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Figure: 1 The QCD phase
diagram. In early universe the
baryochemical potential µ is
assumed to be close to zero.

An interesting way of testing the standard model is to look for
possible consequences of predicted phase transitions in the early
universe. Particularly, electro-weak and deconfinement/chiral
phase transitions are often discussed in this context. Even
stronger dynamical effects are expected in the fireballs created in
relativistic heavy-ion collisions. Because of the fast expansion one
should expect non-equilibrium effects, such as nucleation,
spinodal decomposition, supercooling and reheating, to be
important.

Due to theoretical uncertainties, we consider different possibilities regarding the type of a phase tran-
sition, the mechanism of the phase transformation and dynamics of the expansion. Since the early
universe is almost baryon-antibaryon symmetric, its baryochemical potential is close to zero. As well
established by lattice calculations, in this case the deconfinement phase transition occurs at a temper-
ature below 200 MeV at time of 10−5 seconds after the big bang. We use an effective field-theoretical
model to describe the QCD phase transition for different expansion rates. Assuming that the formation
of a new phase proceeds via thermal fluctuations, we formulate an iterative scheme which detemines
the Hubble parameter self-consistently for the case of cosmological expansion and finally the possibility
of ”small inflation” scenario is discussed.

• Around 10−34 after the big bang the universe is inflated and enters a homogneous and isotropic
rapidly expanding phase.
•Originally developed to explain flatness and other phenomena like density fluctuations.
• Expansion during the inflationary phase is provided by an unidentified scalar field (inflaton).
• Initial system is trapped in a flat potential while the expansion is driven by Friedman equations (1)

and (2) from general relativity.
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If H is constant (3) shows exponential expansion. We will now derive the dynamic equations for our
model showing the interaction between field and radiation at the relevant phase

• Radiation
• Equation of state in a radiation dominated universe

PR =
ρR

3
(4)

• Energy conservation
d
dt
(
ρa3) + p

d
dt
(
a3) = 0→ ρ̇R + 4HρR = 0 (5)

• Field
• Energy momentum-tensor for scalar fields (without spatial terms)
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• Coupling of Field and Radiation

φ̈ +
dV
dφ

= −(3H + Γ)φ̇ (8)

ρ̇R + 4HρR = Γφ̇2 (9)
The added Γ-term Γ := g2

8πmφ, is responsible for the field decay into particles (e.g. φ→ qq̄).

EFFECTIVE FIELD THEORY
An effective model should simulate the symmetry features of QCD to investigate such a phase transition
by its fields’ dynamics. One important symmetry is chiral symmetry. In a chiral model like the linear
sigma model we consider a scalar field φ within the following potential (10).

V (φ) =
λ

4
[
σ2 + ~π2 − σ2

0
]2 − εσ + T-dependent terms (10)

At T < TC the symmetry is spontaneously broken which is associated with the chiral condensate.
Its excitations are Goldstone Bosons (Pions). At T > TC the symmetry is restored and the melting
condensate forms a quark gluon plasma. For scale transformations (xµ → λxµ, φ → λ−dφ), LQCD is
invariant at classical level. However this is broken by the QCD trace anomaly. Therefore an effective
model with an additional field χ (Dilaton), breaking scale invariance is needed. Now we introduce the
scaled σ-model which obeys both, chiral symmetry and scale invariance.
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)
(14)

steri

 0  20  40  60  80  100 120 140 160
 0

 20

 40

 60

 80

 100

 120

 140

 160
σ[MeV]T = 0 MeV

χ[MeV]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0  20  40  60  80  100 120 140 160
 0

 20

 40

 60

 80

 100

 120

 140

 160
σ[MeV]T = 175 MeV

χ[MeV]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0  20  40  60  80  100 120 140 160
 0

 20

 40

 60

 80

 100

 120

 140

 160
σ[MeV]T = 240 MeV

χ[MeV]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0  20  40  60  80  100 120 140 160
 0

 20

 40

 60

 80

 100

 120

 140

 160
σ[MeV]T = 300 MeV

χ[MeV]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

Figure: 2 V (σ, χ)-potential for various temperature. We see that at
TC = 240 MeV both states are on the same level. Energy levels are in
MeV/fm3

This χ-field simulates scale properties of QCD and thus its vacuum excitations represent glueballs

(11). The mixed term in the potential (13), scaled by the dilaton field also drives chiral symmetry.

REHEATING PROCESSES
We introduce a thermal bath < φ2 >= T 2 and a modified potential

U(χ2) = 2bχ4ln
(
χ2

Λ2

)
+ Aχ2T 2 (15)

as shown in Figure (3)

Figure: 3 Modified U(χ2)-potential . Mind the closed lines such
as T = 0 (black line), TC = 250MeV (red line) and T > TC (blue line,
350MeV) relevant to display the transitional behaviour.

Figure: 4 Solution of equation of motion starting at potential
barrier for different temperatures.

We assume that thermal fluctuations given by

P(χ, χ̇) ' exp
[
−χ̇

2Vmax

2T

]
(16)

(Vmax being the maximum volume) create necessary kinetic energy to start a phase transition as a
rolling down process. It is accompaigned by the energy dissipation due to the Γ-term.

Figure: 5 Energy transfer from field to radiation during the phase
transition at small scale (fermi) , displaying field- (red), radiation-
(green), and total energy density (blue). The change in H and its
influence on ρtotal is not visible at this scale. The latent heat is given by
(??)

Figure: 6 Energy transfer as in previous plot, for different initial
temperatures normalized in a way that the time delay (∆t ∼ O(fm)) until
the transtion occurs is not displayed.

Reheating begins when energy is transferred from field to particles (σ → 2π; χ→ qq̄) as shown in

Figures (4), (5) and (6), given an amount of latent heat by ∆ρ = AT 2
C(χ2

max − χ2
0), transferred into

radiation.

INFLATION-LIKE COSMIC QCD PHASE TRANSITION
In a self-consistent model we calculate analytically how interaction between energy densities and Hub-
ble expansion takes place in a radiation dominated universe

For the exact analytic solution calculated from

H2 = ζ2ρtot, (17)
whereas ζ2 = 8π

3MPlanck
, one has to take into account

that the total energy density ρtot = ρR + B in fact
contains also a constant vacuum energy B = bχ4

0
before phase transtion. Knowing that ρ̇tot equals
ρ̇R

ρ̇R = −4ζ(ρR + B)1/2ρR (18)
leading to this solution:

ρtot = B
1

tanh2 (− t
2τ

) (19)

and τ = 1
4ζ
√

B
being the relaxation time of our

system. Considering limiting cases for our total
energy density we obtain

ρtot =

{
4Bτ2

t2 = 1
4ζ2t2 t << τ

B t >> τ
(20)
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Figure: 7 Logscale description of the behaviour of energy
densities in the early universe over time. The red line shows the
evolution of ρR in a standard radiation dominated universe, the green
line display the same for a radiation dominated universe with an
additional vacuum energy B = bχ4

0 (violet line) before transition. The
blue line is the total energy density. For early times the total energy
density has quite the same amount as the standard radiation energy
density. For late times the radiation part appears to vanish and it
obtains the value for the added vacuum energy B.

According to the dynamics in Figure (7) we observe a corresponding behaviour for the Hubble constant
and the scale factor, showing the simple and exact analytic solutions. We clearly see that H does not
simply decay but arrives at a constant value, corresponding to the elaborated exponential increase in
the scale factor.

CONCLUSIONS
• A first order cosmic QCD phase transition can generate ”mini-inflation” if supercooling is very strong

(∆t ∼ µs).
• In heavy ion collisions expansion is much faster and realistic calculations within a fast dynamical

background are needed.
• Droplet formation with a finite radius should be considered.
• Full thermodynamical potential has to be impemented for a more realistic study.
• Future projects focus on studying possible first order transition in electroweak theories.
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