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Introduction
Treating QCD at non-vanishing baryon density numerically suffers from the sign problem such that so
far only approximate methods have been used to gain information at least at small values of the chemical
potentials [1] which are, however, in the region phenomenologically relevant for RHIC and LHC physics.

In this paper we compare results obtained at imaginary values of the quark chemical potentials µi = iµI
- where lattice simulations are possible - with Taylor expansions. Moreover, we aim at an estimate of the
curvature of the pseudocritical line in the µ− T plane.

Our study for staggered 2+1 flavors on lattices of size 163× 4 clearly is exploratory. However, the quark
mass values are close to the ones realized in nature. The Goldstone pion mass is tuned to about 220 MeV
and the kaon acquires its physical mass. This corresponds to a (degenerate) light to strange quark mass
ratio of ml/ms = 1/10. The action utilized is the p4fat3 action for which Taylor coefficients computed
at µi = 0 are available in our β range and at our quark masses [2].

❍
❍❍

❍
❍❍

❍
❍❍

Locating the pseudocritical line
For small values of the quark chemical potentials µi, i = u, d, s, the pseudo-critical line is expected to be
described by

T

Tc
= 1−

∑

i

κi

(µi
T

)2

In order to estimate the κi we simulated QCD for 2+1 flavors at a variety of imaginary values for
the chemical potentials which were taken to be degenerate, µu = µd = µs = iµI , in the interval
0 ≤ µI ≤ (π/3)T , the Roberge-Weiss limit. The computations were carried out at two temperatures
above and one below the pseudo-critical temperature at the light quark massmu = md = ml = (1/10)ms:
T = 205, 210, 218MeV. The lowest temperature is above the critical temperature Tc in the chiral limit
for the p4fat3 action at Nτ = 4.

While the Polyakov loop L is not very sensitive to the transition, the light quark chiral conden-
sate 〈ψ̄ψ〉u is showing a fairly rapid rise when µI is increased.
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The disconnected chiral susceptibility χu peaks at a pseudo-critical chemical potential.
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Assuming degenerate curvature parameters κi, from a fit to the pseudo-critical values of µI we obtain
κi = 0.030(2) .

Twice that value is to be compared with the value κq = 0.059(2)(4) from [3]. Note however, that the
latter value is the curvature in the chiral limit.

Since [4] has provided evidence that the light quark mass of ms/10 is in the chiral O(N) scaling window,
we have been tempted to confront our data with O(N) scaling behavior. The magnetization

M = ms〈ψ̄ψ〉u

is thus fitted to the universal scaling function fG as given in [5]

M = h1/δ fG(z)

where

h =
1

h0

ml

ms
t =

1

t0

[

T

Tc
− 1− 3κi

(µI
T

)2
]

z = t h−1/βδ (1)

Note that the normalization constants h0, t0 as well as Tc, the critical temperature in the chiral limit for
our action and at Nτ = 4, are known from [4] such that we treat κi as the sole fit parameter. For larger
µI this assumption could be modified due to several effects which are under investigation.
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The data points at vanishing µI have not been used in the fits. The fits seem to work reasonably well
except at the highest µI values and return the following κi values:

T 205 MeV 210 MeV 218 MeV
O(2) 0.026(1) 0.031(1) 0.025(3)
O(4) 0.022(1) 0.028(1) 0.025(2)
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Comparison with the Taylor expansion
In the Taylor expansion approach one writes the pressure p as a series in terms of the quark chemical
potentials around ~µ0 = (µu0, µd0, µs0)

p

T 4
(~µ) =

∑

ijk

cudsijk (~µ0)

(

µu − µu0
T

)i(µd − µd0
T

)j (µs − µs0
T

)k

where usually ~µ0 = 0 is chosen. Quark number densities ni and susceptibilities χi, for instance

nu
T 3

(~µ) =
∂(p/T 4)

∂(µu/T )
=
∑

ijk

i cudsijk (~µ0)

(

µu − µu0
T

)i−1(µd − µd0
T

)j (µs − µs0
T

)k

χu
T 2

(~µ) =
∂2(p/T 4)

∂(µu/T )2
=
∑

ijk

i(i− 1) cudsijk (~µ0)

(

µu − µu0
T

)i−2(µd − µd0
T

)j (µs − µs0
T

)k

are then easily obtained.

In the following we compare the light quark number density nq and its susceptibility χq
computed at non-vanishing µI with the predictions of a Taylor expansion around ~µ0 = 0:
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The error bands have been obtained by adding the errors on the Taylor coefficients in absolute value, and
such are overestimated.
In principle one can do the expansion around various imaginary ~µ0 and continue to real ~µ thereby checking
for reliability. Moreover, the error of the expansion could be estimated. This was so far beyond reach
within the available computing resources.
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Quark number density and susceptibility vs. O(N)
When the singular part of the free energy density fs is known the scaling behavior of nq and χq, or

equivalently of the appropriate Taylor coefficients, e.g. c1 = cuds100 , c2 = cuds200 , can be predicted as long as

the µi dependence of t can safely be approximated by (1). ForO(4) symmetric model fs = h0h
1+1/δff (z)

has been reconstructed in [5] via the relation

fG(z) = −

(

1 +
1

δ

)

ff (z) +
z

βδ
f ′f (z) .

In similar fashion, an interpolation of fG(z) in O(2) has been undertaken in [6].

These interpolations for fs(z), together with a regular contribution ∼ t (h is fixed throughout all our
simulations), have been used to fit the data for c1, c2 at imaginary µ. Again, κi is the sole fit parameter.
Note that the data at ~µ = 0 has not been included in the fits.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25
aµI

T = 205 MeV

c1
O(4) fit
O(2) fit

c2
O(4) fit
O(2) fit

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3
aµI

T = 210 MeV

c1
O(4) fit
O(2) fit

c2
O(4) fit
O(2) fit

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3
aµI

T = 218 MeV

c1
O(4) fit
O(2) fit

c2
O(4) fit
O(2) fit

The fit results for κi are summarized in the following table:

T 205 MeV 210 MeV 218 MeV
O(2) c1 0.021(1) 0.021(1) 0.016(1)

c2 0.023(1) 0.021(1) 0.016(2)
O(4) c1 0.039(1) 0.036(1) 0.023(2)

c2 0.042(2) 0.036(1) 0.023(3)

While the fit results for κi, at least for O(2), do not seem to be inconsistent, it is clear that at values for
µI close to the Roberge-Weiss limit, other scaling studies need to be performed in the future.
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