2 Flavor Formulation for Strong Coupling LQCD

Wolfgang Unger, ETH Zürich with Philippe de Forcrand, ETH Zürich/CERN SEWM 2012, Swansea

10.07.2012

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The QCD (μ, T) phase diagram:

- rich phase structure conjectured
- chiral and deconfinement transition
- QGP at high temperatures
- exotic matter at high density

The QCD (μ, T) phase diagram:

- because of the sign problem: very little is known
- so far: agreement on crossover temperature T_c at zero density

QCD has a severe sign problem for non-zero chemical potential $\mu = \frac{1}{3}\mu_B$:

• fermions anti-commute:

 $\gamma_5(i\not\!\!p+m+\mu\gamma_0)\gamma_5=(i\not\!\!p+m+\mu\gamma_0)^{\dagger}$

the fermion determinant det M(μ) becomes complex!

 $e^{-S_f} = \det M(\mu) = \overline{\det M(-\overline{\mu})}$

- little hope that it can be circumvented:
 - Taylor expansion,
 - imaginary μ with analytic continuation,
 - reweighting method

are all limited to small $\mu/T \lesssim 1$

Look at Lattice QCD in a regime where the sign problem can be made mild: Strong Coupling Limit: $\beta = \frac{2N_c}{\sigma^2} \rightarrow 0$

- allows to integrate out the gauge fields completely, as link integration factorizes \Rightarrow no fermion determinant
- drawback: strong coupling limit is converse to asymptotic freedom, lattice is maximally coarse

Strong coupling LQCD shares important features with QCD:

- exhibits confinement, i.e. only color singlet degrees of freedom survive:
 - mesons (represented by monomers and dimers)
 - baryons (represented by oriented self-avoiding loops)
- and spontaneous chiral symmetry breaking/restoration: (restored at T_c) \Rightarrow SC-LQCD is a great laboratory to study the full (μ , T) phase diagram
- SC-LQCD is a useful toymodel for nuclear matter

Look at Lattice QCD in a regime where the sign problem can be made mild: Strong Coupling Limit: $\beta = \frac{2N_c}{\sigma^2} \rightarrow 0$

- allows to integrate out the gauge fields completely, as link integration factorizes \Rightarrow no fermion determinant
- drawback: strong coupling limit is converse to asymptotic freedom, lattice is maximally coarse

Strong coupling LQCD shares important features with QCD:

- exhibits confinement, i.e. only color singlet degrees of freedom survive:
 - mesons (represented by monomers and dimers)
 - baryons (represented by oriented self-avoiding loops)
- and spontaneous chiral symmetry breaking/restoration: (restored at T_c) \Rightarrow SC-LQCD is a great laboratory to study the full (μ , T) phase diagram
- SC-LQCD is a useful toymodel for nuclear matter

SC-LQCD is a 1-parameter deformation of QCD

SC-LQCD at finite temperature

How to vary the temperature?

• $aT = 1/N_{\tau}$ is discrete with N_{τ} even

• $aT_c \simeq 1.5$, i.e. $N_\tau^c < 2 \implies$ we cannot address the phase transition! Solution: introduce an anisotropy γ in the Dirac couplings:

$$\mathcal{Z}(m_q, \mu, \gamma, N_{\tau}) = \sum_{\{k, n, \ell\}} \prod_{b=(x, \mu)} \frac{(3-k_b)!}{3!k_b!} \gamma^{2k_b \delta_{\mu 0}} \prod_x \frac{3!}{n_x !} (2am_q)^{n_x} \prod_{\ell} w(\ell, \mu) \\ k_b \in \{0, \dots, N_c\}, \ n_x \in \{0, \dots, N_c\}$$

Should we expect $a/a_{\tau} = \gamma$, as suggested at weak coupling?

- No: meanfield predicts $a/a_{\tau} = \gamma^2$, since $\gamma_c^2 = N_{\tau} \frac{(d-1)(N_c+1)(N_c+2)}{6(N_c+3)}$
 - \Rightarrow sensible, N_{τ} -independent definition of the temperature:

aT
$$\simeq rac{\gamma^2}{N_{ au}}$$

• Moreover, SC-LQCD partition function is a function of γ^2

However: precise correspondence between a/a_{τ} and γ^2 not known

SC-LQCD at finite Temperature and Continuous Time:

$$N_{ au} o \infty, \qquad \gamma o \infty, \qquad \gamma^2/N_{ au} \equiv aT \quad {
m fixed}$$

• same as in analytic studies: $a_{\tau} = 0$, $aT = \beta^{-1} \in \mathbb{R}$

SC-LQCD at finite Temperature and Continuous Time:

Strategy for unambiguous answer: the continuous Euclidean time limit (CT-limit):

$$N_{ au} o \infty, \qquad \gamma o \infty, \qquad \gamma^2/N_{ au} \equiv aT \quad {
m fixed}$$

• same as in analytic studies: $a_{\tau} = 0$, $aT = \beta^{-1} \in \mathbb{R}$

Several advantages of continuous Euclidean time approach:

- ambiguities arising from the functional dependence of observables on the anisotropy parameter will be circumvented, only one parameter setting the temperature
- ullet no need to perform the continuum extrapolation $N_ au o \infty$
- allows to estimate critical temperatures more precisely, with a faster algorithm (about 10 times faster than $N_t = 16$ at T_c)
- baryons become static in the CT-limit, the sign problem is completely absent!

Continuous Time Partition Function, 1 flavor

Partition function in inverse temperature $\beta = 1/aT$ and in the chiral limit:

$$\mathcal{Z}(\beta,\mu) = \sum_{\kappa \in 2\mathbb{N}} \frac{(\beta/2)^{\kappa}}{\kappa!} \sum_{\mathcal{C} \in \Gamma_{\kappa}} v_{L}^{n_{L}(\mathcal{C})} v_{T}^{n_{T}(\mathcal{C})} e^{3\beta\mu B(\mathcal{C})}, \quad v_{L} = 1, v_{T} = 2/\sqrt{3}$$

Typical (2-dimensional) configurations in discrete and continuous time at the same temperature:

- multiple spatial dimer become resolved into single spatial dimers as a_t → 0
- **baryons** become **static** in continuous time!

- $\kappa = \frac{1}{2} \sum_{x} n_L(x) + n_T(x)$ is the number of spatial dimers, *B* is baryon number
- weight of configuration given by number of spatial dimers and vertices v_L, v_T regardless of time coordinates

Wolfgang Unger, ETH Zürich

Continuous Time Partition Function, 1 flavor

Partition function in inverse temperature $\beta = 1/aT$ and in the chiral limit:

$$\mathcal{Z}(\beta,\mu) = \sum_{\kappa \in 2\mathbb{N}} \frac{(\beta/2)^{\kappa}}{\kappa!} \sum_{\mathcal{C} \in \Gamma_{\kappa}} v_L^{n_L(\mathcal{C})} v_T^{n_T(\mathcal{C})} e^{3\beta\mu B(\mathcal{C})}, \quad v_L = 1, \ v_T = 2/\sqrt{3}$$

Typical (2-dimensional) configurations in discrete and continuous time at the same temperature:

 multiple spatial dimer become resolved into single spatial dimers as a_t → 0

• **baryons** become **static** in continuous time!

• sum over all spatial dimer time coordinates $\sim N_{\tau}/2 \Rightarrow$ expansion in $\beta = N_{\tau}/\gamma^2$

• Γ_{κ} is the set of equivalence classes of configurations with κ spatial dimers, time coordinates of spatial dimers irrelevant

Wolfgang Unger, ETH Zürich

Continuous Time Partition Function, 1 flavor

Partition function in inverse temperature $\beta = 1/aT$ and in the chiral limit:

$$\mathcal{Z}(\beta,\mu) = \sum_{\kappa \in 2\mathbb{N}} \frac{(\beta/2)^{\kappa}}{\kappa!} \sum_{\mathcal{C} \in \Gamma_{\kappa}} v_{L}^{n_{L}(\mathcal{C})} v_{T}^{n_{T}(\mathcal{C})} e^{3\beta\mu B(\mathcal{C})}, \quad v_{L} = 1, v_{T} = 2/\sqrt{3}$$

Typical (2-dimensional) configurations in discrete and continuous time at the same temperature:

- multiple spatial dimer become resolved into single spatial dimers as a_t → 0
- **baryons** become **static** in continuous time!

- each term Γ_{κ} is represented by a world line configuration
- allows to apply QMC techniques: continuous time worm (Beard & Wiese), loop cluster algorithm (Evertz et al.), stochastic series expansion (Sandvik)

Wolfgang Unger, ETH Zürich

Mapping of 1-flavor $SU(N_c)$ to a spin system

Continuous time methods can be applied to any gauge group $SU(N_c)$:

- $\bullet\,$ baryons become static for $\mathit{N}_{\rm c} \geq 3$
- mesonic discrete time chains classified by parity:

• generalizes to arbitrary $U(N_c)$

Stochastic Series Expansion

Idea: rewrite partition function, based on decomposition in diagonal and non-diagonal elements $H = H_1 + H_2$, truncation *L*:

$$\mathcal{Z}(\beta) = \operatorname{Tr}\left\{e^{-\beta\mathcal{H}}\right\} = \sum_{\chi} \sum_{S_{L}} \frac{\beta^{\kappa}(L-\kappa)!}{L!} \left\langle \chi \left| \prod_{i=1}^{L} \mathcal{H}_{a_{i},b_{i}} \right| \chi \right\rangle, \qquad \mathcal{H}_{1,b} = \varepsilon \mathbb{1}, \, \varepsilon \ge 0$$
$$\mathcal{H}_{2,b} = \frac{1}{2} S_{x}^{+} S_{y}^{-}$$

with S_L a time-ordered sequence of operator-indices: $S_L = [a_1, b_1], [a_2, b_2], \dots [a_L, b_L]$

- $a_i = 0$: identity, $a_i = 1, 2$: diagonal/non-diagonal matrix element
- $b_i = \langle x, y \rangle \in Vd$ denotes a bond

Two kinds of **updates**:

$$\begin{array}{c} \textbf{L} \quad \textbf{changing order in } \beta, \quad \kappa \mapsto \kappa \pm 1: \\ P([1, b]_{\rho} \mapsto [0, 0]_{\rho}) = \frac{L - \kappa + 1}{\sqrt{L - \kappa}}, \quad P([0, 0]_{\rho} \mapsto [1, b]_{\rho}) = \frac{\sqrt{L - \kappa}}{L - \kappa} \end{array}$$

2 operator loop: visit bonds b_i successively from an input leg, determine output leg with heatbath probability $\langle \chi_x \chi_y | \mathcal{H}_{a_i b_i} | \chi'_x \chi'_y \rangle$

L is set larger than $\kappa_{\max} \Rightarrow$ **SSE** is approximation free (like CT-Worm)

SSE applied to SC-LQCD

Strong Coupling U(1) is identical to XY Model in zero field! Extension to $U(N_c)$ for SC-LQCD straightforward:

$$\mathcal{H} = \frac{1}{2} \sum_{\langle x, y \rangle} J_x^+ J_y^- \qquad \text{with } J^+ = \begin{pmatrix} 0 & & \\ v_1 & 0 & & \\ & v_2 & 0 & \\ & \ddots & \ddots & \\ & & v_{N_c} & 0 \end{pmatrix}, \quad v_k = \sqrt{\frac{k(1+N_c-k)}{N_c}}$$

and $J^- = (J^+)^T$ for absorption/emission

•
$$N_c = 3$$
: $v_L \equiv v_1 = v_3 = 1$, $v_T \equiv v_2 = 2/\sqrt{3}$

• state vector characterizing time slice:

 $|S^z
angle(t)\in\left\{igotimes_{ec{x}\in V}S^z_{ec{x}}|S^z_{ec{x}}\in\{-N_{
m c}/2,\ldots N_{
m c}/2\}
ight\}$

- oriented spatial dimers act at time t_i on $|S_x\rangle$ by raising/lowering spin at absorption/emission site
- lowest/highest weight: $J^+|N_{
 m c}/2
 angle=0,~~J^-|-N_{
 m c}/2
 angle=0$
- S^z counts net number of (odd-even) time like meson sites at each site

•
$$\frac{N_c}{2}[J^+, J^-] = J^z = \text{diag}(-N_c/2, \dots, N_c/2)$$
 fulfilled, $J^z|S^z\rangle = S^z|S^z\rangle$

• new observable: spin susceptibility $\chi_{S} = \beta \left\langle \left(\sum_{i} S_{i}^{z}\right)^{2} \right\rangle / N$

Observables for the Chiral Transition

- CT-Worm: energy density/specific heat, chiral susceptibility
- SSE: energy density/specific heat, "spin" susceptibility

Observables for the Chiral Transition

- CT-Worm: energy density/specific heat, chiral susceptibility
- SSE: energy density/specific heat, "spin" susceptibility feels chiral transition

Wolfgang Unger, ETH Zürich

1-flavor SC-QCD Phase Diagram

Application: Generalization of SC-LQCD to 2 chiral flavors!

Aim: obtain phase diagram for 2-flavor SC-LQCD, where **pion exchange** may play a crucial role for nuclear transition, but:

- at present, no 2-flavor formulation for staggered SC-LQCD suitable for MC
- already the mesonic sector has a severe sign problem (worse than for finite μ HMC)
- 2 new types of mixed dimers give negative sign in mesonic loops already for U(2):

Observation in continuous time formulation:

- static lines for 2 staggered flavors have all postive weight!
- again: only single spatial dimers (no α , β spatial dimers)
- Hamiltonian formulation feasible

Continuous Time Transition Rules for $N_{\rm f}=2$

Flavored static lines:

- new classification in terms of quantum numbers $|S^z, Q_{\pi^0}, Q_{\pi^+}\rangle$
- $N_c = 2$: in total 19 types of lines, 18 have weight 1/4 per a_t , "vacuum state" $|0, 0, 0\rangle$ has weight $1/\sqrt{8}$

- state multiplicities = $N_{\rm c} + 1 + rac{2}{3}N_{\rm c}(N_{\rm c}+1)(N_{\rm c}+2)$, 44 states for $N_{\rm c}=3$
- "spin" S^z counts number of emission/absorption events (remnant of even/odd decomposition of lattice for staggered fermions) $S^z = -\frac{1}{2}N_cN_f, \ldots, +\frac{1}{2}N_cN_f$

₹.... |-2,0)

- \bullet two "charges" $\mathit{Q}_i = -\mathit{N}_{\mathrm{c}}, \ldots, +\mathit{N}_{\mathrm{c}}$ denote the flavor content
- spin/charge conservation: transitions at spatial dimers, raising charges at one site, lowering at a neighboring site:

$$|\Delta S^z|=1, \quad |\Delta Q_{\pi^0}|+|\Delta Q_{\pi^+}|=1$$

$$\mathcal{H} = \frac{1}{2} \sum_{\langle x, y \rangle} \left(J_{\pi^{0}(x)}^{+} J_{\pi^{0}(y)}^{-} + J_{\pi^{0}(x)}^{+} J_{\pi^{0}(y)}^{-} + J_{\pi^{+}(x)}^{+} J_{\pi^{+}(y)}^{-} + J_{\pi^{+}(x)}^{+} J_{\pi^{-}(y)}^{-} \right)$$

Absorption $(J_{\pi_i}^+, \text{ lower left triangle})$ and Emission $(J_{\pi_i}^-, \text{ upper triangle})$, state vector: $\begin{pmatrix} \frac{\pi^0 & \pi^0 & \pi^+ & \pi^- & & & & \\ \pi^0 & & \pi^0 & & & & & \\ \pi^0 & & & & & & & & \\ \pi^+ & & & & & & & & & \\ \pi^+ & & & & & & & & & & \\ \pi^- & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & & \\ \pi^0 & & & & & & & & & & \\ \pi^0 & & & & & & & & & & \\ \pi^0 & & & & & & & & & & \\ \pi^0 & & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & & & & & \\ \pi^0 & & & &$

• vertex weights are $v_{\pi_i} = 1$ for vertices not mixing the two charges Q_i and $v_{\hat{\pi}_i} = \frac{1}{\sqrt{2}}$ for vertices mixing the charges

Preliminary Result for 2-flavor SC-LQCD

Wolfgang Unger, ETH Zürich

Preliminary Result for 2-flavor SC-LQCD

Wolfgang Unger, ETH Zürich

Summary

Achievements:

- CT partition function: new formulation as a quantum spin system!
- "spin" formulation and Hamiltonian follow from conservation laws for even/odd chains of time-like dimers and flavors this generalizes to arbitrary N_c , N_f
- new observable: spin susceptibility, sensitive to chiral transition
- quantum Monte Carlo applicable: e.g. continuous time worm or **stochastic series** expansion (most convenient)
- \bullet now also applied to U(2) with two flavors (incorporates pion exchange)
- extension to SU(3) with finite baryon chemical potential straightforward (Hamiltonian worked out, but no simulations yet)

 Wolfgang Unger, ETH Zürich
 2 flavor SC-LQCD
 Swansea, 10.07.2012
 17 / 17

Achievements:

- CT partition function: new formulation as a quantum spin system!
- "spin" formulation and Hamiltonian follow from conservation laws for even/odd chains of time-like dimers and flavors this generalizes to arbitrary N_c , N_f
- new observable: spin susceptibility, sensitive to chiral transition
- quantum Monte Carlo applicable: e.g. continuous time worm or **stochastic series** expansion (most convenient)
- \bullet now also applied to U(2) with two flavors (incorporates pion exchange)
- extension to SU(3) with finite baryon chemical potential straightforward (Hamiltonian worked out, but no simulations yet)

Soon: obtain full 2-flavor SC-LQCD phase diagram in (μ, T) -plane!

Comparison of SSE and CT-Worm

Wolfgang Unger, ETH Zürich

Static Line Rules

Combine temporal dimers of alternating orders in γ^2 (here for $N_c = 2$):

- first: consider (a, b) and (c, d) dimers sepaterely
- then: resum them to obtain flux representation

Static Line Rules

Combine temporal dimers of alternating orders in γ^2 (here for $N_c = 2$):

- resummation of a b a and b a b chains
- resummation of $ab + cd + \alpha + \beta$ into \Box dimers

Static Line Rules

Combine temporal dimers of alternating orders in γ^2 (here for $N_c = 2$):

- new classification in terms of quantum numbers $|S^z, Q_{\pi^0}, Q_{\pi^+}\rangle$
- in total: 19 types of lines, 18 have weight 1/16 per 2a, $|0,0,0\rangle$ has weight 1/8

Wolfgang Unger, ETH Zürich

Wolfgang Unger, ETH Zürich

The Transition Rules Encoded in J^{\pm}

Wolfgang Unger, ETH Zürich

Summary

Backup Slides

Why Study Strong Coupling QCD on the Lattice?

Two possible scenarios for the relation between SC-LQCD (back) and the (L)QCD phase diagram for four flavors (front):

