AND ALL AND ALL AND ALL AND ALL AND AND AND AND ALL AND

## **Extreme QCD Matter**

Fate of chiral symmetry in strong magnetic fields

ALAN SALAN SALA

### Kenji Fukushima

Department of Physics, Keio University

### What and how are we studying?

allow all all all all all all all all



a albana albana alba albana albana albana albana albana



<u>ir albair albair alba albair albair albair albair albair.</u>



i densi densi den densi densi densi densi densi densi



Typical Extreme's Alayi, Alayi, Alayi, Ala Alayi, Alayi, Alayi, Alayi, Alayi, Ala **High Temperature** up to  $T \sim \Lambda_{\rm OCD} \sim 200 {\rm MeV}$ **Relativistic Heavy-Ion Collision High Baryon Density** up to  $\rho_{\rm B} \sim (\Lambda_{\rm OCD})^3 \sim 1 {\rm fm}^{-3}$ **Relativistic Heavy-Ion Collision, Neutron Star Strong Magnetic Field** up to  $eB \sim (\Lambda_{OCD})^2 \sim 10^{18}$  gauss **Relativistic Heavy-Ion Collision, Neutron Star** July 10 @ SEWM2012 in Swansea 7

# Experimental Facilities RHIC LHC





### Heavy-ions collide → A new state of matter (Au, Pb, ...) (Quark-gluon plasma)

#### Thermalization achieved (elliptic flow by a hydro-model) Initial temperature > 200MeV (distribution of thermal photon)

### **QCD** phase transition at high *T*

Two Major Phase Transitions in QCD E. ALARS, AL **Quark Deconfinement Transition** (Center Symmetry)  $\sim 1 \, \text{fm}$  $T^{-1}$ or  $\rho_{\rm B}^{-1/3}$  $T\sim\!200~{
m MeV}$ **Chiral Phase Transition** (Chiral Symmetry) "Bare" Quarks  $m_a \sim 3-6 \text{ MeV}$ "Constituent" Quarks Nambu-Jona-Lasinio  $M_a \sim 350 \text{ MeV}$ July 10 @ SEWM2012 in Swansea 11

# Deconfinement from Confinement Confinement understood from the non-perturbative propagators of gluons and ghosts in the Landau gauge



**Behavior of the "dressing functions" (propagator residue)** 

### Confinement at Low T

alle a stille a stille a stille a stille a stille alle alle a stille a stille a stille a stille a stille a stille



### Deconfinement at High T

aland, aland, aland, aland, aland, alan aland, aland, aland, aland, aland, aland, aland, aland, alan



All Excitations with  $p \sim 2\pi T \rightarrow$  Perturbative Limit Two Transverse Gluons (unphysical ones canceled)



July 10 @ SEWM2012 in Swansea

### Dynamical Quarks

tr ln  $(1 + Le^{-(E-\mu)/T})$  + tr ln  $(1 + L^{\dagger}e^{-(E+\mu)/T})$  Partition func. for quarks

Full evaluation of the Dirac det on top of  $A_4$  background



**Simultaneous Crossovers** 

#### Thermodynamics near $T_c$

### **Phase structure with baryon density**

### Old Picture

**Typical Model Results** 

**Conjectured Phase Structure** 





July 10 @ SEWM2012 in Swansea

### Quarkyonic Matter

Structure of the Fermi Sphere

Quarks  $P \sim O(N_c)$ 

**Baryons** 

 $1 \sim \Lambda_{\text{OCD}}$ 

Ground state of large- $N_c$  quark matter at  $\mu_q >> \Lambda_{QCD}$ 

> McLerran, Pisarski Hidaka, Kojo

#### **Interacting Baryon Crystal Quasi-quark Gas**

Quarkyonic Chiral Spiral ( $\mu_a >> \Lambda_{OCD}$ ) in Altanta Altanta Altanta Altanta Alta Altanta Altanta Altanta Altanta Altanta Altanta A Choose one direction z with  $p_z \sim \mu_q \ (p_x, p_v \sim \Lambda_{QCD})$ (1+1)D system effectively  $\overline{\psi}(i\chi^{z}\partial_{z}+\mu\chi^{0})\psi$  $\psi = e^{i \gamma^0 \gamma^2 \mu z} \psi'$  $= \overline{\psi}'(i \chi^z \partial_z) \psi'$  $\langle \bar{\psi}' \psi' \rangle$  = Homogeneous condensate at zero density  $\langle \bar{\psi} \psi \rangle = \langle \bar{\psi}' \psi' \rangle \cos(2\mu z)$  $\langle \bar{\psi} \gamma^0 \gamma^z \psi \rangle = \langle \bar{\psi}' \psi' \rangle \sin(2\mu z)$ 

This quasi-(1+1)D system forms "one patch"

### Interweaving Chiral Spirals



As the Fermi sphere enlarges, the patch number increases, forming a chiral quasi-crystal.

Kojo-Hidaka-KF-McLerran-Pisarski (2011)

(Kojo on Thursday)



### **Generic Features**

, Maria, Mar



### **Inclusion of the magnetic field**



### Origin of the Magnetic Field

ALAR, ALAR

### **Strong B generated due to Electrodynamics**



### on top of the Quark-Gluon Plasma



#### **B** Effect on the Phase Diagram r Altra Altra Altra Altra Altra Altra Altra Altra Altra A QCD phase transitions affected by **B** Chiral cond. b= 0 0.25 Chiral cond. b = 8 Chiral cond. b = 16 Chiral cond. b = 24 Pol. loop b = 00.25 Pol. loop b = 8 0.2 Pol. loop b = 16 Pol. loop b = 240.15 à 0.1 -0.25 150 0.05 T (MeV) 5.28 5 27 5 29 ß

(D'Elia et al)

(Fodor et al)

Monte-Carlo simulation is possible (no sign problem)

*T<sub>c</sub>* increases or decreases? Chiral condensate (at zero *T*) enhanced by *B* 

Density Effect ~ Magnetic Field Effect Energy dispersion relation in B

$$\omega^2 = p_z^2 + 2|eB|(n+1/2) + m^2 - 2seB$$

Transverse motion = Harmonic Oscillator

Fermions (*s*=1/2) have zero mode – dominant at large *B* Quasi-(1+1)D system is realized along the *B* direction.

Very strong  $B + Any \mu_q \rightarrow Chiral Spiral$ 

**Basar-Dunne-Kharzeev** 

Very strong B + Attractive Int.

 $\rightarrow$  Cooper Instability  $\rightarrow$  Magnetic Catalysis

Klimenko, Gyusynin-Miransky-Shovkovy

### Magnetic Catalysis

Fermion (quark) Loop

$$V_{q} = i \operatorname{tr} \ln \left( i D_{q}^{-1} (p, \sigma) \right)$$
  
=  $\frac{eB}{8\pi^{2}} \int_{1/\Lambda^{2}}^{\infty} \frac{ds}{s^{2}} e^{-\sigma^{2}s} \operatorname{coth} (eBs)$   
~  $\# - eB\sigma^{2} \ln \left( \Lambda^{2}/\sigma^{2} \right)$ 

**Potential curvature has a log singularity and is negative!** 

Chiral symmetry is always broken because the symmetric state has a barrier (Similar to the Cooper instability)

Klimenko, Gyusynin-Miransky-Shovkovy

### Magnetic Inhibition

Meson (Neutral Pion) Loop

$$V_{m} = -\frac{i}{2} \operatorname{tr} \ln \left( i D_{m}^{-1} (p, \sigma) \right)$$
$$= \frac{i}{2} \int_{1/\tilde{\Lambda}^{2}}^{\infty} \frac{ds}{s} \int \frac{d^{4} p}{(2\pi)^{4}} e^{i s D_{m}^{-1}(p, \sigma)}$$
$$\sim -\# \frac{\tilde{\Lambda}^{4}}{v_{\perp}^{2}} \sim -\frac{\tilde{\Lambda}^{4}}{\sigma^{2}} \text{ at very strong } eB$$

**Power singularity can overcome the logarithmic one. Symmetry should be restored eventually.** (Regularization is very subtle, see Gyusynin-Miransky-Shovkovy) July 10 @ SEWM2012 in Swansea

# Meson Velocity in B Dispersion relation as a function of B



#### **Even neutral mesons are dimensionally reduced at strong B Infrared-singularity (Marmin-Wagner theorem)**

Fukushima-Hidaka (2012)

### Schematic Picture

(1+1)D Quarks Magnetic Catalysis (1+1)D  $\pi^0$ Magnetic Inhibition

More breaking of chiral symmetry **Restoration of chiral symmetry** 

~ ( $\pi^0$  size inverse squared)

This is a prediction to be tested in the lattice simulation. (This may be an explanation for the decrease in  $T_c$ ?)

July 10 @ SEWM2012 in Swansea

R

### Summary

Alexandera Alexandera Alexander Alexandera Alexandera Alexandera Alexandera Alexandera Alexandera

### **QCD** phase diagram – Chiral and Center Symmetry

- □ *High Temperature* Phase transitions well understood from the zero-*T* properties of confinement.
- □ *High Baryon Density* Inhomogeneous states favored even without the QCD CP. (Overhauser effect)
- □ *Strong B Field* Effects on the phase diagram not yet understood. Anomalous phenomena ( $\mathcal{P}$  and  $C\mathcal{P}$  odd effects)

#### What is the ground state of QCD at infinite B?

- □ *Chiral symmetry* Chiral condensate enhanced due to the magnetic catalysis but neutral mesons overcome eventually.
- □ *Deconfinement* Not understood yet but...