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to typical transverse momentum
transfer during formation time

How stopping length scales with energy

weak coupling: small

mixed coupling:
BIG
small

all strong coupling: BIG

(believed)

(up to logs)

}

Interesting:  Exponent in can depend on .

( SYM, etc.)

(massless case)
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What could we learn by also studying
Nc and ¸ BIG but <  

Answer: Is the high-energy behavior really E 1/3 ?

Caveat: “αs=αs BIG” result `stop ∝ E 1/3 has only been derived for Nc=   and   ¸=Nc= .

vs. vs.

e.g.

This talk: Nc=  but large ¸. 
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Measuring the stopping distance
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Measuring the stopping distance

stopping distance
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Strong Coupling using AdS/CFT

BIG s=s:    Large-Nc N=4 SYM, etc. with Ncs   
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Strong Coupling using AdS/CFT

stopping distance
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Our Method
In the field theory, think impressionistically of

or

Treat as a localized external field:

our

with

some source operator
e.g. j(x) source in space and time

smooth envelope function localizing

Definition for purposes of this talk:
“jet” = localized, high-p  excitation moving through the plasma.
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Result
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A simplified picture for

small size

Excitation moves like a 5-dim. particle!
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A simplified picture for

How soon it falls will depend on the initial
“velocity” in the 5th dimension.

Consider massless 5-dim. particle near the boundary:

Bigger -qq     bigger q5     falls sooner !

small size

Excitation moves like a 5-dim. particle!

Q: What determines ?

A: the 4-virtuality of the source

Why?
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The result:
geod

esic



  

Higher curvature corrections to gauge-gravity duality

N=4 SYM string theory in AdS5 × S5 background

AdS/CFT correspondence:

Strong-coupling limit:

“low energy” string theory
     =   supergravity in in AdS5 × S5 background
         (gravitons + other massless string modes)
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Higher curvature corrections to gauge-gravity duality

N=4 SYM

AdS/CFT correspondence:

Strong-coupling limit:

where

proportional to

Note: Loops are suppressed by .
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“low energy” string theory
     =   supergravity in in AdS5 × S5 background
         (gravitons + other massless string modes)

string theory in AdS5 × S5 background
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geo
d

esic

How do the higher-derivative corrections affect

?

(1) Small corrections to AdS5-Schwarzschild background (independent of E )
             →  small corrections to geodesics. 

(2) Corrections to equation of motion
             → wave packet no longer follows a geodesic.
                   (Corrections depend on E.)

TINY

POTENTIALLY
LARGE

¸



  

Importance to Jet Stopping
re

la
ti

ve
 im

p
o

rt
an

ce =  result

Moral: Expansion in 1/¸ is well-behaved for

Expansion breaks down for
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Note: Individual corrections all small (¸-1/2) where expansion first breaks down.



  

Open Question 13/13

Does sum of corrections add up to

or or ?

¸ results are okay everywhere! ¸ works only for 

Moral:   Fate of  ¸ results uncertain for 



  

How big are corrections to `max?

Ill-posed: exact definition of `max scale is fuzzy.

Suppose you try to get make a “jet” go far.
ch

ar
ge

 d
ep

o
si

te
d

exponential fall-off for

Calculate `tail as a proxy for `max.

Example:
= decay of a high-momentum, slightly off-shell graviton

Form of this result highlights an outstanding mystery...
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An outstanding mystery

How does interpolate from (strong coupling)

(weak coupling)?to

Naively, we might guess something like

which would give

But there was no “ln E ” in the result for our proxy `tail !
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Backup



  

The response is measured by a 3-point correlator.

 =

 =

†
So we want

A crude way to understand this:

For finite-temperature  AdS/CFT calculations:

•  lots in literature on computing 2-point correlators
•  almost nothing on 3-point correlators



  

†

=  5-dim. SUGRA vertex

=  a Heun  function  
hard to make any analytic or numeric progress!

Fortunately, in our problem, .. .



  

†

high-energy source  
high-k  approximation  (WKB / geometric optics)

want to observe late-time diffusion  
low-k  approximation

Can do calculation!



  

Our Result

The farthest a jet will ever go is indeed ∝ E 1/3  .

But  almost all jets will instead stop sooner at ∝ (EL) 1/4 

where L is the size of the space-time region in which
the jet was initially created.

L



  

Q:  What does the size L of the source have to do with it?
A:  It determines how off-shell the source is.

with

implies that has Fourier components

Typical stopping distance (EL) 1/4  really means (E 2/ q2) 1/4 
where

q2 = typical virtuality of the source
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