Classical Yang-Mills Theory Cascade

Guy Moore and Aleksi Kurkela

arXiv:1207.1663 (Monday)

- Why look at classical Yang-Mills theory?
- Cascade towards UV, scaling of momentum and occupancy
- Approach to a scaling solution
- Infrared effects: screening and magnetic screening
- How would condensates behave?

What I really want to study: Quantum YM theory at $\alpha_{\rm s}=0.3$ with intense-field inhomogeneous expanding initial conditions

What I want to study: Classical YM theory + quantum fluctuations with intense-field inhomo. expanding init. condit.

What I would like to study: Classical YM theory with intense-field expanding initial conditions

What I will study for now: Classical YM, intense-field but non-expanding.

SEWM2012: 12 July 2012: page 2 of 20 tudalen 2 o 20

What does classical YM do?

Most theories seek equilibrium.

Classical field thy. in continuum has no equilibrium.

Unlimited UV phase space. Equipartition: energy should move into UV *forever*

Start with $f \sim \frac{1}{g^2 N_c}$ for $p \lesssim Q$, f small for $p \gg Q$.

Typical momentum scale p_{\max} grows, typical occupancy \tilde{f} shrinks, with time

SEWM2012: 12 July 2012: page 3 of 20 tudalen 3 o 20

Let's $rigorously\ define\ my\ scales\ Q\ and\ p_{max}$:

$$\varepsilon = 2(N_{\rm c}^2 - 1) \int \frac{k^2 dk}{2\pi^2} k \, f(k) \quad \text{and} \quad \varepsilon \sim \frac{Q^4}{g^2 N_{\rm c}} \,, \quad f \sim \frac{1}{g^2 N_{\rm c}} \,$$

so we define

$$\varepsilon = \frac{2(N_{\rm c}^2 - 1)}{2\pi^2 N_{\rm c} g^2} Q^4$$
 or $Q^4 \equiv \frac{2\pi^2 N_{\rm c} g^2 \varepsilon}{2(N_{\rm c}^2 - 1)}$

so that, to the extent f is well defined,

$$Q^4 = \int k^3 (g^2 N_{\rm c} f(k)) dk$$

Also define "typical momentum scale now":

$$p_{\text{max}}^2 \equiv \frac{\langle (\nabla \times \mathbf{B})^2 \rangle}{\frac{1}{2} \langle \mathbf{E}^2 + \mathbf{B}^2 \rangle}$$
 $p_{\text{max}}^2 \simeq \frac{\int k^5 f(k) dk}{\int k^3 f(k) dk}$

SEWM2012: 12 July 2012: page 4 of 20 tudalen 4 o 20

Dynamics: Expect collision rate Γ order $\Gamma t \sim 1$.

Estimate $\Gamma \sim g^4 f^2 p_{\rm max}$. Two expressions:

$$g^4 f^2 p_{\rm max} t \sim 1$$
, $p_{\rm max}^4 g^2 f \sim Q^4$ time independent

Solving,

$$p_{\text{max}} \sim Q(Qt)^{\frac{1}{7}}, \qquad f \sim \frac{1}{g^2 N_{\text{c}}} (Qt)^{\frac{-4}{7}}$$

see Kurkela and GM arXiv:1107:5050, Blaizot et al. arXiv:1107:5296

What about particle number? $\Gamma_{\rm number\,chg} \sim g^4 f^2 p_{\rm max}$. Number change could keep up – or there might be condensates??

SEWM2012: 12 July 2012: page 5 of 20 tudalen 5 o 20

Questions we want to ask

Do we observe expected $p_{\max} \simeq Q(Qt)^{\frac{1}{7}}$ scaling?

Does f(p, t) approach scaling solution?

$$f(p,t)=(Qt)^{\frac{-4}{7}}\widetilde{f}(p(Qt)^{\frac{-1}{7}})$$
 Time-independent

Behavior in infrared: $f \propto p^{-1}$, $f \propto p^{-\alpha}$ (4/3 or 3/2 or...)

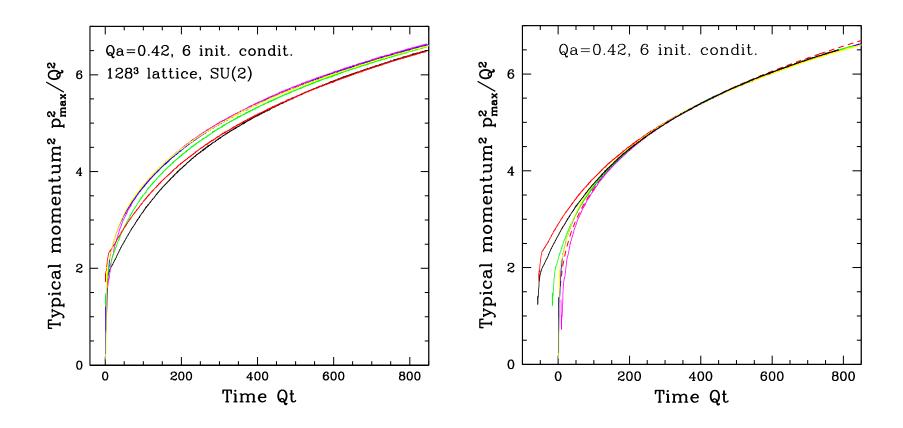
Berges Schlichting Sexty

or is there a condensate? (larger IR occupancies than just power IR scaling)

If so, is it electric (plasmons) or magnetic?

SEWM2012: 12 July 2012: page 6 of 20 tudalen 6 o 20

Lattice study. gauge invar. measurables: $p_{\rm max}^2/Q^2$:



6 very different initial conditions converge, obey $p_{\rm max} \sim Q(Qt)^{\frac{1}{7}}$

SEWM2012: 12 July 2012: page 7 of 20 tudalen 7 o 20

Occupancies? Fix to Coulomb gauge. Perturbatively,

$$\int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle A_a^i(x) A_b^j(0) \rangle = \frac{\delta_{ab} \mathcal{P}_{\mathrm{T}}^{ij}(\mathbf{p})}{|\mathbf{p}|} f(p),$$

$$\int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle E_a^i(x) E_b^j(0) \rangle = \left(\delta_{ab} \mathcal{P}_{\mathrm{T}}^{ij}(\mathbf{p}) |\mathbf{p}|\right) f(p)$$

(with $\mathcal{P}_{\mathrm{T}}^{ij} = \delta^{ij} - \hat{p}^i \hat{p}^j$) Then we could simply define:

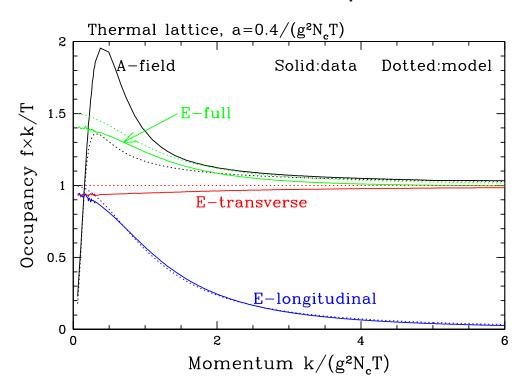
$$f_A(\mathbf{p}) = \frac{\delta_{ij}\delta_{ab}}{2(N_c^2-1)}|\mathbf{p}| \int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle A_a^i(x)A_b^j(0)\rangle_{\text{coul}},$$

$$f_E(\mathbf{p}) = \frac{\delta_{ij}\delta_{ab}}{2(N_c^2-1)|\mathbf{p}|} \int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle E_a^i(x)E_b^j(0)\rangle_{\text{coul}}.$$

Two estimates of occupancy: A-field and E-field.

Trust, but verify

Equilibrium behavior for these "occupancies" 2563 SU(2)



 f_A : peak (fake?) and fall $f \leq 6/(g^2N_{
m c})$ (magnetic screening?)

 f_E : rise in IR (Longitudinal occupancy!)

We made an assumption

We assumed $\langle \mathbf{EE}(\mathbf{k}) \rangle$ remains transverse!

It doesn't: $\mathbf{D} \cdot \mathbf{E} = 0$, not $\nabla \cdot \mathbf{E}$.

Fluctuations: effective random charge density.

perturbatively but working a bit harder,

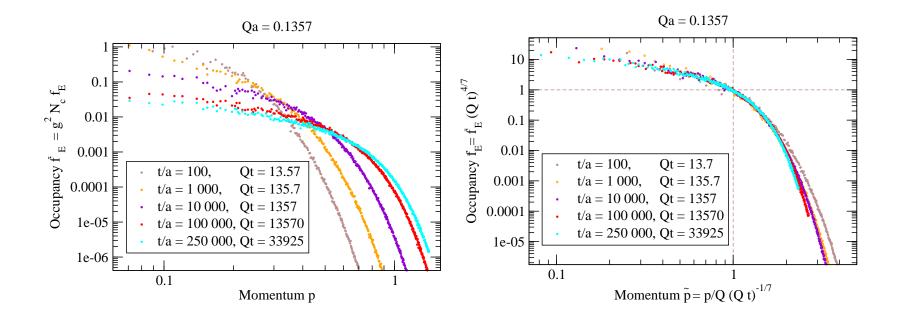
$$\int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle E_a^i(x) E_b^j(0) \rangle_{\text{eq}} = \delta_{ab} T \left(\mathcal{P}_{\text{T}}^{ij}(\mathbf{p}) + \frac{m_{\text{D}}^2}{m_{\text{D}}^2 + p^2} \hat{p}^i \hat{p}^j \right)$$

Below scale m_D , significant longitudinal contrib.

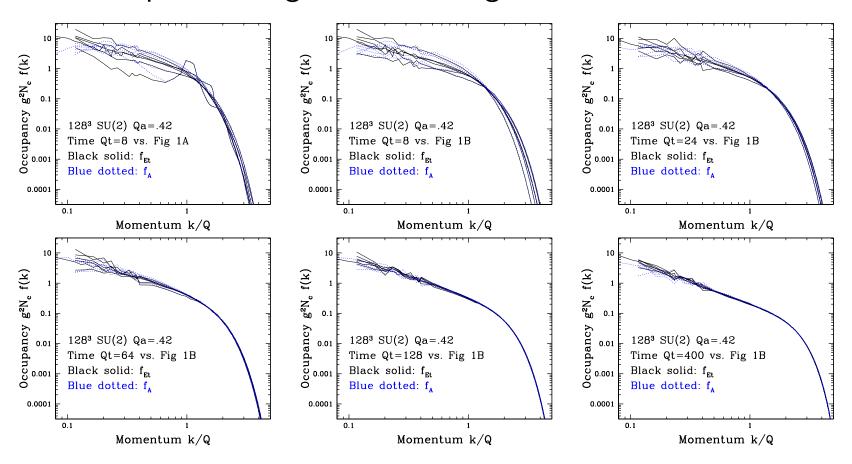
Best solution: separate into $f_{E_t}(k)$, $f_{E_l}(k)$, believe f_{E_t} . (Works in equilibrium, at least....)

SEWM2012: 12 July 2012: page 10 of 20 tudalen 10 o 20

Scaling works!

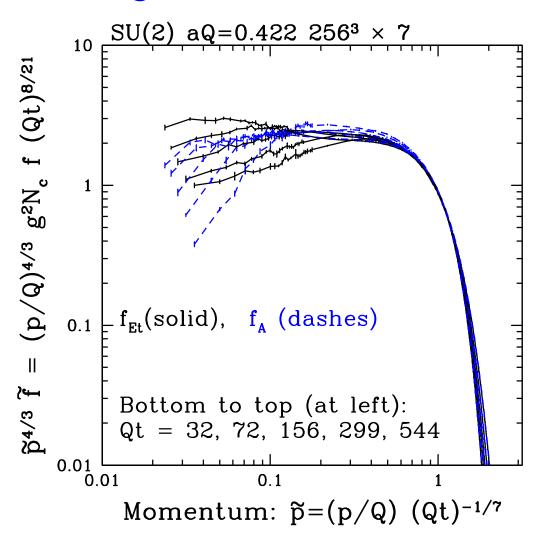


Rather rapid convergence to scaling solution:



6 distinct initial conditions, but soon they all look same.

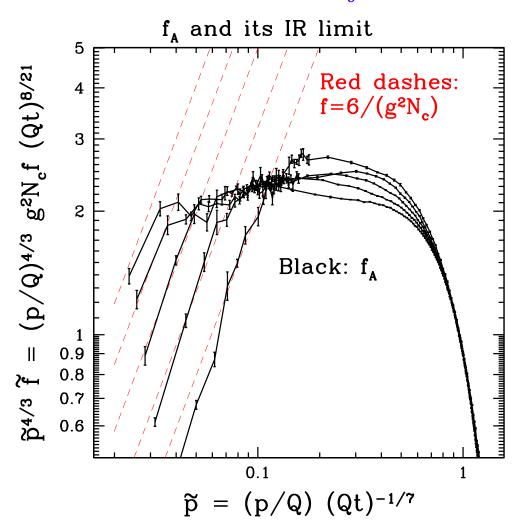
"Scaling" solution evolves in IR



 f_A , f_{E_t} tell same story except in IR

SEWM2012: 12 July 2012: page 13 of 20 tudalen 13 o 20

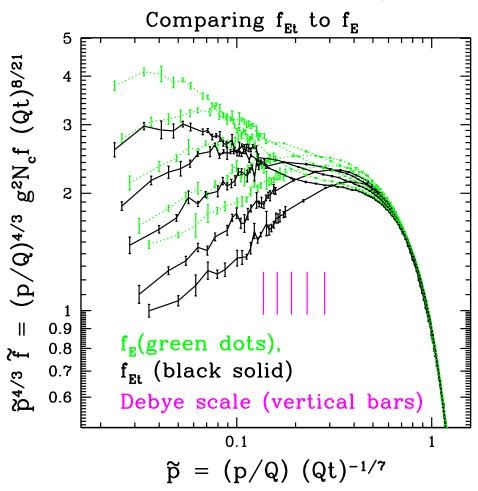
First look at f_A



 f_A rises, reaches $6/(g^2N_{\rm c})$, saturates.

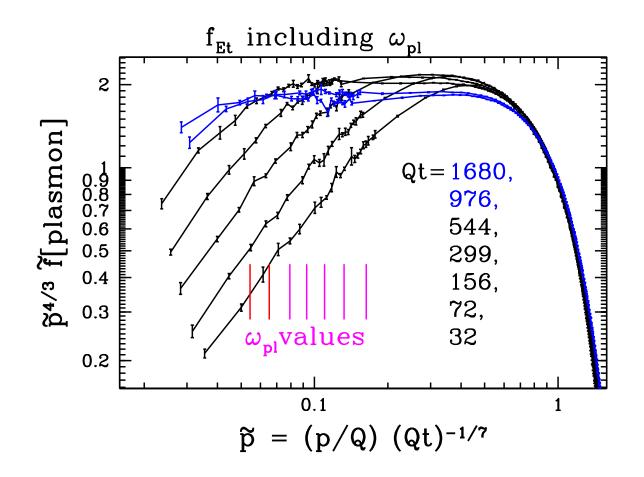
SEWM2012: 12 July 2012: page 14 of 20 tudalen 14 o 20

Now f_E versus f_{E_t}



 f_E rises more than 4/3 power, but ...

$$f_E = \frac{\mathcal{P}_T^{ij} \delta_{ab}}{2(N_c^2 - 1)\sqrt{p^2 + \omega_{\text{pl}}^2}} \int d^3x \ e^{i\mathbf{p}\cdot\mathbf{x}} \langle E_i^a(x) E_j^b(0) \rangle_{\text{coul}}$$



SEWM2012: 12 July 2012: page 16 of 20 tudalen 16 o 20

So far, IR occupancy

$$f(p,t) \sim \frac{1}{g^2 N_c} (Qt)^{\frac{-4}{7}} (p_{\text{max}}/p)^{\frac{4}{3}}$$

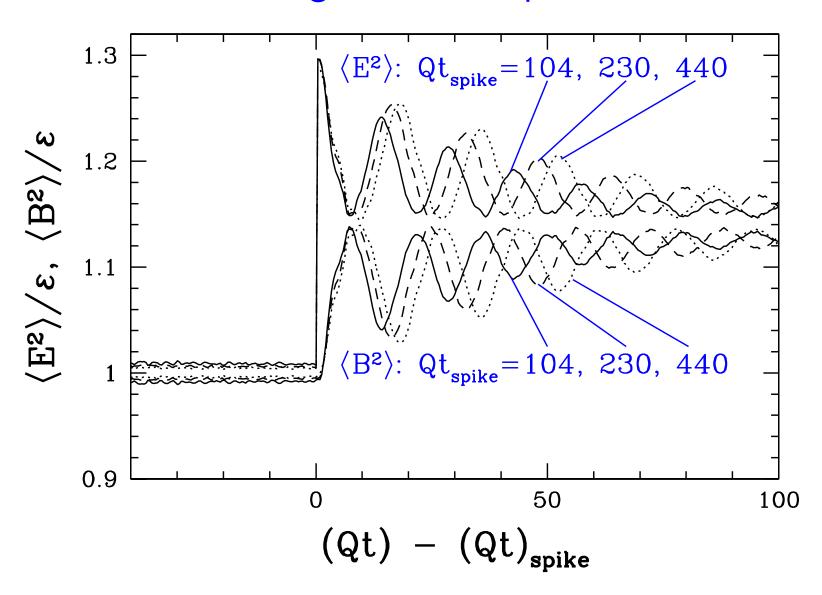
For f_A , saturates at $f = 6/(g^2N_c)$. f_E a bit lower.

Part. number with $f \geq \frac{1}{g^2 N_c}$ falls with time as $n_{\rm cond.}/n_{\rm tot} \sim (Qt)^{\frac{-5}{7}}$. Fairly small coefficient.

Could there be a condensate? If so, how would it evolve? We can put one in by hand!

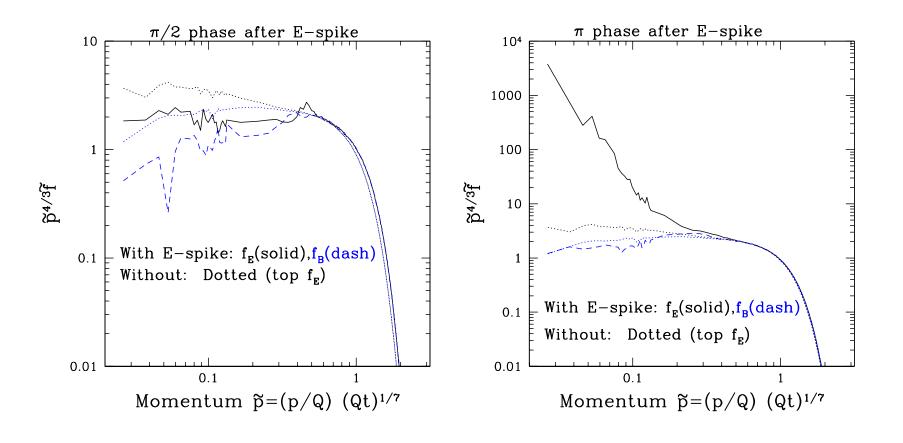
Evolve for a while, fix Coulomb gauge, insert uniform ${\cal E}$ field:

Energies with E-spike



SEWM2012: 12 July 2012: page 18 of 20 tudalen 18 o 20

Occupancies with E-spike



at E-minimum

at E-maximum

SEWM2012: 12 July 2012: page 19 of 20 tudalen 19 o 20

Conclusions

- Classical Yang-Mills dynamics: cascade to UV
- Scaling with time, $p_{\rm max} \sim Q(Qt)^{\frac{1}{7}}$ and $f \sim \frac{1}{g^2N_{\rm c}}(Qt)^{\frac{-4}{7}}$
- f(p,t) approaches scaling solution, with $f(p>p_{\rm max})$ exponential and $f(p< p_{\rm max}) \propto p^{\frac{-4}{3}}$
- IR corrections to scaling mostly saturation of **A**-fields at $f\sim 6/g^2N_{\rm c}$ and screening effects on **E**-fields
- No evidence of occupancies larger than above. Plasmon condensate possible, not realized and would decay fast

Extra slide: $\langle \mathbf{EE} \rangle$ correlators

Consider classical partition function:

$$\int \mathcal{D}(\mathbf{A}, \mathbf{E}) \exp\left(-\frac{\mathbf{E}^2 + \mathbf{B}^2}{2T}\right) \delta(\mathbf{D} \cdot \mathbf{E})$$

Int. out UV → white-noise charge fluct. in Gauss' Law:

$$\int \mathcal{D}(\mathbf{A}, \mathbf{E}, \rho) \exp\left(-\frac{\mathbf{E}^2 + \mathbf{B}^2}{2T} + \frac{\rho^2}{2m^2T}\right) \delta(\mathbf{D} \cdot E - \rho)$$

Now do ρ integral using delta function:

$$\int \mathcal{D}(\mathbf{A}, \mathbf{E}) \exp\left(\frac{\mathbf{B}^2 + \mathbf{E}^2 + (\mathbf{D} \cdot \mathbf{E})^2 / m^2}{2T}\right)$$

which gives claimed correlators.

SEWM2012: 12 July 2012: page 21 of 20 tudalen 21 o 20

Identification of m^2 with $m_{\rm D}^2$:

Apply δ function via Lagrange multiplier

$$\int \mathcal{D}(\mathbf{A}, \mathbf{E}, \rho) \exp\left(-\frac{\mathbf{E}^2 + \mathbf{B}^2}{2T} + \frac{\rho^2}{2m^2T}\right) \delta(\mathbf{D} \cdot E - \rho)$$

$$= \int \mathcal{D}(\mathbf{A}, \mathbf{E}, \rho, A_0) \exp\left(-\frac{\mathbf{E}^2 + \mathbf{B}^2 + \frac{\rho^2}{m^2} + iA_0(\mathbf{D} \cdot \mathbf{E} - \rho)}{2T}\right)$$

Perform gaussian ${\bf E}$ and ρ integrals:

$$\int \mathcal{D}(\mathbf{A}, A_0) \exp\left(-\frac{\mathbf{B}^2 + (\mathbf{D}A_0)^2 + m^2 A_0^2}{2T}\right)$$

We know the m^2 in front of A_0 is $m_{\rm D}^2$.

Nielsen-Olesen Instability

Hard to make coherent **B** field with $f \gg 1/g^2$. If you do, unstable!

In uniform ${\bf B}$, charged particle p_{\perp}^2 is quantized (Landau levels):

$$p_{\perp}^2 = gB(1+2n), \quad n = (0, 1, 2, \ldots)$$

Energy-squared is
$$E^2 = p_z^2 + p_\perp^2 - 2g\mathbf{S} \cdot \mathbf{B}$$

For spin- $\frac{1}{2}$, $2g\mathbf{S}\cdot\mathbf{B}=\pm gB$ and the lowest level has $E^2=p_z^2$.

But for spin-1, $2g\mathbf{S} \cdot \mathbf{B} = \pm 2gB$:

$$E_{\text{lowest}}^2 = p_z^2 + gB - 2gB = -gB + p_z^2$$

Negative, corresponding to exponential growth

$$\exp(\pm \gamma t), \quad \gamma = \sqrt{gB - p_z^2}$$

We observe N-O instability

