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1 Introduction: Boundary Effective Theory

•Boundary Effective Theory (BET) is a non-perturbative
method to calculate the partition function of quantum sys-
tems in thermal equilibrium [1].

•The functional space ofβ-periodic fields is sliced in sectors
with fixed boundary field:

Z =

∫

[Dϕ0(x)]

ϕ(β,x)=ϕ0(x)
∫

ϕ(0,x)=ϕ0(x)

[Dϕ(τ,x)]e−SE[ϕ]

•The innermost integral is dominated by configurations in the
vicinity of the classical solutionϕc :

�E ϕc(τ,x) + U ′(ϕc(τ,x)) = 0,

ϕc(0,x) = ϕc(β,x) = ϕ0(x).

•Saddle-point approximation in the first integral: effective
theory for the boundary fields.
→ The related action is naturally dimensionally reduced

• Intricate dependence onϕ0(x): encoded inϕc(τ,x).

•BET one-loop effective action for a general single-well po-
tentialU(ϕ):

βΓ[ϕ0(x)] = SE[ϕc] +
1

2
Tr ln(∆−1

F + U ′′(ϕc)).

•NB: simple relationship between effective actions at zero
and finite temperature.
→ Natural bridge between correlations and renormalization
conditions, at zero and finite temperature [1].

For more details on BET, see the poster by Andŕe Bessa.

2 Effective potential for masslessλϕ4 theory

•Dependence ofΓ[ϕ0(x)] onϕ0(x): solution of the classical
equations of motion for arbitrary boundary configurations.

•Boundary field with arbitraryx dependence: not feasible.

•Effective Potential– given by the effective action evaluated
for uniform boundary fields [2]:

Veff(ϕ0) =
Γ[ϕ0]− Γ[0]

V
, for constantϕ0

and −Γ[0]/V = π2T 4/90 (free pressure) [1].

•The Tracelog is computed using the technique of Ref. [3]:

1

2
Tr ln(∆−1

F + U ′′(ϕc)) =
V

2

∫ Λ d3k

(2π)3
ln[2(η(β,k2)− 1)],

η(β,k2) is the solution of the equation for small field per-
turbations propagating on top ofϕc(τ ):

[∂2
τ − k2 + U ′′(ϕc(τ ))]η(β,k

2) = 0,

η(0,k2) = 1,
dη

dτ
(0,k2) = 0.

•Nonrenormalized expression for the effective potential:

βV Veff(ϕ0) = SE[ϕc]+
V

2

∫ Λ d3k

(2π)3
ln[2(η(β,k2)−1)]−βΓ[0].

•Renormalization: standard one-loop counterterms and sub-
traction of the zero-point energy (not obvious).

•Classical solutions forλϕ4 theory – Jacobi elliptic functions:

ϕc(τ ) =

√

6

λ
ϕt nc

[

ϕt(τ − β/2), 1/
√
2
]

,

whereϕt is chosen to ensure thatϕc(0) = ϕc(β) = ϕ0 :

ϕ0 =

√

6

λ
ϕt nc

[

ϕtβ/2, 1/
√
2
]

.

2.1 Results and discussion

The plot shows the BET effective potential as a function ofϕ0

for λ = 10. The result is compared to the standard one-loop
calculation [4], with the classical action associated toϕc and
also with the classical potential evaluated atϕ0.
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The effective potential obtained with BET reproduces the stan-
dard one-loop result for small fields, as expected, since the
BET effective action contains the effect of the thermal mass.
For large fields, BET goes beyond by incorporating nonlinear
corrections that are not captured by the standard one-loop cal-
culation.

3 Double-well potentials: bifurcations and the
problem of multiple classical solutions

•A natural extension of the previous result: effective potential
in the case of a double-well potential, allowing for the study
of thermally-driven symmetry restoration and implications
for phase transitions [9].

•This extension is not trivial: difficulties are related to caus-
tics and complex trajectories in the calculation of the semi-
classical density matrix [5, 6].

•We start with a simpler case: the semiclassical partition
function for a double-well in quantum mechanics [8].

3.1 Semiclassical partition function for the double-well
potential in quantum mechanics

•Semiclassical expansion for the density matrix diagonal el-
ements,ρ[q0, q0]: expanding the related path integral around
qc(τ ), path of a classical particle under the influence of the
inverted potential−U(q).

•Boundary conditions:q(0) = q(Θ) = q0.

•Semiclassical partition function:

Z ≈
∑

i

∫ ∞

−∞
dq0 ∆

−1/2
i e−SE[q̄

i
c ] .

∆i denotes the determinant of the fluctuation operator,

∆i = det F̂ [q̄ i
c ] = det

[

− d2

dθ2
+ U ′′(q̄ i

c)

]

,

andq̄ i
c are theminimaof the euclidean action.

•Multiple classical solutions arise due to the existence of a
region of bounded motion.
→ For fixed q0 in this region, solution bifurcation is ob-
served for increasingΘ.

•Quartic double-well potential,U(q) = −q2/2+q4/4 (below).
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•The(q0,Θ) plane is divided into regions with different num-
bers of classical solutions.

•The frontiers between two such regions are called caustics.
On the caustics∆ vanishes!

•Whenever a caustic is crossed two solutions are either cre-
ated or annihilated (bifurcations).
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•Following [5, 6], we use the framework of catastrophe the-
ory to identify the solutions that minimize the action.

•We only have to keep the minima present after crossing the
first caustic. No more than two solutions have to be consid-
ered [8].

•These are single turning point trajectories, written as:

q(θ) = qt cd

[

√

1− q2t/2(θ − Θ/2),
qt

√

2− q2t

]

.

•For this class of solutions the expression for the determinant
∆ is known [7]:

∆ =
4πg[U(qt)− U(q0)]

U ′(qt)

(

∂Θ

∂qt

)

q0

.

3.2 Preliminary results and discussion

The plot showslogZ obtained using the semiclassical approx-
imation. One classical solution is used before the first caustic
and two after.
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The result shows a clear concavity change aroundΘ = π. This
reflects the fact that the semiclassical method, although being
able to deal with multiple solutions, is not a good approxima-
tion when solutions coalesce.

It is not enough to simply sum over the two minima of the
action – a better treatment of the caustics, as was performedin
Ref. [6], is necessary.
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