Coupling dependence of "jet"stopping in strongly-coupled gauge theories

Peter Arnold, Philip Szepietowski, and Diana Vaman

arXiV:1203.6658

$$Q_\perp \sim (\hat{q} E)^{1/4}$$

typical transverse momentum transfer during formation time

How stopping length scales with energy (massless case)

weak coupling:	$\alpha_{\rm s} \sim \alpha_{\rm s}$ small	$\ell_{ m stop} \propto E^{1/2}$ (up to logs)
mixed coupling:	$\begin{array}{l} \alpha_{s} & BIG \\ \alpha_{s} & small \end{array}$	$\ell_{ m stop} \propto E^{1/2}$ (believed) $\ell_{ m stop} \sim lpha_{ m s}^{-1} (E/\hat{q})^{1/2}$
all strong coupling: ($\mathcal{N}=4$ SYM, etc.)	$\alpha_{s} = \alpha_{s}$ BIG	$\ell_{ m stop} \propto E^{1/3}$

Interesting: Exponent in $\ell_{\rm stop} \propto E^{\nu}$ can depend on $\alpha_{\rm s}$.

Caveat: " $\alpha_s = \alpha_s$ BIG" result $\ell_{stop} \propto E^{1/3}$ has only been derived for $N_c = \infty$ and $\lambda = N_c \alpha = \infty$.^{3/13}

What could we learn by also studying N_c and λ BIG but < ∞ ?

Answer: Is the high-energy behavior <u>really</u> $E^{1/3}$?

<u>**This talk**</u>: $N_c = \infty$ but large $\lambda < \infty$.

stopping distance

Our Method

In the field theory, think impressionistically of

Definition for purposes of this talk:

"jet" = localized, high-*p* excitation moving through the plasma.

<u>Result</u>

 $\ell_{
m stop}~\lesssim~\ell_{
m max} \propto E^{-1/3}$

A simplified picture for $\ell_{\rm stop} \ll \ell_{\rm max}$

A simplified picture for $\ell_{\rm stop} \ll \ell_{\rm max}$

Q: What determines ℓ_{stop} ?

<u>A:</u> the 4-virtuality $q^2 \equiv q_\mu \eta^{\mu\nu} q_\nu$ of the source

Why?

Consider massless 5-dim. particle near the boundary:

$$0 = q_\mu q^\mu + q_5 q^5$$

Bigger $-q_{\mu}q^{\mu} \rightarrow$ bigger $q^5 \rightarrow$ falls sooner !

The result:

$$\ell_{
m stop} \simeq rac{\Gamma^2(rac{1}{4})}{\sqrt{4\pi}} \left(rac{E^2}{-q^2}
ight)^{1/4}$$

Higher curvature corrections to gauge-gravity duality

AdS/CFT correspondence:

𝔧=4 SYM

 $\lambda {
ightarrow} \infty$

string theory in $AdS_5 \times S^5$ background

Strong-coupling limit:

"low energy" string theory

= supergravity in in $AdS_5 \times S^5$ background (gravitons + other massless string modes)

 $\mathcal{L}_{ ext{grav}} \sim R$

10/13

Higher curvature corrections to gauge-gravity duality

AdS/CFT correspondence:

 $\mathcal{N}=4$ SYM

string theory in $AdS_5 \times S^5$ background

Strong-coupling limit:

"low energy" string theory

 $\lambda {
ightarrow} \infty$

supergravity in in AdS₅×S⁵ background
 (gravitons + other massless string modes)

where

Note: Loops are suppressed by
$$g_{
m string} \propto rac{1}{N_{
m c}}$$

 λ

(1) Small corrections to AdS_5 -Schwarzschild background (independent of E) \rightarrow small corrections to geodesics. TINY

(2) Corrections to equation of motion \rightarrow wave packet no longer follows a geodesic. (Corrections depend on *E*.)

POTENTIALLY LARGE

Importance to Jet Stopping

- **<u>Moral</u>:** Expansion in 1/ λ is well-behaved for $\lambda^{-1/6} \ell_{\max} \ll \ell_{stop} \lesssim \ell_{\max}$ Expansion breaks down for $\ell_{stop} \lesssim \lambda^{-1/6} \ell_{\max}$
- **<u>Note:</u>** Individual corrections all small ($\lambda^{-1/2}$) where expansion first breaks down.

Open Question

<u>Moral</u>: Fate of $\lambda = \infty$ results uncertain for $\ell_{stop} \lesssim \lambda^{-1/6} \ell_{max}$

Ill-posed: exact definition of ℓ_{max} scale is fuzzy.

Suppose you try to get make a "jet" go far.

Calculate ℓ_{tail} as a proxy for $\ell_{max.}$

Example:

= decay of a high-momentum, slightly off-shell graviton

$$\ell_{ ext{tail}} = rac{0.3259\,E^{1/3}}{(2\pi T)^{4/3}} \left[1 + rac{47.162}{\lambda^{3/2}} + \cdots
ight]$$

Form of this result highlights an outstanding mystery...

An outstanding mystery

How does $\ell_{\max} \sim E^{f(\lambda)}$ interpolate from $f(\infty) = \frac{1}{3}$ (strong coupling) to $f(0) = \frac{1}{2}$ (weak coupling)?

Naively, we might guess something like

$$f(\lambda) = rac{1}{3} + rac{\#}{\lambda^{3/2}} + rac{\#}{\lambda^{5/2}} + \cdots$$

which would give

$$\ell_{\max} \sim E^{f(\lambda)} \sim E^{1/3} \left[1 + \frac{\#}{\lambda^{3/2}} \ln E + \cdots \right]$$

But there was no "ln *E*" in the result for our proxy ℓ_{tail} !

Partial Bibliography

 $\ell_{\max} \propto E^{1/2}$ (weak coupling)

BDMPS-Z: Baier, Dokshitzer, Mueller, Peigne, Schiff '96 / Zakharov '96

Calculation of q (hat) at strong coupling as a way to study α_s BIG but α_s small Liu, Rajagopal, Wiedemann '06

 $\ell_{\rm max} \propto E^{1/3}$

Gubser, Gulotta, Pufu, Rocha '08 Hatta, Iancu, Mueller '08 Chesler, Jensen, Karsch, Yaffe '08

Formulating stopping distance in terms of late-time hydrodynamic response Chesler, Jensen, Karsch '08

AdS/CFT, the higher-curvature expansion, etc.

Various famous people.

Backup

The response is measured by a <u>**3-point correlator**</u>. A crude way to understand this:

$$|jet\rangle = |plasma\rangle.$$

So we want

$$\langle \mathbf{jet} | \widehat{\mathbf{O}} | \mathbf{jet} \rangle = \langle \widehat{\mathbf{O}} \rangle.$$

For *finite-temperature* AdS/CFT calculations:

- lots in literature on computing 2-point correlators
- almost nothing on 3-point correlators

• = 5-dim. SUGRA vertex

--- = a *Heun* function \rightarrow hard to make any analytic or numeric progress!

Fortunately, in our problem,

- - high-energy source → high-k approximation (WKB / geometric optics)
 - - want to observe late-time diffusion → low-k approximation

Can do calculation!

The farthest a jet will ever go is indeed $\propto E^{1/3}$.

But almost all jets will instead stop sooner at \propto (*EL*)^{1/4}

where *L* is the size of the space-time region in which the jet was initially created.

Q: What does the size *L* of the source have to do with it?A: It determines how off-shell the source is.

 \bigwedge \propto $\Lambda_L(x) e^{i \bar{k} \cdot x}$ with $\bar{k}^{\mu} = (E, 0, 0, E)$ implies that L has Fourier components , e e e e

Typical stopping distance (*EL*) $^{1/4}$ really means (E^2/q^2) $^{1/4}$ where

 q^2 = typical virtuality of the source