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Motivation
Two QCD “laboratories" exhibit the strongest
magnetic fields in the universe
• non-central relativistic heavy ion collisions:
B ∼ 1018 G

• compact stars: up to B ∼ 1015 G at the sur-
face, possibly B ∼ 1019 G in the core

At finite chemical potential µ and small tem-
perature T we have to rely on models. We
study the chiral phase transition influenced by
a strong magnetic field in
• the Nambu–Jona-Lasino (NJL) model

• the Sakai–Sugimoto model

The NJL model
We use the Lagrangian

L = ψ(iγµDµ + µγ0)ψ +G
[(
ψψ
)2

+
(
ψγ5ψ

)2]
in a background magnetic field with Nf = 1 and
apply the mean field approximation(
ψψ
)2 ' −〈ψψ〉2 + 2〈ψψ〉.

This leads to
• Landau level quantization of the one-particle

spectrum εk3,` =
√
k23 +M2 + 2 |q|B`, where

M = −2G〈ψψ〉
• with degeneracy d` = (2− δ0,`)|q|B/(4π2)

Solving the gap equation:
• B=0: only if g := GΛ2Nc/(2π

2) > 1 chiral
symmetry is broken in vacuum

• magnetic catalyis: if B > 0 chiral symmetry
is broken for any g > 0

• at g � 1 the gap looks similar to the BCS gap
[3]

M =

√
|q|B
π

e
− π2

|q|BNcG

• the density of states (dos) at k3 = ` = 0 plays
a similar role as the dos at kF in BCS theory

• for g > 1 we find at µ = 0
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At finite chemical potential one finds
• a finite axial current [4]: J 3

5 = Nc|q|Bµ/(2π2)
if M = 0 at any T coming solely from the LLL

• inverse magnetic catalysis at finite µ if g > 1

Phase
diagram
for chiral
symmetry
restoration
at T = 0.
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• energy costs for condensation increase with
µ but also with B because of the de-
generacy factor. The LLL contribution is
Nc|q|Bµ2/(4π2)

• analogue to Clogston limit for superconduc-
tors: ∆Ω ∝ B(µ2 − M2/2) for g � 1, with
µ↔ B and µ↔ δµ

The Sakai–Sugimoto model
The Sakai–Sugimoto model [5, 6] is a top–
down aproach to a gravity theory dual to large
Nc QCD. It exhibits
• broken supersymmetry by introducing an

extra dimensional Kaluza–Klein circle

• confinement–deconfinement transition via a
Hawking–Page transition between different
geometries

• fundamental matter by D8- and anti–D8-
branes separated on the Kaluza–Klein circle

• spontaneous chiral symmetry breaking by
joining the D8- and anti–D8-branes in the
bulk

• an interpolation between (non-local) NJL
and QCD [7] by tuning the D8-brane separa-
tion parameter

• a splitting of chiral symmetry restoration and
deconfinement by increasing the magnetic
field for sufficiently small separation

• a constituent quark mass given by the loca-
tion of the tip of the joined D8-branes

2d cut through the
background geometry
in x4-u-space denot-
ing the coordinate of
the Kaluza-Klein circle
and the AdS-radius
respectively.
Left: confined-chirally
broken.
Right: deconfined-
chirally symmetric

There exists a phase transition within the chi-
rally symmetric phase first discussed in [8].
• large B phase with n = Nc/(2π

2)Bµ looks
like LLL

• no oscillations from “higher Landau levels"
and the LLL transition is first order
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Left: quark number density in the restored phase from the Sakai–Sugimoto model. Right:
quark number density in the restored phase from the NJL model
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The chiral phase transition in the Sakai-Sugimoto
model:
• magnetic catalysis at small µ [9]

• increasing B can restore chiral symmetry at finite µ,
i.e. we observe inverse magnetic catalysis (IMC)

• this is due to the energy cost for condensation ∝ B
in the LLL, where IMC is most pronounced, and be-
cause the gap is not catalysed strongly enough (M ∼
α+ βB2 in both models at small B)

• IMC up to (µ,B) ∼ (230 MeV, 1019 G)

• at large B, where MC is present, we find a holo-
graphic analogue to the Clogston limit
∆Ω ∝ B[µ2 −M2√π4Γ(3/5)/(9Γ(1/10))]

• including large Nc baryons [2]:

– chiral symmetry is broken at any µ for small
temperatures and small B.

– the IMC is more pronounced

– baryon onset (second order) increases with B
and ends in the chiral phase transition line
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Chiral phase transition including baryons in the Sakai–Sugimoto model

• magnetars: quark matter favored by a strong mag-
netic field?

Top: critical temperature at severalµ. Middle: critical chemical potential at T = 0.
Bottom: full 3d phase diagram; b = 2π`2sB, etc. (dimensionless)
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