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1 Introduction: Boundary Effective Theory 2.1 Results and discussion e The(qy, ©) plane is divided into regions with different num-

Lhe plot shows the BET eftective potential as a functiop® bers Of classiCal SO,
e Boundary Effective Theory _(_BET) S a non-perturbat ' X — 10. The result is compared to the standard one-ldehe frontiers between two such regions are called caustic
method to calculate the partition function of quantum s é)-l at | 41 with the classical act ot 4| On the caustica vanishes!
tems in thermal equilibrium [1]. calculation [4], wi e classical action associatedtan

_ Ny y _ also with the classical potential evaluatedat e Whenever a caustic is crossed two solutions are either cr
e The functional space gf-periodic fields is sliced in sectofs ated or annihilated (bifurcations).

with fixed boundary field: e — \

_ BET (TIT < |l < 4TTT) p P \
o) =po(x) w-— P 20 \
Z:/ Dypo(x)] / Do(r, )| | o
o(0,2)=p0(x) o | 15
e v f
e The innermost integral is dominated by configurations infthe > | P _ ® 10
vicinity of the classical solutiom,. : T ~z ‘:
B (T, ) + U'(p(T,2)) = 0, R ol ‘: 5
©0e(0, ) = (8, x) = po(x). "os T D ;
. P ~1.0 0.5 0.0 0.5 1.0
Saddle-point approximation in the first integral: effeet}v . . . .
i P PP . J ' The effective potential obtained with BET reproduces thas ~ Ho /
theory for the boundary fields.

Ny . . dard one-loop result for small fields, as expected, sincq th .
— The related action is naturally dimensionally reduced P ! P | ) Eollowmg [5, 6], we use the framework of catastrophe the

_ | BET effective action contains the effect of the thermal m 1SS\ 16 dentify the solutions that minimize e EIaH
e Intricate dependence gn(x): encoded inp (T, ). For large fields, BET goes beyond by incorporating nonlifear > |

corrections that are not captured by the standard one-lalep @ e only have to keep the minima present after crossing tr

_ | _ culation. first caustic. No more than two solutions have to be consic
e BET one-loop effective action for a general single-well po- 418
: ered [8].
tential U (¢): H al . . . . . |
| 3 Double-well potentials: bifurcations and the e These are single turning point trajectories, written as:

BT po(x)] = Selpc| + éTr 1H(A1;1 +U"(¢c))-

problem of multiple classical solutions

dt
| Y | . ) = qied| /1 - ¢2/2(0 - ©/2),
e NB: simple relationship between effective actions at 410, ol extension of th | . 1(9) = a g/ 2( /2) Nopr:
and finite temperature. e A natural extension of the previous result: effective p ‘

_, Natural bridge between correlations and renormalizz o/ the case of a double-well potential, allowing tor the $t§ds For this class of solutions the expression for the detemtina

conditions, at zero and finite temperature [1]. ]?;rtgre];rgsltlg;c]lgi\t/ieorr\]s{g?metry restoration and implicasqn A is known [7]:

| , e This extension Is not trivial: difficulties are related tausa A= g [U(q’i) — Ulw) (g@) .
For more detaills on BET, see the poster by Ande Bessa. | tics and complex trajectories in the calculation of the sdmi U'q:) 4t/ 4

classical density matrix [5, 6].

2 Effective potential for massless\¢* theory o We start with a simpler case: the semiclassical parti 5

function for a double-well in quantum mechanics [8]. | The plot showsog Z obtained using the semiclassical approx:

» Dependence af|y(x)] on yy(x): solution of the classicq imation. One classical solution is used before the firstbaus
equations of motion for arbitrary boundary configuratior$s3.1 Semiclassical partition function for the double-welll and two after.

r? Preliminary results and discussion

e Boundary field with arbitrarye dependence: not feasible. potential in quantum mechanics |
o Effective Potentiar given by the efiective action evaluatpq semiclassical expansion for the density matrix diagongy el || - - - - \
for unitorm boundary fields [2]: ementsplqo, qo]: expanding the related path integral aroynd
Cleo] — T[] q.(7), path of a classical particle under the influence offthe B N T L
Ver(o) = ————, for constanty inverted potential-U(q).

e Boundary conditionsg(0) = ¢(©) = qo.
and —T(0}/V = «“T"/90 (free pressure) [1] e Semiclassical partition function: O

e The Tracelog is computed using the technique of Ref. [}]:
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2 d r 2 (2m) ’ A; denotes the determinant of the fluctuation operator, | | | |
2 0 2 4 6 8 10
n(8, k”) is the solution of the equation for small field pgr- A; = det Flgl] = det{ ;92 | U//(qci)} | - o /
turbations propagating on top of(7): | | _
andg .’ are theminimaof the euclidean action. The result shows a clear concavity change ardoré . This

reflects the fact that the semiclassical method, althougigbe

2 2 ! N/
0 — K+ U (p(1))|n(B, k) =0, able to deal with multiple solutions, is not a good approxima

0K — 1 dn(() B = ¢ e Multiple classical solutions arise due to the existence pfi@n when solutions coalesce.
ISR = 5 g T region of bounded motion. It is not enough to simply sum over the two minima of the
N ived o1 for the effect fontial: — For fixed ¢ in this region, solution bifurcation is olj-action — a better treatment of the caustics, as was perfoimea
e Nonrenormalized expression 10r tne etrective potential. served for increasin@. Ref. [6], IS hecessary.
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