# NRQC<sub>2</sub>D in Non-zero Baryon Density Environment

Seyong Kim

Sejong University

#### in collaboration with S. Hands(Swansea) and J.I. Skullerud (NUIM)

based on PLB 711(2012) 199, arXiv:1202.4353

### Outline













from arXiv:0911.4806

• lattice study of QCD in baryon rich environment is difficult due to "complex action" problem:

$$\mathcal{L}_q = \overline{\Psi}(\not\!\!D + m + \mu\gamma_4)\Psi \tag{1}$$

With grassmann integral,

$$\rightarrow \det(\not\!\!\!D + m + \mu \gamma_4)$$
 (2)

Define  $M(\mu) = \not \! D + m + \mu \gamma_4$ . Then

 $det(M(\mu)) = det(M(\mu)\gamma_5^2) = det(\gamma_5 M(\mu)\gamma_5) = det(-\not D + m - \mu\gamma_4)$ (3)

$$\det(M(\mu = 0)) = \det(M(\mu = 0)^{\dagger}) = \det(M(\mu = 0)^{\ast})$$
(1)

In general,

$$\det(M(\mu)) = \det(M(-\mu)^{\dagger}) = \det(M(-\mu)^{\ast})$$
(2)

• "complex action" means that the usual "importance sampling" of Monte Carlo method has exponential difficulty in converging to a correct answer

- QCD-like theory: two-color QCD or QCD with adjoint quarks (Kogut et al, Nucl. Phys. B582 (2000) 477)
- Consider  $N_f = 2$  Wilson fermion, two-color QCD

$$S = \overline{\Psi}_1 M(\mu) \Psi_1 + \overline{\Psi}_2 M(\mu) \Psi_2 - J \overline{\Psi}_1 (C\gamma_5) \tau_2 \overline{\Psi}_2^{tr} + \overline{J} \Psi_2^{tr} (C\gamma_5) \tau_2 \Psi_1, \quad (3)$$

where

$$M_{xy}(\mu) = \delta_{xy} - \kappa \sum_{\nu} \left[ (1 - \gamma_{\nu}) e^{\mu \delta_{\nu 0}} U_{\nu}(x) \delta_{y, x + \hat{\nu}} + (1 + \gamma_{\nu}) e^{-\mu \delta_{\nu 0}} U_{\nu}^{\dagger}(y) \delta_{y, x - \hat{\nu}} \right].$$
(4)

• det  $M(\mu)$  is real (but doesn't mean that it is positive)

$$\gamma_5 M(\mu) \gamma_5 = M^{\dagger}(-\mu) \tag{5}$$

$$(C\gamma_5)\tau_2 M(\mu)(C\gamma_5)^{-1}\tau_2 = M^*(\mu)$$
 (6)

• Grassman variable integration turns the fermion part of the action into a determinant

$$\int d\overline{\psi}d\psi e^{-S_F} \to \det M(\mu) \tag{3}$$

since  $\det M(\mu) = \det M^*(\mu)$ ,  $\det M(\mu)$  is real

 $\bullet$  redefine  $\overline{\varphi}=-\psi^{tr}{}_2C\tau_2, \varphi=C^{-1}\tau_2\psi^{tr}{}_2$ 

$$S = \begin{pmatrix} \bar{\Psi} & \bar{\phi} \end{pmatrix} \begin{pmatrix} M(\mu) & J\gamma_5 \\ -\bar{J}\gamma_5 & M(-\mu) \end{pmatrix} \begin{pmatrix} \Psi \\ \phi \end{pmatrix} \equiv \bar{\Psi} \mathcal{M} \Psi.$$
(4)

• With the redefinition

$$\mathcal{M}^{\dagger}\mathcal{M} = \begin{pmatrix} M^{\dagger}(\mu)M(\mu) + |\bar{J}|^2 \\ M^{\dagger}(-\mu)M(-\mu) + |J|^2 \end{pmatrix}$$
(3)

• Monte Carlo feasible despite the quark chemical potential

- QC<sub>2</sub>D is asymptotically free
- $\bullet$  There is spontaneous chiral symmetry breaking  $\rightarrow$  pion is light
- $\bullet$  But qq is a color singlet  $\to$  diquark condensate does not break color symmetry
- If gluon dynamics is important for QCD phase diagram,  $QC_2D$  is close to QCD in  $1/N_c$  sense.

## Lattice NRQC<sub>2</sub>D

• calculate quarkonium correlator in the background color gauge field which has dynamical light quark effect and non-zero temperature/non-zero baryon density effect

• UKQCD, DiRAC, DEISA lattices at  $\beta = 1.9, \kappa = 0.168$ (*a* = 0.186(8)fm = 1/1.060(45) GeV<sup>-1</sup>,  $m_{\pi}a = 0.68(1), m_{\pi}/m_{\rho} = 0.80(1)$ 

| Ns | Nt | j         | μ          | No. of Conf.    |
|----|----|-----------|------------|-----------------|
| 12 | 24 | 0.02-0.04 | 0.0 - 1.10 | $\sim$ 50       |
| 12 | 16 | 0.04      | 0.0 - 0.90 | $100\sim 500$   |
| 16 | 12 | 0.04      | 0.0 - 0.60 | $200 \sim 1000$ |

Table: summary for the lattice data set

• Two flavor *SU*(2) unimproved Wilson fermion, unimproved Wilson gauge action

# Lattice NRQC<sub>2</sub>D

• Non-relativistic QCD in FT

$$G(\vec{x}, t = 0) = S(x)$$

$$G(\vec{x}, t = 1) = \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0}\right]^n U_4^{\dagger}(\vec{x}, t) \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0}\right]^n G(\vec{x}, 0)$$

$$G(\vec{x}, t + 1) = \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0}\right]^n U_4^{\dagger}(\vec{x}, t) \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0}\right]^n [1 - \delta H] G(\vec{x}, t)$$
(5)

# Lattice NRQC<sub>2</sub>D

where S(x) is the source and

$$\begin{split} \delta H &= -\frac{(\vec{D}^{(2)})^2}{8(m_b^0)^3} + \frac{ig}{8(m_b^0)^2} (\vec{D} \cdot \vec{E} - \vec{E} \cdot \vec{D}) \\ &- \frac{g}{8(m_b^0)^2} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D}) - \frac{g}{2m_b^0} \vec{\sigma} \cdot \vec{B} \\ &+ \frac{a^2 \vec{D}^{(4)}}{24m_b^0} - \frac{a(\vec{D}^{(2)})^2}{16n(m_b^0)^2} \end{split}$$
(3)

# remind you



# remind you



# remind you



### S- and P-wave Correlators



• correlators for the <sup>1</sup>S<sub>0</sub> state with heavy quark mass Ma = 5.0 and j = 0.02 on  $12^3 \times 24$  lattice together with single exponential fit

### S- and P-wave Correlators



• the ratio  $\sum_{\vec{x}} G(\vec{x},\tau;\mu) / \sum_{\vec{x}} G(\vec{x},\tau;0)$  for <sup>1</sup>S<sub>0</sub> correlators 12<sup>3</sup> × 24 with Ma = 5.0

### S- and P-wave Correlators



• the ratio  $\sum_{\vec{x}} G(\vec{x},\tau;\mu) / \sum_{\vec{x}} G(\vec{x},\tau;0)$  for <sup>1</sup>*P*<sub>0</sub> correlators on 12<sup>3</sup> × 24 with *Ma* = 5.0. Due to the noisiness of the P-wave data, only a limited  $\tau$  range is shown

#### fitted mass of S-wave



• energy of the <sup>1</sup>S<sub>0</sub> state vs. quark chemical potential  $\mu$  for heavy quark mass Ma = 3.0, 4.0 and 5.0 with j = 0.02 on  $12^3 \times 24$  lattice

#### fitted mass of S-wave



• temperature dependence of the  ${}^{1}S_{0}$  state energy vs.  $\mu$  for Ma = 5.0 with j = 0.04

#### fitted mass of S-wave



• the splitting between the  ${}^{3}S_{1}$  state energy and  ${}^{1}S_{0}$  state energy for three different *M* on  $12^{3} \times 24$ 

### Conclusion

• for two-color QCD, lattice NRQC<sub>2</sub>D study of heavy quarkonium allows an interesting probe for gluon effect in non-zero temperature/non-zero baryon density.

• S-wave correlators shows a bound state behavior upto  $\mu a = 1.10$  at Ta = 1/24

• P-wave correlators shows an interesting  $\mu$ -dependee but are too noisy to extract stable fit results.

• masses from S-wave correlators show three distinct physical regions of QC<sub>2</sub>D at low temperature high baryon density.

• physical reason(s) behind for such behaviors need further theoretical investigation.