
Excitations of ’t Hooft-Polyakov monopoles 1

Arttu Rajantie∗ David Weir†

∗Theoretical Physics Group, Imperial College London, UK †Helsinki Institute of Physics, University of Helsinki, Finland

Introduction

◮The ’t Hooft-Polyakov monopole is a topological soliton with
magnetic charge; ‘hedgehog’ scalar field stabilised by a
(Wu-Yang) gauge field

◮Most plausible grand unified theories predict ’t Hooft-Polyakov
monopoles – produced by Kibble-Zurek mechanism at phase
transitions

◮Quantum properties not particularly well understood: no complete one-loop mass
correction calculation 2 – need to use lattice simulations

◮MoEDAL experiment searching for monopoles produced at the LHC – how strongly
might they interact with other particles?

Need techniques to probe properties of ’t Hooft-Polyakov monopoles (pair
production, interactions).

’t Hooft-Polyakov monopoles on the lattice

◮Consider Georgi-Glashow: SU(2) YM with adjoint Higgs. Lattice action is

S =
∑

x

[

2
∑

µ

(

TrΦ(x)2 − TrΦ(x)Uµ(x)Φ(x + µ̂)U †
µ(x)

)

+
2

g2

∑

µ<ν

(2− TrUµν(x)) +m2Tr Φ2 + λ(Tr Φ2)2
]

.

◮ Symmetry broken phase (classically m2 < 0)

◮Residual U(1): re-projected link angles

αµ(x) = arg
1 + Φ̂(x)

2
Uµ(x)

1 + Φ̂(x + µ̂)

2
from which we can get the lattice magnetic field and charge.

◮Twisted boundary conditions 3:

Uµ(x + L̂) = σjUµ(x)σj
Φ(x + L̂) = −σjΦ(x)σj

– reverse the direction of magnetic flux
(odd magnetic charge)

◮Compare with C-periodic boundary conditions:

Uµ(x + L̂) = = σ2Uµ(x)σ2
Φ(x + L̂) = = −σ2Φ(x)σ2

– allow only even magnetic charge (including zero)
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Form factors

◮ Form factor 〈p2|Ô(0)|p1〉 is most appropriate observable for studying interactions

◮ In the semiclassical limit, the form factor is given by the Fourier transform of the
operator

f (p2,p1) = 〈p2|Ô(0)|p1〉
≈ M

∫

d3x ei(p2−p1).xOcl(x),

◮We will take the operator O to be TrΦ2 or B
◮ Semiclassical results are then the Fourier transform of these operators in the monopole
background
◮ For B, Coulomb result

〈k|B̂(0)|0〉 = i
4πM

g

k

k2

◮ For TrΦ2, obtain classical profile numerically and use to calculate 〈k|TrΦ̂2(0)|0〉

Form factors on the lattice

◮Consider the worldline of the monopole

〈O(0;k)O(t;q)〉 = Tr U(T − t)O(q)U(t)O(k)

Tr U(T )

◮Defect recoils when interacting
with particles of definite
momentum k

◮Assume large gap
π/L ≫ k2/2M to lowest
two-particle state

◮Work in limit of large T and t, do
saddle point approximation for
worldline

O(k, 0)

O(−k, t)

U(t)

f (k0 − k,k0)

f (k0,k0 − k)

◮With these approximations, we obtain

〈O(0,k)O(t,q)〉 = (2π)3δ(3)(k + q)

L3

(

T

M

)3/2 |f (k0,k0 − k)|2
Ek0−kEk0

W (k0)
e−S(k0).

(can derive equivalent expressions for other topological defects)

◮ Fully relativistic expression (rapidity change)

◮Rearrange this to measure |f (k0,k0 − k)|2, and recover f (k)

Mass results

◮Need the monopole mass M to measure f (k)
◮Compare two methods to measure the mass

◮ Free energy 4 due to the twist ∆F/T

∆F = − ln
Ztw

ZC
=

∫

dg

[〈

∂S

∂g

〉

tw

−
〈

∂S

∂g

〉

C

]

– Then ∆F → MT as T → ∞
◮ Correlator (‘dispersion relation’) when k ≪ M ,

〈O(0,k)O(t,q)〉 = |f |2
M 2

e−
√

M2+k2

0
t−
√

M2+(k−k0)2(T−t)+MT .

– solve for k0 then obtain M by fitting to this expression

Measured with Bi(x):
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Measured with TrΦ2:
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◮Correlator measurements have relatively long autocorrelation time
◮ Likely a consequence of large monopole mass
◮ Semiclassical: need soliton worldline to be deformed
◮ HMC doesn’t seem to improve performance – used Metropolis and heatbath

Form factor results

◮Measure the form factor using

f (k) = ±i
√

〈O(0,k)O(t,−k)〉
(

M

T

)3/4
√

Ek0−kEk0W (k0)e
S(k0)/2

◮Rotation invariance means that the magnetic field form factor fB(k) is always parallel
to k – treat it as a (pure imaginary) scalar quantity

◮Tr Φ2(k) is (by contrast) periodic – fΦ(k) should be pure real

Magnetic field (photon)
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Comparison with numerical semiclassical result.

◮ Scalar field behaviour is close to semiclassical expectations
◮Magnetic field behaviour is dramatically different – deviation from Coulomb result

◮ Possibly due to charge fluctuations in the core of the monopole over area 1/mH

◮ Expect that charge fluctuations have a finite continuum limit
◮ Deeper in the broken phase, charge fluctuations smaller, closer to Coulomb result

◮ Signal for both is very clean, compared to correlator measurements of mass

Conclusions

◮Mass and form factors of monopole measured using correlation functions

◮ Long autocorrelation times for mass, but good signal for form factor

◮Charge fluctuations mean the quantum ’t Hooft-Polyakov monopole does not appear
pointlike either for the scalar or magnetic field

◮ Future work
◮ Investigate lattice artefacts due to pinning when mH & 1
◮ Pair creation – need to analytically continue result
◮ Work with actual photon operator rather than Bi

◮ Smaller lattice spacing, lighter monopoles – charge distribution in the continuum limit

◮Other applications
◮ Kinks 5, domain walls (in preparation), cosmic strings
◮ Intrinsic width of confining strings
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