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Results in LPA and discussion momentum

The Local Potential Approximation (LPA) is the lowest order of a derivative
expansion for the effective action. Our LPA ansatz has the form of the

Introduction and motivation

The role of interactions in the phenomenon of Bose-Einstein

Condensation (BEC) is a nontrivial fundamental question. In the
nonrelativistic case, it was shown [1] that nonperturbative effects
associated with interactions with nonzero momentum exchange affect
significantly the critical parameters for condensation, with implications
for cold atom physics. Here, we consider a relativistic context, with the
application to pion BEC in isospin-dense QCD [2] media in mind.
Besides its phenomenological motivation, the problem of relativistic
BEC in isospin dense QCD represents a particularly interesting
framework to develop efficient nonperturbative methods for dense

classical euclidean action, but with k-dependent parameters:
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which is also truncated beyond the 4-point function.
Inserting this ansatz in the flow equation and solving integrals and

Matsubara sums, we obtain (for Litim regulator: R.(q°) = (x* — ¢°)0(k* — ¢*))

In order to incorporate the effect from momentum-dependent
interactions in our computation of nonperturbative corrections, we go
one step further in the derivative expansion for the effective action,
iIncluding the kK-dependent wavefunction renormalization Zx in our
ansatz. This improved truncation scheme is the so-called LPA’ [3,6].

Our LPA’ ansatz for the effective action includes different wavefunction
renormalizations in the spatial and temporal directions and may feature
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the phenomenon of BEC is particularly suited for the implementation of
a Functional Renormalization Group (FRG) analysis [3]. To isolate the
physical problem of BEC, we consider a toy model of a complex scalar
field theory with U(1) symmetry at finite density. We concentrate then on

with 75 being the Bose distribution and: {wm = 2 (k2 +2V)) + (p2 + aV/)?
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In this ansatz, we cannot access the flow of the chemical potential

The flow of the wavefunction renormalizations are then obtained via
the adequate projection of the momentum dependence of the full 2-
point function, e.g.:

analyzing in detail how the FRG and the different possible
approximations that must complement it perform in this case.

independently of that of the mass, so we set it constant and end up with 3
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- COLD AND DENSE FLOW:
The second-order BEC transition occurs when the quadratic coefficient of
the effective potential flows to zero at the physical theory (k=0).

Quadratic coefficient of V.:
1o

Here, A is a small inhomogeneous fluctuation around the Tt
condensate.

Effective Theory

We consider a complex scalar field 7 = (7! +i7%)/v/2 with real mass
( m?>0 ) and U(1) symmetry at finite temperature and density. The
euclidean action Sg, with the partition function given by Z = Trexp(—Sg),
including the U(1) charge conservation constraint is:

The solution of the set of coupled flow equations obtained in this way
IS currently work in progress.

The critical chem. potential
is decreased by fluctuations
~ wrt mean-field result. This
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finite temperature and densities in a complex scalar field theory with
U(1) symmetry using the nonperturbative framework of the FRG.
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Comparing the latter form with the problem of the linear sigma model at

finite isospin density, one can see that this is a simplified version of it in Flow of the density:

Flow of the physical running mass:

Our results [7] within the Local Potential Approximation are consistent

which we consider only the charged pion directions and —)\2v? — m?, 10000
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order in the derivative expansion [7] should eventually answer whether
the puzzling features found in the description of the T — u phase-
diagram are physical or rather artefacts of the LPA ansatz.

action I'[r], i.e. a flow in the effective action space parameterized by k. Flow at T/M ~ 0.51 and p*/M?® ~ 1.04: mj; versus r (left) and A} versus « (right).

One interesting and convenient definition of an exact flow is that of
the original theory with a modified propagator which suppresses IR
modes with ¢ < k, satisfying thus: 10

- PHASE DIAGRAM FOR BEC: MEAN-FIELD VERSUS FRG-LPA

The generalization of the results to a QCD chiral model for pion
condensation at finite isospin density should in principle be
straightforward.

k=0 all quantum fluctuations are included (['y,—g =T)

Intermediate x | IR modes (¢* < x?) suppressed; UV fluctuations (¢* > x*) included 0.8

k=A— o all fluctuations are suppressed; physics is classical (I'y—p = .9) I
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- EXACT RG FLOW: = ;
A standard procedure of deforming the theory yields the exact FRG flow O-4V
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