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Motivation for Strong Coupling LQCD in Continuous Time

e Continuous Time Limit and a/a: = f(7)
e Continuous Time Partition Function Z(3)

Hamiltonian Formulation

e Spin Representation
e Stochastic Series Expansion

Application: 2 flavor SC-LQCD

e Generalization of Spin Representation
o Preliminary Results
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Motivation for Continuous Time SC-LQCD

Why Strong Coupling Lattice QCD?
The QCD (i, T) phase diagram:
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@ rich phase structure conjectured
@ chiral and deconfinement transition

@ QGP at high temperatures

@ exotic matter at high density

2 flavor SC-LQCD
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Why Strong Coupling Lattice QCD?

The QCD (i, T) phase diagram: QCD has a severe sign problem for
non-zero chemical potential ;1 = %uB:

T [MeV]
A @ fermions anti-commute:
200 + (Py)=0 . _ 1
Quark ¥s(ip+m+p70)vs = (ip-+m+ 1)
-----;o;, Giluon
Sovey Plasma @ the fermion determinant det M(1.)

becomes complex!

100+ (@w)=0

Hadronic Matter

e = det M(;1) = det M(—T1)

Vacuum Naer @ little hope that it can be
_ circumvented:
0 1 Hy [GeV] - Taylor expansion,
- imaginary 1 with analytic
@ because of the sign problem: very continuation,
little is known - reweighting method
@ so far: agreement on crossover are all limited to small ;//T <1

temperature T, at zero density
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Why Strong Coupling Lattice QCD?

Look at Lattice QCD in a regime where the sign problem can be made mild:

Strong Coupling Limit: § = 2g'\£° — 0

@ allows to integrate out the gauge fields completely, as link integration factorizes
= no fermion determinant

@ drawback: strong coupling limit is converse to asymptotic freedom, lattice is
maximally coarse

Strong coupling LQCD shares important features with QCD:
@ exhibits confinement, i.e. only color singlet degrees of freedom survive:

e mesons (represented by monomers and dimers)
e baryons (represented by oriented self-avoiding loops)

@ and spontaneous chiral symmetry breaking/restoration: (restored at T¢)
= SC-LQCD is a great laboratory to study the full (1, T) phase diagram

SC-LQCD is a useful toymodel for nuclear matter

Wolfgang Unger, ETH Ziirich 2 flavor SC-LQCD Swansea, 10.07.2012 4 /17



Why Strong Coupling Lattice QCD?

Look at Lattice QCD in a regime where the sign problem can be made mild:

Strong Coupling Limit: § = 2g'\£° — 0

@ allows to integrate out the gauge fields completely, as link integration factorizes
= no fermion determinant

@ drawback: strong coupling limit is converse to asymptotic freedom, lattice is
maximally coarse

Strong coupling LQCD shares important features with QCD:
@ exhibits confinement, i.e. only color singlet degrees of freedom survive:

e mesons (represented by monomers and dimers)
e baryons (represented by oriented self-avoiding loops)

@ and spontaneous chiral symmetry breaking/restoration: (restored at T¢)
= SC-LQCD is a great laboratory to study the full (1, T) phase diagram

SC-LQCD is a useful toymodel for nuclear matter

SC-LQCD is a 1-parameter deformation of QCD
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SC-LQCD at finite temperature

How to vary the temperature?
@ aT =1/N; is discrete with N even
@ aT.~15, ie N.°<2 = we cannot address the phase transition!

Solution: introduce an anisotropy - in the Dirac couplings:

(B—k 3! o
BN = S0 T el TT 2 ame) [T wie. )
£

{kn, €} b=(x, ) P
kp € {0,...Nc}, nx € {0,... N}

Should we expect a/a; = ~, as suggested at weak coupling?

(d—1)(Ne+1)(Ne+2)
N- 6(Nc+3)

= sensible, N--independent definition of the temperature: aT ~ %i l

@ Moreover, SC-LQCD partition function is a function of '\/2

@ No: meanfield predicts a/a, = ~°, since 72 =

However: precise correspondence between a/a, and 42 not known |
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SC-LQCD at finite Temperature and Continuous Time:

Strategy for unambiguous answer: the continuous Euclidean time limit (CT-limit):

N, — oo, v — 00, /N, = aT fixed J

@ same as in analytic studies: a, =0, aT = ,B_l eR
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Motivation for Continuous Time SC-LQCD

SC-LQCD at finite Temperature and Continuous Time:

Strategy for unambiguous answer: the continuous Euclidean time limit (CT-limit):

N, — oo, v — 00, VN, = aT ﬁxedJ

@ same as in analytic studies: a, =0, aT = ﬁ71 cR

Several advantages of continuous Euclidean time approach:

@ ambiguities arising from the functional dependence of observables on the anisotropy
parameter will be circumvented, only one parameter setting the temperature

@ no need to perform the continuum extrapolation N — oo

@ allows to estimate critical temperatures more precisely, with a faster algorithm
(about 10 times faster than N; = 16 at T¢)

@ baryons become static in the CT-limit, the sign problem is completely absent!
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Continuous Time Partition Function

Continuous Time Partition Function, 1 flavor

Partition function in inverse temperature § = 1/aT and in the chiral limit:

Z(ﬂ,,u,) _ E %ﬁ Z VZL(C)V;_T(C)e3ﬁ/I,B(C)' =1 vr= Q/ﬁ J

~E2N Cerl,

Typical (2-dimensional) configurations in discrete and continuous time
at the same temperature:
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@ multiple spatial dimer |
become resolved into

single spatial dimers _
as a: — 0 | _l
@ baryons become static
in continuous time! —— T 11
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@ K= %ZX n.(x) + n7(x) is the number of spatial dimers, B is baryon number

@ weight of configuration given by number of spatial dimers and vertices v;, vr
regardless of time coordinates
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Continuous Time Partition Function

Continuous Time Partition Function, 1 flavor

Z(8, 1)

~E2N

Cely

=3 %ﬁ » VZL(C)V;T(C)ewu,B(C)'

Partition function in inverse temperature § = 1/aT and in the chiral limit:

vi=1,vr=2/V3 J

at the same temperature:

@ multiple spatial dimer
become resolved into
single spatial dimers
as ar — 0

@ baryons become static
in continuous time!

Typical (2-dimensional) configurations in discrete and continuous time
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@ sum over all spatial dimer time coordinates ~ N./2 = expansion in = NT/ﬂ/2

@ [, is the set of equivalence classes of configurations with x spatial dimers, time
coordinates of spatial dimers irrelevant
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Continuous Time Partition Function

Continuous Time Partition Function, 1 flavor

Partition function in inverse temperature § = 1/aT and in the chiral limit:

Z(ﬂ,/l,) _ E %ﬁ Z VZL(C)V;T(C)e&?uB(C)' =1 vr= Q/ﬁ J

~E2N Cerl,

Typical (2-dimensional) configurations in discrete and continuous time
at the same temperature:
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@ multiple spatial dimer |
become resolved into

single spatial dimers _
as a: — 0 L _l

@ baryons become static
in continuous time! —_— I l ll
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@ each term I, is represented by a world line configuration

@ allows to apply QMC techniques: continuous time worm (Beard & Wiese), loop
cluster algorithm (Evertz et al.), stochastic series expansion (Sandvik)
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Mapping of 1-flavor SU(/N.) to a spin system

Continuous time methods can be applied to any gauge group SU(N.):
@ baryons become static for N. > 3

@ mesonic discrete time chains classified by parity:

Discrete Time Chains Parity Composition ~ Spin Composition Example Configuration

U(l) even I Ry S=+1/2
w SRR L A i A
U(Z) ee/oo —— = = DI e > S=x1 %‘ l‘ —TL—TL
o B $=0 L L L L
U(3) eeeloon = @ — = §=+3/2 5 ol 1
eeo/ooe ———F——————— S=%1/2 T l T T
L L L T

= mesonic CT line types classified by “spin”: S = —N;/2...N;/2
(remnant of staggered even/odd ordering), AS = +1 (absorption/emission)

@ generalizes to arbitrary U(N.)
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Quantum Monte Carlo Methods

Stochastic Series Expansion

Idea: rewrite partition function, based on decomposition in diagonal and non-diagonal
elements H = Hi + Ho2, truncation L:

L

[T #ae

i=1

_ —BH _ B (L — K)!
26) - efe ) - Y S
with S; a time-ordered sequence of operator-indices: S, = [a1, b1], [a2, b2], . . - [aL, bi]

Hip=¢€l,e>0
’ Hop = %5;5;

X S

@ a; = 0: identity, a; = 1,2 : diagonal/non-diagonal matrix element
@ b; = (x,y) € Vd denotes a bond

Two kinds of updates:

changing order in 5, kK+— k=*1:

PUL Bla  [0.01) = bttt P(0,0], -+ [1, b]) = 22700

operator loop: visit bonds b; successively from an input leg,
determine output leg with heatbath probability <xxxy|’Ha,.b,.|x'Xx’y>

(a) % (b) H (c) ,m (d) r

L is set larger than kmax = SSE is approximation free (like CT-Worm)

Wolfgang Unger, ETH Ziirich 2 flavor SC-LQCD Swansea, 10.07.2012 9 /17



Quantum Monte Carlo Methods

SSE applied to SC-LQCD

Strong Coupling U(1) is identical to XY Model in zero field!
Extension to U(N.) for SC-LQCD straightforward:

0

vi 0
. _ v 0 _ k(4N —k)
1 T with JT = ) ) . Wk = =
H= > E JiJy o
(x.y) B T Ne o
and J~ = (J)' for absorption/emission

O N.=3: vpi=vi=w3=1, VTEV2:2/\/§
@ state vector characterizing time slice:
|S*)(t) € {®;ev5§|5§ € {—N./2,... Nc/2}}
@ oriented spatial dimers act at time t; on |S,) by raising/lowering spin at
absorption/emission site

@ lowest/highest weight: ~ JT|N./2) =0, J7|—Nc/2) =0
@ 57 counts net number of (odd-even) time like meson sites at each site
o Me[Jt 7] = U7 = diag(—Ne/2, ..., Ne/2) fulfilled, J?|S*) = S°|S7)
@ new observable: spin susceptibility xs = 3 <(Z, 5,-1)2> /N

Wolfgang Unger, ETH Ziirich 2 flavor SC-LQCD



Observables for the Chiral Transition

@ CT-Worm: energy density/specific heat, chiral susceptibility
@ SSE: energy density/specific heat, “spin” susceptibility

energy density (SSE/CT-Worm) specific heat (SSE/CT-Worm)
1.2 4
‘ ‘ ‘ " af-1884 — ‘ ‘ ‘ " af-1884 —
L=4 --x-— [T p——
L=8 - L=8 - 1
L=16 @i L=16 & |
L=32 = L=32 e
04 . B . )
N B )
L S Sy 4 B
02 R S hi S £ S
ol 1 1 1 1 1 1 ol 1 1 1 1 1 1
16 1.8 2 22 24 26 28 3 16 1.8 2 22 24 26 28 3
aT aT
spin susceptibility (SSE) chiral susceptibility/LW (CT-Worm)
100
T T aT-1.884
10 L=d oooxen
1B
0.1
0.01
Pyod R B PO B
16 18 2 22 24 26 28 3 16 18 2 22 24 26 28 3
aT aT
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Observables for the Chiral Transition

@ CT-Worm: energy density/specific heat, chiral susceptibility

@ SSE: energy density/specific heat, “spin” susceptibility feels chiral transition

energy density (SSE/CT-Worm) specific heat (SSE/CT-Worm)
1.2 4
‘ ‘ ‘ " af-1884 — ‘ ‘ ‘ " af-1884 —
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L=16 @i L=16 & |
L=32 = L=32 e
04 B )
~H i
- Wy . g
0.2 Wty - .’.‘diij‘:‘w*q
ol 1 1 1 1 1 1 1 1 1
16 1.8 2 22 24 26 28 3 16 1.8 2 22 24 26 28 3
aT aT
spin susceptibility (SSE) chiral susceptibility/LW (CT-Worm)

. 100 .
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e
1 —32;2%
0.1 Ll
0.01
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Quantum Monte Carlo Methods

1-flavor SC-QCD Phase Diagram

Comparison of phase diagram in continuous time with N; = 4 data (M. Fromm, 2010)

via identification ap = varp | studied via Worm algorithm [hep-lat/1111.1434]:

Continuous Time:
0.8 - 2nd order ---x---

- X
© tricritical point -----:
1st order ——+—
0.6 [ P i
Nr=4: s
04 F 2nd order ---m--- . |
’ tricritical point +--o---:
1storder —=—
2 o h
0 N.=2
1storder 2
0 1 1 ! 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

au
@ behavior at low p agrees well, location of TCP agrees within errors

@ no re-entrance seen at small aT (also confirmed by Ohnishi et. al, LAT2012)
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Application: Generalization of SC-LQCD to 2 chiral flavors!

Aim: obtain phase diagram for 2-flavor SC-LQCD, where pion exchange may play a
crucial role for nuclear transition, but:

@ at present, no 2-flavor formulation for staggered SC-LQCD suitable for MC
@ already the mesonic sector has a severe sign problem (worse than for finite © HMC)

@ 2 new types of mixed dimers give negative sign in mesonic loops already for U(2):

unflavored mesons flavored mesons positive weight: 1/4 negative weight: -1/2
a b c d
N e —~—~ _— - A A
oY) au(x)auly) dd(x)dd(y) ad(x)duly) du(x)ud(y) _/1 _/1
) . r/\v-\
o(y" — = —/
ad(x)uuly) au(x)ud(y) ab+cd+a+
du(x)dd(y) dd(x)duly) p _’1 —’1
[ S —
mixed mesons

Observation in continuous time formulation:
@ static lines for 2 staggered flavors have all postive weight!
@ again: only single spatial dimers (no «, 3 spatial dimers)

@ Hamiltonian formulation feasible

Unger, ETH Ziirich 2 flavor SC-LQCD



Application to 2 chiral flavors

Continuous Time Transition Rules for N; = 2

Flavored static lines:

lassification i f el s
@ new classification in terms o e ot
quantum numbers R L e
— +
|SZ7 Qﬂ,o, Qﬂ,+> = |1 ‘0,27: ey |+ -
2]-2,0 = n =5 0,0 . B [42,0
. _ e g X
@ N. = 2:in total 19 types of | L= = [02x ;"1,"
. . o [ 0 |0 0o 0
I, 0, +1,7
lines, 18 have weight 1/4 per a, 2= [0 0w
vacuum state” |0, 0,0) has 2 0o
weight 1/+/8

@ state multiplicities = N. + 1 + %NC(NC + 1)(N; + 2), 44 states for N, = 3

@ “spin” S? counts number of emission/absorption events (remnant of even/odd
decomposition of lattice for staggered fermions) S* = —2 NN, ..., +3Nc N

@ two “charges” Qi = —N,...,+N. denote the flavor content
@ spin/charge conservation: transitions at spatial dimers, raising charges at one

site, lowering at a neighboring site:

AS* | =1, [AQuo|+|AQu| =1
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Application to 2 chiral flavors

Hamiltonian for N; =2

+ -
=3 > ( ropgdro) + Joe drog) T It dmr) + dn Jr(y))

(x.y)

Absorption (J;!,, lower left triangle) and Emission (J,,, upper triangle), state vector:

70 70t 7 —2,0
0 0 PR AT A 1
70 0 I ;01 At 2 _1:*0
o at  1atz0 20 —1, 5t
] ~1at 20 &0 1,
70 [ #0 0,270
=0 o =0 0,270
T - T | 0,27t
. i 0,27
e IS DD D P T T T T T x= | Do T
TTAT TR T T Tt T — T gas e T 0, 70nt
o #0 . &1 #0 0, 07—
#t 70 Lo 7= #0 0, #0xt
i 20 Lo P 0 0, 707~
#0 N 70 +1, 0
=0 1 79 =&t 0 +1, 70
T A #0 w +1, 7t
ahxy 20 &0 ~t +1,
. . ﬁ,U ﬁU PR +2,0

@ vertex weights are vn; = 1 for vertices not mixing the two charges Q;
and vi, = \/ié for vertices mixing the charges
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Preliminary Result for 2-flavor SC-LQCD

Comparison of aT. from MC data with mean field:
N N, =1 N =2 Ne=3
1 3/2[1.102(1)] 4/2[1.467(1)] 5/2 [1.884(1)]
2 5/5 [0.77(1)] 6/5[1.04(1)] 7/5

20
specific heat
4x4x4 —+—
6X6X6 <
]
Ni=2,U(1) wF: 528
15 M MC: aTe=0.77(1) —— 7

0 T T
0.38 |- spin susceptibility B
0.36 [ 4x4x4 —+— o
0.34 6X6x6 -
0.32 Bx8x8 k-t
03 . 1
0.28 |- 4
0.26 |- 4
024 -
022 - B
0.2 L L L L L L L

0.4 0.5 0.6 0.7 0.8 0.9 1 11 12 13

aT
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Preliminary Result for 2-flavor SC-LQCD

Comparison of aT. from MC data with mean field:
N N, =1 N =2 Ne=3
1 3/2[1.102(1)] 4/2[1.467(1)] 5/2 [1.884(1)]
2 5/5[0.77(1)] 6/5 [1.04(1)] 7/5

25
specific heat
4x4x4 —+—
6X6x6 <
20} Ni=2, U(2) ME: a8 X
MC: aTe=1.04(1) ——

spin éusceptibility
4x4x4 —+—
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Summary

Summary

Achievements:
@ CT partition function: new formulation as a quantum spin system!

@ “spin” formulation and Hamiltonian follow from conservation laws for even/odd
chains of time-like dimers and flavors - this generalizes to arbitrary N., N

@ new observable: spin susceptibility, sensitive to chiral transition

@ quantum Monte Carlo applicable: e.g. continuous time worm or stochastic series
expansion (most convenient)

@ now also applied to U(2) with two flavors (incorporates pion exchange)

@ extension to SU(3) with finite baryon chemical potential straightforward
(Hamiltonian worked out, but no simulations yet)
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Summary

Summary

Achievements:
@ CT partition function: new formulation as a quantum spin system!

@ “spin” formulation and Hamiltonian follow from conservation laws for even/odd
chains of time-like dimers and flavors - this generalizes to arbitrary N., N

@ new observable: spin susceptibility, sensitive to chiral transition

@ quantum Monte Carlo applicable: e.g. continuous time worm or stochastic series
expansion (most convenient)

@ now also applied to U(2) with two flavors (incorporates pion exchange)

@ extension to SU(3) with finite baryon chemical potential straightforward
(Hamiltonian worked out, but no simulations yet)

Soon: obtain full 2-flavor SC-LQCD phase diagram in (u, T)-plane!

Wolfgang Unger, ETH Ziirich 2 flavor SC-LQCD Swansea, 10.07.2012 17 /17



Comparison of SSE and CT-Worm

0.006 T T T T T
(worm™€sSE)Eworm
0.005 - E

0.004 ) B

0.003 - E

- MH L] |
a7

-0.002

-0.003 ' ' : . .
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Summary

Static Line Rules

Combine temporal dimers of alternating orders in 7> (here for N, = 2):
@ first: consider (a, b) and (c, d) dimers sepaterely

@ then: resum them to obtain flux representation

9 types of static lines time shift | 9types of static lines
composed by a, b dimers: J time reversal o mpbosed by c,d dimers:
0.0 = = <2,2>,/ 0.0 @2
L—0 1 —1 —4 (1,2 2,1)
(10) ~— == (1.0) (12)
20) et~ 2 2.0) (02)
on [TTETT B @Y ©0.1)
(1) e S (.1
t‘ t‘
- -
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Summary

Static Line Rules

9 types of static lines
composed by a, b, O dimers

Combine temporal dimers of alternating orders in 7> (here for N, = 2):
@ resummation of a— b — a and b — a — b chains

@ resummation of ab + cd + a + (8 into [ dimers

(0.0)
(10 T
20
T e R
(11)

tim? shift , 6 additional types of static lines
J ime reversa composed by ¢, d, O] dimers

(Z,Z)J
(1,2) (1,0) g;;
(0,2) 2,0) @9
(2,1) 0,1)

Ly Ly

Unger, ETH Ziirich
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Static Line Rules

Combine temporal dimers of alternating orders in 7> (here for N, = 2):
@ new classification in terms of quantum numbers |S%, Q0, Q. +)

@ in total: 19 types of lines, 18 have weight 1/16 per 2a, |0,0,0) has weight 1/8

9 types of static lines "m? shift | 6 additional types of static lines
composed by 10, T, o Mereversal  composed by Tt T, o + 4 mixed
1-2,0,000 [+2,0 OE}/ 10,+1,410
0,10
11.41,00 #1400 | 46 0 [+1,+1,00
[+1,-1,00 |+1,-1,00
10,+2,000 10,0,+20
0, -2,00 10,0, -200
|-1,-1,00 [-1,0, -10
10,0,00 10, -1,+10 [0,41,1]
[ Iy
Ll Ll
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Summary

The Transition Rules Encoded in J*
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The Transition Rules Encoded in J*
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Summary

Why Study Strong Coupling QCD on the Lattice?

Two possible scenarios for the relation between
SC-LQCD (back) and the (L)QCD phase diagram for four flavors (front):

T/m, T/my

pulmy
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