Multiboundary wormholes and holographic entanglement

1406.2663, Balasubramanian, Hayden, Maloney, Marolf & SFR

Marolf, Maxfield, Peach & SFR, Work in progress

Simon Ross

Centre for Particle Theory, Durham University

Holography, Strings and Higher Spins, Swansea, 20 March 2014

Motivation

Entanglement and wormholes

• Eternal black hole = entangled state in CFT on product space

Maldacena

Relating entanglement to connectedness

Ryu Takavanagi

van Raamsdonk

• ER = EPR Maldacena Susskind

Study multiboundary examples:

- Further explicit examples
- Richer moduli space
- Connection to multiparty entanglement

Eternal black hole

Euclidean Black hole

State dual to bulk t = 0 surface defined by path integral over half of Euclidean black hole: Maldacena

TFD state

$$\ket{\psi} = rac{1}{\sqrt{\mathcal{Z}}} \sum_{i} e^{-eta E_i/2} \ket{E_i}_1 \otimes \ket{E_i}_2$$

Entangled state explains why $\langle \mathcal{O}_1 \mathcal{O}_2 \rangle \neq 0.$

Euclidean Black hole

Phase transitions:

Simon Ross (Durham)

Multiboundary wormholes

Swansea, 2015 5 / 23

Entanglement and wormholes

Generalize this to multiboundary wormholes:

- Additional explicit examples (in 2+1)
- Σ a Riemann surface with *n* boundaries (for simplicity, no handles). Moduli minimal geodesic lengths L_a , internal moduli τ_{α} for n > 3.
- Explore multipartite entanglement

Entanglement and wormholes

Multipartite entanglement:

- Entanglement \neq Bell pairs.
- E.g., GHZ state: $|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\rangle)$. Entangled pure state.
- Trace over any one spin gives ρ = ¹/₂(| ↑↑ \⟨↑↑ | + | ↓↓ \⟨↓↓ |). Unentangled. ⇒ Entanglement intrinsically involves all three spins.
- Does this type of entanglement play a role in holography?

Entanglement and wormholes

Key results:

- Nature of entanglement depends on moduli
 - Purely bipartite for some range of moduli
 - No entanglement on < n/2 boundaries for generic moduli
 - At least some *n*-party ((n 1)-party) entanglement for generic moduli
- Bulk phase transitions as functions of moduli
- For large black holes, structure locally like TFD.

Study in 2+1 bulk: quotients of AdS_3 by a discrete group

 $\Gamma \subset SL(2,\mathbb{R}) \subset SL(2,\mathbb{R}) \times SL(2,\mathbb{R}).$

- Acts within t = 0 surface, $\Sigma = H^2/\Gamma$.
- Minimal geodesics L_a are bifurcation surfaces for event horizons; outside geometry is BTZ.
- Geometry has no global timelike Killing vector, but time-reflection symmetry about t = 0 implies it has a Euclidean continuation.

Bulk phase transitions

Corresponding action on Euclidean AdS₃:

 $ds^2 = d\tau^2 + \cosh^2 \tau d\Sigma^2.$

Euclidean boundary is two copies of Σ . E.g., for n = 3, a genus 2 surface.

Bulk is a handlebody filling in the boundary Riemann surface. \exists different bulks for same boundary conditions:

Phase transitions analogous to Hawking-Page. Can restrict possibilities by choosing a spin structure incompatible with making boundary circles contractible.

Simon Ross (Durham)

Dual CFT description

Boundary of Euclidean space is two copies of Σ . \Rightarrow state $|\Sigma\rangle$ dual to t = 0 surface given by CFT path integral on Σ .

Dual CFT description

Map to sphere with holes: $|\Sigma\rangle$ related to *n*-point functions.

Dual CFT description

In the puncture limit $L_a \rightarrow 0$, can approximately control this map. E.g.,

$$|\Sigma_{123}
angle = \sum_{ijk} C_{ijk} e^{-rac{1}{2} ilde{eta}_1 H_1 - rac{1}{2} ilde{eta}_2 H_2 - rac{1}{2} ilde{eta}_3 H_3} |i
angle_1 |j
angle_2 |k
angle_3,$$

where C_{ijk} are OPE coeffs, encoding dependence on the CFT considered, and $\tilde{\beta}_i$ are roughly inverse temperatures of the BTZ regions, encoding moduli dependence.

- Separation of CFT dependence, moduli dependence
- Boltzmann-like suppression of high energy contributions
- State has tripartite entanglement, but vacuum state contribution (e.g. *i* = 1) gives a bipartite component
- Not GHZ-like: black holes prepared in a GHZ-like state do not have a smooth wormhole Susskind

In this limit thermal AdS analogue dominates if allowed. Want to claim picture is qualitatively similar at finite L_a .

Simon Ross (Durham)

Multiboundary wormholes

Entanglement structure in CFT

Consider partial traces to diagnose entanglement structure. For n = 3, $\rho_{12} = \text{Tr}_3(|\Sigma_{123}\rangle\langle\Sigma_{123}|)$ given by four-boundary Riemann surface \sim four-point function.

- $L_3 \rightarrow 0$ s-channel limit: $\rho_{12} \approx |\Sigma_{12}\rangle \langle \Sigma_{12}|$
- $L_3 \rightarrow \infty$ t-channel limit: $\rho_{12} \approx \rho_1 \otimes \rho_2$. Implies $|\Sigma_{123}\rangle$ just entangles 1 with 3, 2 with 3. Purely bipartite in this limit!

Entanglement structure from holography

- Compute entanglement entropies at leading order in central charge from minimal surfaces in bulk.
- Ryu-Takayanagi prescription:

 $S_A = \min_{\gamma} A_{\gamma} / 4G$,

where the bulk surface γ is homologous to the region A.

• Since we consider A to be the whole of one or more boundaries, γ is a closed surface in the bulk. Natural candidate is some combination of the L_a 's.

E.g.
$$n = 3$$
:
 $S(\rho_{12}) = \frac{\pi}{2G}(L_1 + L_2)$ if $L_1 + L_2 < L_3$,
 $S(\rho_{12}) = \frac{\pi}{2G}L_3$ if $L_1 + L_2 > L_3$.

Entanglement structure from holography

Study the factorisation of ρ_{12} by considering mutual information between 1, 2:

$$U(B_1: B_2) = S(\rho_1) + S(\rho_2) - S(\rho_{12})$$

vanishes if $L_1 + L_2 < L_3$: $S(\rho_1) = \frac{\pi}{2G}L_1$, $S(\rho_2) = \frac{\pi}{2G}L_2$, $S(\rho_{12}) = \frac{\pi}{2G}(L_1 + L_2)$

Entanglement measures

 $I = 0 \Rightarrow$ no entanglement, but $I \neq 0$ does not imply entanglement; could be classical correlation.

A useful measure is distillable entanglement E_D

- Number of Bell pairs which can be obtained from the state ρ_{12}
- Bounded by calculable quantities:
 - $E_D \leq min(S(\rho_1), S(\rho_2), I(B_1 : B_2))$
 - $E_D \geq S(\rho_1) S(\rho_{12}).$

Holographically,

So far considered entanglement between whole boundaries. As we move away from puncture limit, should be an interesting spatial structure to entanglement.

- Study by considering mutual information between a subregion in one boundary, other boundaries.
- Consider opposite limit: $L_a \rightarrow \infty$.

Spatial structure: Two-boundary

TFD: high-temperature limit. Euclidean time circle short compared to spatial circle. Local entanglement between spatial points on the two boundaries.

Consider a subinterval in one boundary, whole of the other boundary: mutual information a simple function of size of subinterval.

Spatial structure: Three-boundary

Mutual information depends on position, size of subinterval.

In $L_a \rightarrow \infty$ limit, minimal distance between horizons remains finite. Local structure approximately as TFD: local entanglement with a spatial point on one of the other boundaries.

Spatial structure: Three-boundary

Holographic calculation of mutual information:

Indicates sharp edges to region entangled with a given other boundary. CFT picture: large L_a corresponds to large holes. The sphere reduces to thin strips between the holes.

More boundaries

- If L_a ≈ L, S(B_a ∪ B_b) = S(B_a) + S(B_b), so I(B_a : B_b) = 0: no bipartite entanglement.
- Regions of purely bipartite entanglement when say $L_1 \gg L_a$.
- Diagnose multiparty entanglement by considering $E_D(X : Y)$ where X and Y are each some collection of boundaries. (Note no good intrinsically multiparty entanglement measures). For generic moduli, $E_D(X : Y) > 0$ if $X \cup Y > 1/2$ boundaries.
- For generic moduli, $\exists n$ -party entanglement for n even, n-1-party entanglement for n odd.

Discussion

- Multiboundary wormholes provide interesting new examples of relation of entanglement to connectedness of geometry
- Rich dependence on moduli: regions of purely bipartite entanglement, generic behaviour involves multiparty entanglement
- Small L_a: CFT path integral reduces to *n*-point functions
- Large *L_a*: CFT path integral reduces to thin strips between boundaries. Spatially localised entanglement, local structure independent of number of boundaries.