A0 at p2 = −m2
el and p0 = 0. On the

QCD side, we therefore have:

p2 + Π00(p2) = 0

and on the EQCD side:

p2 + m2
E,ren + δm2

E + ΠEQCD(p2) = 0,

where the mass parameter has to be renormalized here, due

to known UV divergences in 3d EQCD.

The self-energy is written as an expansion in both the

gauge coupling g and in the external momentum p. The lat-

ter is justified due to the soft scale p ∝ gT at which the pole

in the propagator arises.

Π
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µν (p2)=
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This leads to the following expression for the screening mass:

m2
el = g2Π1(0) + g4

[
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′
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]
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[
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′
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′′
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]

+O(g8).

On the EQCD side, themE term is treated as a perturbation,

leading to a massless tree-level A0 propagator. By perform-

ing a Taylor expansion in p, all the vacuum integrals vanish

in dimensional regularization to all orders due to the absence

of any other scale in the integrals: ΠEQCD = 0.

By matching both computations, we obtain:

mE,ren = mel − δmE

IV. Evaluation of master sum-integrals

The evaluation of the QCD self-energy tensor Πµν(P ) to

three-loop order generates ≈ 500 Feynman diagrams.

Therefore an automatized procedure is needed to handle

such a tremendous task. Generation of the Feynman di-

agrams, the color algebra computation of SU(Nc), the

Lorentz contraction and the Taylor expansion into external

momentum are performed using specific software (QGRAF,

FORM). The remaining≈ 107 sum-integrals are reduced

via IBP relations [4] to a set of ≈10 nontrivial 3-loop sum-

integrals and other products of 1-loop sum-integrals [5].

Since the IBP reduction generates divergent pre-factors

of O(ε−2) for the master sum-integrals, a non-trivial basis

transformation is performed to eliminate those. The remain-

ing non-trivial 3-loop master sum-integrals are (the first has

been computed in Ref. [6]):

For solving the remaining sum-integrals, we use the proce-

dure pioneered by Arnold and Zhai [1], in which the 1-loop

substructure of the sum-integrals is exploited.

�We improved the general prescription for extracting the di-

vergent parts from the sum-integrals. This made it possible

to develop a “semi-automatized” procedure for an analytic

calculation of the divergent parts of a large class of V-type

sum-integrals.

�Highly IR divergent parts are computed via further IBP

reductions.

�The Mercedes type sum-integral with one inverse propaga-

tor is simplified using the dimensional method of Tarasov

[7].
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V. Results

After renormalizing the QCD gauge coupling (here g ≡ gR),

the renormalized Debye mass up to 3-loop order is

given by:
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}
where the 1-loop and 2-loop contributions have been calcu-

lated in Ref. [8].

For analysing the running of the Debye mass with respect to

the temperature (T ), we have used the solution of the RGE

equation of the 4d coupling g, in which the QCD β-function

was truncated afterO(g8). The parameter ΛMS corresponds to

the QCD scale defined in Ref. [8] (ΛMS ≈ 200 MeV). The arbi-

trary scale µ̄, was chosen at the point where the effective cou-

pling gE has a minimal sensitivity to it: µ̄opt/T ≈ 2π. The

3 bands in the plot arise by varying µ̄ = (0.5...2.0)× µ̄opt.
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The plot shows a slight increase of the Debye mass with

respect to the 2-loop result. In addition, the sensitivity with

respect to the arbitrary scale µ̄ decreases, which indicates

that the perturbative expansion up to 3-loop order shows

good convergence properties.
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