Strong and ElectroWeak Matter 2012, Swansea University

Latest Results of LHC: Atlas and CMS

J.F. Laporte CEA/IRFU-Saclay

For the Atlas and CMS Collaborations

July 12, 2012

Outline

LHC, ATLAS and CMS

- Physics results
 - Standard model
 - Exotics and Susy
 - Higgs

The LHC The Energy Frontier

ATLAS and CMS

ATLAS: Big and Light CMS: Compact and Heavy

22m Length: 44m Diameter: 22m Weight: 7000t $\rho < \rho_{Water}$ Water 44m

Mammoth collaborations 2x >3000 collaborators from >170 institutes in >38 countries

LHC Operations

- LHC performance have been fantastic
- 2011-7TeV: reached x5 goals in Luminosity; 5.3/5.7 fb⁻¹ Atlas/CMS
- 2012-8TeV: goal is to deliver **20fb**⁻¹ to experiments
 - running with max number of filled bunches (1380) Δt 50 ns spacing
 - more than 6fb⁻¹ per experiment so far

Experiments Operations

Fraction of Active subsystems (CMS)

Fraction of Luminosity with good data-quality from the various subsystems (Atlas)

ATLAS 2012 p-p run										
Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.4	100	95.0	98.7	100	99.2	100	99.9	100	100

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at vs=8 TeV between April 4th and May 31st (in %) – corresponding to 3.5 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

- Experiments operation quite outstanding too
- Close to 100% detector uptime: ~96%
- Close to 100% good quality data during stable beams: ~94%
- Detectors operating close to their highest:

~90% of Lumi used for analyses

Pile-up: the challenge

0.98

4

6

8

10 12 14 16

Number of vertices

Numbers of interactions per bunch crossing (ATLAS)

Challenge for:

Tracking, isolation, Jet Energy Scale (JES)/resolution, Missing Transverse energy (MET)

- 50 ns bunch spacing with higher than nominal bunch charges
- Pile-up much larger than expected

18 20

7

Physics Results

- Standard Model measurements
 - Cross-sections measurements
 - Z→4I
 - Di-Boson and anomalous Triple Gauge Couplings
 - Flavour Changing Neutral Current in tt
- Beyond Standard Model: Exotics and Susy
 - Di-lepton resonance
 - Microscopic Black Holes
 - Direct production of light stop
- SM Higgs search

Cross sections measurements

- Comparison to the predictions at NLO or more
- Agreement over ~4 orders of magnitude
- Validate detector/physics simulation, objects reconstruction, event selections and in general analysis techniques

$Z \rightarrow 4I$

CMS: CMS-PAS-SMP-12-009

Clean resonant peak: standard candle for calibration of the 4l mass scale and resolution and in phase space similar to the H 4l decays.

Di-Boson: ZZ→4I

Di-Boson

- Tests of SM predictions
- Modelling of backgrounds for Higgs and for other searches
- Probe new phenomena: anomalous Triple Gauge Couplings

- Effective Lagrangian for model independent triple gauge couplings depends on number of parameters Anomalous TGC modify total production rate as well as rate at high p $_{\rm T}$
- Experimentally, sizeable clean signal using leptonic W/Z decay channels
- Isolated high pt leptons
- Data driven methods used as much as possible

Di-Boson: WZ→lvll

Di-Boson: WW and ZZ at 8TeV!!

Flavour Changing Neutral Current in tt

- t→Wb ~100% in SM
- t->Z/ γ q (q=c,u) very rare top decays in SM: O(10⁻¹⁴)
- New Physics models (Susy, technicolor) predict enhancement up to $O(10^{-4})$ for t \rightarrow Zq
- Very clean signature using W and Z leptonic decays:

tt \rightarrow (Wb)(Zj) \rightarrow 3 isolated leptons + 2 jets + E^{miss}_t

Physics Results

- Standard Model measurements
 - Cross-sections measurements
 - Z→4I
 - Di-Boson and anomalous Triple Gauge Couplings
 - Flavour Changing Neutral Current in tt
- Beyond Standard Model: Exotics and Susy
 - Di-lepton resonance
 - Microscopic Black Holes
 - Direct production of light stop
- SM Higgs search

Di-lepton resonance

Several models suggest heavy objects decaying to I⁺I⁻ or Iv

- SSM Z'/W': heavy SM Z/W
- GUT: E6->SU(5) new heavy bosons
- Randall-Sundrum graviton: G*

Very simple signature (I^+I^-): Isolated, same flavour, opposite sign (μ) leptons p₇>25GeV

Important Backgrounds (I⁺I⁻)::

- Z/γ^* (Drell-Yan) : dominant and irreducible (MC at NLO)
- tt and dibosons : small (diboson MC)
- QCD and W+jets: reducible (Data-driven methods)

Run Number: 190975, Event Number: 26669226 Date: 2011-10-13, 23:34:58 CET

Muon: blue Electron:black Cells:Tiles, EMC

 $M_{\mu\mu}$ = 1.3 TeV

Di-lepton resonance

Microscopic Black Holes

Susy: one example, light stop

If the third generation squarks can be light then Supersymmetry solves "naturally" the hierarchy problem

Search strategy optimized to look for light stop (and/or sbottom)

Here direct light stop production lighter than top, decay to b and Chargino 2 opposite-sign leptons $+ \ge 1$ jet + high E_{τ}^{miss}

Many others Exotics/SUSY searches

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Physics Results

- Standard Model measurements
 - Cross-sections measurements
 - Z→4I
 - Di-Boson and anomalous Triple Gauge Couplings
 - Flavour Changing Neutral Current in tt
- Beyond Standard Model: Exotics and Susy
 - Di-lepton resonance
 - Microscopic Black Holes
 - Direct production of light stop
- SM Higgs search

Higgs Boson Production and Decay

$H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

How we do

Published results on 7 Tev data

71 candidates; expected background 62 ± 9 In the region m_H<141 GeV, 3 events are observed

Try to describe data with $\mu \times S + B$ where

S is H signal B is background μ is the Signal Strength

> First put <u>upper</u> limit on μ : at 95% CL, $\mu < \mu_{up}$

Exclusion Limits

If no Higgs is observed in your dataset, how well can you discriminate the prediction that there is one?

- This depends on the power of your experimental observations and the channel/mass range you are looking at.
- In some cases you will be unable to tell anything, because your discriminating power is too low (e.g too much or too uncertain background)
- In other places where you will have the discriminating power to tell (e.g. background free, good mass resolution)
- You can anticipate before the observation, saying that you will be not lucky/unlucky, just normal ("Expected");
- But at the end of the day what you have in hands will decide ("Observed")

Exclusion plots

Exclusion Limits

Published results on 7 Tev data

Significance of an excess

2012: $H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

ATLAS-CONF-2012-092

CMS-PAS-HIG-12-016

2012: $H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

Exclusion limits and significance

2012: $H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

Excluded (95% CL)

131-162; 172-530 GeV

Expected (95%CL)

121-550 GeV

- Observed significance at 125.5 GeV
 3.2 σ (LEE 2.1 σ)
- Expected significance at 125.5 GeV
 3.8 σ

Exclusion limits and significance

- Categorisation allows to optimize analysis
- ATLAS: cuts based
 - γ converted or not, photon η, Low/high "pt", New VBF category (2jets, large mass, large η gap)

8 TeV sample	window				
Category	σ_{CB}	FWHM	Observed	S	B
	[GeV]	[GeV]	[Nevt]	[Nevt]	[Nevt]
Inclusive	1.63	3.87	3693	100.4	3635
Unconverted central, low p_{Tt}	1.45	3.42	235	13.0	215
Unconverted central, high p_{Tt}	1.37	3.23	15	2.3	14
Unconverted rest, low p_{Tt}	1.57	3.72	1131	28.3	1133
Unconverted rest, high p_{Tr}	1.51	3.55	75	4.8	68
Converted central, low p_{Tt}	1.67	3.94	208	8.2	193
Converted central, high p_{Tt}	1.50	3.54	13	1.5	10
Converted rest, low p_{TT}	1.93	4.54	1350	24.6	1346
Converted rest, high p_{Tt}	1.68	3.96	69	4.1	72
Converted transition	2.65	6.24	880	11.7	845
2-jets	1.57	3.70	18	2.6	12

- CMS: Multivariate techniques (cuts based analysis carried out previously)
 - Event by event mass resolution $\sigma(m_{\gamma})$
 - photon ID Boosted Decision Tree (BDT)T output
 - Di-photon kinematic
 - vertex probability
 - Events split in 5 categories
 - 4 based on di-photon BDT classifier
 - 1 VBF category

Mass spectra results

CMS-PAS-HIG-12-015

ATLAS-CONF-2012-091

Exclusion limits and significance

Exclusion limits and significance

2012: $H \rightarrow WW^* \rightarrow 2\nu 2I$

2012: VH \rightarrow **Vbb and H** \rightarrow $\tau\tau$

Significance of excesses found in single channel analyses

	Atlas 🙀	CMS 🎇
H→4I	3.4 σ	3.2 σ
Η→γγ	4.5 σ	4.1 σ

Then combine these results (within each collaboration)

ATLAS: New analysis of 2012/2011 2γ 's and 41 and former results for others channels

Best-fit value of Signal strength

Best-fit value of Signal strength

Consistent results from various categories within uncertainties

Signal Strengths for single channel and combined analyses vs m

Consistency of the global picture

Conclusions

- LHC performance have been extraordinary
- Atlas and CMS fully exploited the high quality data delivered by the machine and undertook a rich program of studies of the Standard Model and beyond SM Physics

The CMS and Atlas collaborations announce the discovery of a neutral resonance of mass $m_{_H}$ ~125/126.5 GeV at the 5 σ significance level

Thank you

Additional material

Microscopic Black Holes

8-JET EVENT, $S_T = 3 \text{ TeV}$

$H \rightarrow 2e2\mu$ candidate @8TeV

$H \rightarrow 4\mu$ candidate @8TeV

$H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

Best-fit value of Signal strength

Comparing classes in γγ channel

ATLAS Preliminary

8TeV

110 115 120 125 130

135

140

145

m_H [GeV]

150

0 -0.5

-1.5

7+8TeV

ATLAS Preliminary

M_H [GeV]

58

110 115 120 125 130 135 140 145 150

Comparing data sets in $\gamma\gamma$ channel

145

m_µ [GeV]

150

140

ATLAS Preliminary

115 120 125 130 135

110

7TeV

Compare channel and classes results and data sets in $\gamma\gamma$ channel

2012: $H \rightarrow 2\gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

Comparing Combined analyses

p0 plots

Compare combined and single channel results

Best-fit value of Signal strength

Comparing data sets

Higgs decays

- Good H mass resolution channels
 - H→γγ
 110-150 GeV
 - H→ZZ^(*)→4I 110-600 GeV

Small BR but clean signature

- Moderate resolution channels
 - (W/Z)(H→bb) 110-130 GeV
 - H→ZZ→llqq 200-600 GeV
 - H→WW→lvqq 300-600 GeV
- Poor resolution channels
 - H→ττ 110-150 GeV
 - $H \rightarrow WW \rightarrow |v|v$ 110-660 GeV
- For low mass H the major channels are: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow 4I$ and $H \rightarrow WW \rightarrow IvIv$

$H \rightarrow ZZ^* \rightarrow 4I$: the "golden"

Likelihood scan performed on full dataset

- Global minimum of likelihood m(4l) = 125.6 \pm 1.2 GeV μ = 0.7 \pm 0.4

 Ellipses indicate 68% and 95% CL contours

Pile-up: the challenge

Calibration: in-situ, Data/MC improvements

Detectors/Physics Performance

