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Motivation for Continuous Time SC-LQCD

Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?
The QCD (µ,T ) phase diagram:
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Motivation for Continuous Time SC-LQCD

Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?
The QCD (µ,T ) phase diagram:
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because of the sign problem: very
little is known
so far: agreement on crossover
temperature Tc at zero density

QCD has a severe sign problem for
non-zero chemical potential µ = 1

3µB :
fermions anti-commute:

γ5(i/p+m+µγ0)γ5 = (i/p+m+µγ0)†

the fermion determinant detM(µ)
becomes complex!

e−Sf = detM(µ) = detM(−µ̄)

little hope that it can be
circumvented:
- Taylor expansion,
- imaginary µ with analytic
continuation,
- reweighting method
are all limited to small µ/T . 1
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Motivation for Continuous Time SC-LQCD

Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?Why Strong Coupling Lattice QCD?

Look at Lattice QCD in a regime where the sign problem can be made mild:
Strong Coupling Limit: β = 2Nc

g2 → 0

allows to integrate out the gauge fields completely, as link integration factorizes
⇒ no fermion determinant
drawback: strong coupling limit is converse to asymptotic freedom, lattice is
maximally coarse

Strong coupling LQCD shares important features with QCD:
exhibits confinement, i.e. only color singlet degrees of freedom survive:

mesons (represented by monomers and dimers)
baryons (represented by oriented self-avoiding loops)

and spontaneous chiral symmetry breaking/restoration: (restored at Tc)
⇒ SC-LQCD is a great laboratory to study the full (µ,T ) phase diagram

SC-LQCD is a useful toymodel for nuclear matter

SC-LQCD is a 1-parameter deformation of QCD
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Motivation for Continuous Time SC-LQCD

SC-LQCD at finite temperatureSC-LQCD at finite temperatureSC-LQCD at finite temperatureSC-LQCD at finite temperatureSC-LQCD at finite temperature

How to vary the temperature?
aT = 1/Nτ is discrete with Nτ even
aTc ' 1.5, i.e. Nτ c < 2 ⇒ we cannot address the phase transition!

Solution: introduce an anisotropy γ in the Dirac couplings:

Z(mq, µ, γ,Nτ ) =
∑
{k,n,`}

∏
b=(x,µ)

(3− kb)!

3!kb!
γ2kbδµ0

∏
x

3!

nx !
(2amq)nx

∏
`

w(`, µ)

kb ∈ {0, . . . Nc}, nx ∈ {0, . . . Nc}

Should we expect a/aτ = γ, as suggested at weak coupling?

No: meanfield predicts a/aτ = γ2, since γ2c = Nτ (d−1)(Nc+1)(Nc+2)
6(Nc+3)

⇒ sensible, Nτ -independent definition of the temperature: aT ' γ2

Nτ

Moreover, SC-LQCD partition function is a function of γ2

However: precise correspondence between a/aτ and γ2 not known
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Motivation for Continuous Time SC-LQCD

SC-LQCD at finite Temperature and Continuous Time:SC-LQCD at finite Temperature and Continuous Time:SC-LQCD at finite Temperature and Continuous Time:SC-LQCD at finite Temperature and Continuous Time:SC-LQCD at finite Temperature and Continuous Time:

Strategy for unambiguous answer: the continuous Euclidean time limit (CT-limit):

Nτ →∞, γ →∞, γ2/Nτ ≡ aT fixed

same as in analytic studies: aτ = 0, aT = β−1 ∈ R

Several advantages of continuous Euclidean time approach:
ambiguities arising from the functional dependence of observables on the anisotropy
parameter will be circumvented, only one parameter setting the temperature
no need to perform the continuum extrapolation Nτ →∞
allows to estimate critical temperatures more precisely, with a faster algorithm
(about 10 times faster than Nt = 16 at Tc)
baryons become static in the CT-limit, the sign problem is completely absent!
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Continuous Time Partition Function

Continuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavor
Partition function in inverse temperature β = 1/aT and in the chiral limit:

Z(β, µ) =
∑
κ∈2N

(β/2)κ

κ!

∑
C∈Γκ

vnL(C)
L vnT (C)

T e3βµB(C), vL = 1, vT = 2/
√
3

Typical (2-dimensional) configurations in discrete and continuous time
at the same temperature:

multiple spatial dimer
become resolved into
single spatial dimers
as at → 0
baryons become static
in continuous time!

t t

vL

vT

κ = 1
2
∑

x nL(x) + nT (x) is the number of spatial dimers, B is baryon number
weight of configuration given by number of spatial dimers and vertices vL, vT
regardless of time coordinates
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Continuous Time Partition Function
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Z(β, µ) =
∑
κ∈2N

(β/2)κ

κ!

∑
C∈Γκ

vnL(C)
L vnT (C)

T e3βµB(C), vL = 1, vT = 2/
√
3

Typical (2-dimensional) configurations in discrete and continuous time
at the same temperature:

multiple spatial dimer
become resolved into
single spatial dimers
as at → 0
baryons become static
in continuous time!

t t

vL

vT

sum over all spatial dimer time coordinates ∼ Nτ/2 ⇒ expansion in β = Nτ/γ2

Γκ is the set of equivalence classes of configurations with κ spatial dimers, time
coordinates of spatial dimers irrelevant

Wolfgang Unger, ETH Zürich () 2 flavor SC-LQCD Swansea, 10.07.2012 7 / 17



Continuous Time Partition Function

Continuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavorContinuous Time Partition Function, 1 flavor
Partition function in inverse temperature β = 1/aT and in the chiral limit:

Z(β, µ) =
∑
κ∈2N

(β/2)κ

κ!

∑
C∈Γκ

vnL(C)
L vnT (C)

T e3βµB(C), vL = 1, vT = 2/
√
3

Typical (2-dimensional) configurations in discrete and continuous time
at the same temperature:

multiple spatial dimer
become resolved into
single spatial dimers
as at → 0
baryons become static
in continuous time!

t t

vL

vT

each term Γκ is represented by a world line configuration
allows to apply QMC techniques: continuous time worm (Beard & Wiese), loop
cluster algorithm (Evertz et al.), stochastic series expansion (Sandvik)

Wolfgang Unger, ETH Zürich () 2 flavor SC-LQCD Swansea, 10.07.2012 7 / 17



Quantum Monte Carlo Methods

Mapping of 1-flavor SU(Nc) to a spin systemMapping of 1-flavor SU(Nc) to a spin systemMapping of 1-flavor SU(Nc) to a spin systemMapping of 1-flavor SU(Nc) to a spin systemMapping of 1-flavor SU(Nc) to a spin system

Continuous time methods can be applied to any gauge group SU(Nc):
baryons become static for Nc ≥ 3
mesonic discrete time chains classified by parity:

U(1)

U(2)

U(3)

L L L L

L L L L

L L L T

L L L T

S=+1/ 2

S=−1 /2

S=±1

S=0

S=±3/2

S=±1 /2

Discrete Time Chains Parity Composition Spin Composition Example Configuration

ee/oo

odd

even

eo

eee/ooo

eeo/ooe

⇒ mesonic CT line types classified by “spin”: S = −Nc/2 . . .Nc/2
(remnant of staggered even/odd ordering), ∆S = ±1 (absorption/emission)
generalizes to arbitrary U(Nc)
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Quantum Monte Carlo Methods

Stochastic Series ExpansionStochastic Series ExpansionStochastic Series ExpansionStochastic Series ExpansionStochastic Series Expansion
Idea: rewrite partition function, based on decomposition in diagonal and non-diagonal
elements H = H1 +H2, truncation L:

Z(β) = Tr
{

e−βH
}

=
∑
χ

∑
SL

βκ(L− κ)!

L!

〈
χ

∣∣∣∣∣
L∏

i=1

Hai ,bi

∣∣∣∣∣χ
〉
,
H1,b = ε1, ε ≥ 0
H2,b = 1

2S+
x S−y

with SL a time-ordered sequence of operator-indices: SL = [a1, b1], [a2, b2], . . . [aL, bL]

ai = 0: identity, ai = 1, 2 : diagonal/non-diagonal matrix element
bi = 〈x , y〉 ∈ Vd denotes a bond

Two kinds of updates:

��1 changing order in β, κ 7→ κ± 1:
P([1, b]p 7→ [0, 0]p) = L−κ+1

Vdβ〈χ|H1,b |χ〉 , P([0, 0]p 7→ [1, b]p) =
Vdβ〈χ|H1,b |χ〉

L−κ

��2 operator loop: visit bonds bi successively from an input leg,
determine output leg with heatbath probability

〈
χxχy |Hai bi |χ′xχ′y

〉

L is set larger than κmax ⇒ SSE is approximation free (like CT-Worm)
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Quantum Monte Carlo Methods

SSE applied to SC-LQCDSSE applied to SC-LQCDSSE applied to SC-LQCDSSE applied to SC-LQCDSSE applied to SC-LQCD
Strong Coupling U(1) is identical to XY Model in zero field!
Extension to U(Nc) for SC-LQCD straightforward:

H =
1
2
∑
〈x,y〉

J+
x J−y

with J+ =


0
v1 0

v2 0

. . .
. . .
vNc 0

, vk =

√
k(1+Nc−k)

Nc

and J− = (J+)T for absorption/emission

Nc = 3 : vL ≡ v1 = v3 = 1, vT ≡ v2 = 2/
√
3

state vector characterizing time slice:
|Sz〉(t) ∈

{⊗
~x∈V Sz

~x |Sz
~x ∈ {−Nc/2, . . .Nc/2}

}
oriented spatial dimers act at time ti on |Sx 〉 by raising/lowering spin at
absorption/emission site
lowest/highest weight: J+|Nc/2〉 = 0, J−| − Nc/2〉 = 0
Sz counts net number of (odd-even) time like meson sites at each site
Nc
2 [J+, J−] = Jz = diag(−Nc/2, . . . ,Nc/2) fulfilled, Jz |Sz〉 = Sz |Sz〉

new observable: spin susceptibility χS = β
〈

(
∑

i Sz
i )2
〉
/N
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Quantum Monte Carlo Methods

Observables for the Chiral TransitionObservables for the Chiral TransitionObservables for the Chiral TransitionObservables for the Chiral TransitionObservables for the Chiral Transition

CT-Worm: energy density/specific heat, chiral susceptibility
SSE: energy density/specific heat, “spin” susceptibility
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Quantum Monte Carlo Methods

1-flavor SC-QCD Phase Diagram1-flavor SC-QCD Phase Diagram1-flavor SC-QCD Phase Diagram1-flavor SC-QCD Phase Diagram1-flavor SC-QCD Phase Diagram

Comparison of phase diagram in continuous time with Nτ = 4 data (M. Fromm, 2010)
via identification aµ = γ2aτµ , studied via Worm algorithm [hep-lat/1111.1434]:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

a
T

aµ

Continuous Time:
2nd order

tricritical point
1st order

 
N

τ
=4:

2nd order
tricritical point

1st order
 

N
τ
=2 
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behavior at low µ agrees well, location of TCP agrees within errors
no re-entrance seen at small aT (also confirmed by Ohnishi et. al, LAT2012)
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Application to 2 chiral flavors

Application: Generalization of SC-LQCD to 2 chiral flavors!Application: Generalization of SC-LQCD to 2 chiral flavors!Application: Generalization of SC-LQCD to 2 chiral flavors!Application: Generalization of SC-LQCD to 2 chiral flavors!Application: Generalization of SC-LQCD to 2 chiral flavors!

Aim: obtain phase diagram for 2-flavor SC-LQCD, where pion exchange may play a
crucial role for nuclear transition, but:

at present, no 2-flavor formulation for staggered SC-LQCD suitable for MC
already the mesonic sector has a severe sign problem (worse than for finite µ HMC)
2 new types of mixed dimers give negative sign in mesonic loops already for U(2):

u u( x )uu ( y ) d d ( x)d d ( y ) u d (x )d u( y) d u (x )u d ( y)

u d (x )u u( y )
d u (x )d d ( y )

u u( x )ud ( y )
d d ( x)d u ( y )

O (γ
2
):

O (γ
4
):

a b dc

α β

ab+cd+α+β

unflavored mesons flavored mesons

mixed mesons

negative weight: -1/2positive weight: 1/4

Observation in continuous time formulation:
static lines for 2 staggered flavors have all postive weight!
again: only single spatial dimers (no α, β spatial dimers)
Hamiltonian formulation feasible
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Application to 2 chiral flavors

Continuous Time Transition Rules for Nf = 2Continuous Time Transition Rules for Nf = 2Continuous Time Transition Rules for Nf = 2Continuous Time Transition Rules for Nf = 2Continuous Time Transition Rules for Nf = 2

Flavored static lines:
new classification in terms of
quantum numbers
|Sz ,Qπ0 ,Qπ+〉
Nc = 2 : in total 19 types of
lines, 18 have weight 1/4 per at ,
“vacuum state“ |0, 0, 0〉 has
weight 1/

√
8

∣−2,0 〉
∣−1,π+ 〉

∣−1,π -〉

∣−1,π0 〉

∣−1,π0 〉

∣+ ,π+ 〉

∣+1,π - 〉

∣+ ,π0 〉

∣+1,π0 〉

∣0,0 〉 ∣+2,0 〉

∣0, 2 π
0 〉

∣0,2 π
+ 〉

∣0,2 π
- 〉

∣0,2 π
0 〉

∣0, π0π+ 〉
∣0, π0π - 〉

∣0, π0π+ 〉
∣0, π0π - 〉

state multiplicities = Nc + 1 + 2
3Nc(Nc + 1)(Nc + 2), 44 states for Nc = 3

“spin” Sz counts number of emission/absorption events (remnant of even/odd
decomposition of lattice for staggered fermions) Sz = − 1

2NcNf , . . . ,+
1
2NcNf

two “charges” Qi = −Nc, . . . ,+Nc denote the flavor content
spin/charge conservation: transitions at spatial dimers, raising charges at one
site, lowering at a neighboring site:

|∆Sz | = 1, |∆Qπ0 |+ |∆Qπ+ | = 1
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Application to 2 chiral flavors

Hamiltonian for Nf = 2Hamiltonian for Nf = 2Hamiltonian for Nf = 2Hamiltonian for Nf = 2Hamiltonian for Nf = 2

H =
1
2
∑
〈x,y〉

(
J+
π0(x)J

−
π0(y)

+ J+
π̄0(x)J

−
π̄0(y)

+ J+
π+(x)J

−
π+(y) + J+

π+(x)J
−
π−(y)

)
Absorption (J+

πi , lower left triangle) and Emission (J−πi , upper triangle), state vector:

J+/−
πi

=



π0 π̄0 π+ π−

π0 π0 ˆ̄π0 π̂+ π̂−

π̄0 π̄0 π̂0 π̂+ π̂−

π+ π+ π̂− π̂0 ˆ̄π0

π− π− π̂+ π̂0 ˆ̄π0

π0 π̄0

π̄0 π0

π+ π−

π− π+

π̄0 π0 π−π+ π0 π̄0 π+ π−

π̂+ π̂0 π̂− ˆ̄π0

π̂− π̂0 π̂+ ˆ̄π0

π̂+ ˆ̄π0 π̂−π̂0

π̂− ˆ̄π0 π̂+ π̂0

π̄0 π0 π̂−π̂+ π̄0

π0 π̄0 π̂−π̂+ π0

π− π+ ˆ̄π0 π̂0 π−

π+ π− ˆ̄π0 π̂0 π+

π̄0 π0 π−π+



, χ =



−2, 0
−1, π0

−1, π̄0

−1, π+

−1, π−

0, 2π0

0, 2π̄0

0, 2π+

0, 2π−
0, 0
0, π0π+

0, π0π−

0, π̄0π+

0, π̄0π−

+1, π0

+1, π̄0

+1, π+

+1, π−
+2, 0


vertex weights are vπi = 1 for vertices not mixing the two charges Qi
and vπ̂i = 1√

2 for vertices mixing the charges
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Application to 2 chiral flavors

Preliminary Result for 2-flavor SC-LQCDPreliminary Result for 2-flavor SC-LQCDPreliminary Result for 2-flavor SC-LQCDPreliminary Result for 2-flavor SC-LQCDPreliminary Result for 2-flavor SC-LQCD

Comparison of aTc from MC data with mean field:
Nf Nc = 1 Nc = 2 Nc = 3
1 3/2 [1.102(1)] 4/2 [1.467(1)] 5/2 [1.884(1)]
2 5/5 [0.77(1)] 6/5 [1.04(1)] 7/5
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Summary

SummarySummarySummarySummarySummary

Achievements:
CT partition function: new formulation as a quantum spin system!
“spin” formulation and Hamiltonian follow from conservation laws for even/odd
chains of time-like dimers and flavors - this generalizes to arbitrary Nc, Nf

new observable: spin susceptibility, sensitive to chiral transition
quantum Monte Carlo applicable: e.g. continuous time worm or stochastic series
expansion (most convenient)
now also applied to U(2) with two flavors (incorporates pion exchange)
extension to SU(3) with finite baryon chemical potential straightforward
(Hamiltonian worked out, but no simulations yet)

Soon: obtain full 2-flavor SC-LQCD phase diagram in (µ,T )-plane!
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Static Line RulesStatic Line RulesStatic Line RulesStatic Line RulesStatic Line Rules

Combine temporal dimers of alternating orders in γ2 (here for Nc = 2):
first: consider (a, b) and (c, d) dimers sepaterely
then: resum them to obtain flux representation
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Combine temporal dimers of alternating orders in γ2 (here for Nc = 2):
resummation of a − b − a and b − a − b chains
resummation of ab + cd + α + β into � dimers
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Static Line RulesStatic Line RulesStatic Line RulesStatic Line RulesStatic Line Rules

Combine temporal dimers of alternating orders in γ2 (here for Nc = 2):
new classification in terms of quantum numbers |Sz ,Qπ0 ,Qπ+〉
in total: 19 types of lines, 18 have weight 1/16 per 2a, |0, 0, 0〉 has weight 1/8
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time shift
     time reversal

9 types of static lines 
composed by π0, π0, σ 

6 additional types of static lines 
composed by π+, π−, σ + 4 mixed
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Why Study Strong Coupling QCD on the Lattice?Why Study Strong Coupling QCD on the Lattice?Why Study Strong Coupling QCD on the Lattice?Why Study Strong Coupling QCD on the Lattice?Why Study Strong Coupling QCD on the Lattice?

Two possible scenarios for the relation between
SC-LQCD (back) and the (L)QCD phase diagram for four flavors (front):
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