Ultrasoft Fermionic Mode in Hot Gauge neories

Presenter/ Daisuke Satow (Saclay, France & Kyoto University, Japan) Collaborator/ Yoshimasa Hidaka (RIKEN, Japan), Teiji Kunihiro (Kyoto University, Japan)

based on Nucl. Phys. A, 876, 93 (2012)

Collective modes at high T

Massless fermion-boson system (Yukawa, QED, QCD)				→
$E \frown Bosonic \frown Fermionic \frown$				
T	Single particle excitation	Single particle excitation	Low energy excitations are collective.	
gT	Plasmon	Normal fermion Plasmino	In bosonic sector, hydro mode exists	

Higher loop diagrams

H. Weldon, PRD 26, 2789 (1982)

Is there fermionic ultrasoft mode at high T?

cf: fermionic ultrasoft mode was suggested: massive boson case: M. Kitazawa, T. Kunihiro and Y. Nemoto, PTP 117, 103 (2007). massless case: V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990). neutrino in the EW theory: M. Kohtaroh, Y. Hidaka, **D. S.**, T. Kunihiro, in preparation.

Dispersion relation in fermionic sector

Perturbation theory at high T

Naive perturbation does not work at ultrasoft momentum region

to the leading order.

Summation of ladder diagrams

2. Self-consistent equation

cf: Systematic derivation and kinetic interpretation of the resummed perturbation theory: **D. S.** and Y. Hidaka, PRD, 85, 116009 (2012).

This vertex and self-energy satisfies the Ward-Takahashi identity.

Results

Summary

Bare propagators

Fermion:
$$D_R(k) = \frac{k}{k^2 + i\epsilon k^0}$$
 Boson: $G_A(k) = \frac{1}{k^2 - i\epsilon k^0}$ (scalar, photon, gluon,..)

One-loop analysis

Resummed perturbation theory

1. Dressed propagators

$$D_R(k) = \frac{k}{k^2 - m_e^2 + 2ik^0\gamma_f} \qquad G_A(k) = \frac{1}{k^2 - m_e^2 - 2ik^0\gamma_f}$$

The velocity is 1/3, the residue is of order g^2 . cf: Extension to the finite chemical potential: **D. S.** and J. P. Blaizot, in preparation.

(momentum)

•We established <u>novel fermionic mode</u> in ultrasoft ($\leq g^2 T$) region, and obtained the expressions for **dispersion** relation, decay width, and residue. using the resummed perturbation.

•We also show that the vertex function and the fermion propagator satisfy the Ward-Takahashi identity.