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• Work done with Apratim Kaviraj, Kallol Sen 
arXiv:1502.0143 and to appear soon.

Saturday, 21 March 15



Summary of main results

• Given a (4d for most part) CFT with a scalar operator 
of dimension      and a spin-2 (minimal) twist-2 
operator there is an infinite sequence of large spin 
operators of dimension
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• We can think of these operators as double 
trace operators of the form

• However the CFT bootstrap analysis of 
course only yields conformal dimension, 
spin and the OPE coefficients and not the 
precise form of these operators.
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Camanho, Edelstein, Maldacena, 
Zhiboedov

Why is this interesting?

• Result is universal. Does not depend on lagrangian 
or the dimension of the seed operator. Just 
assumes twist gap of these operators from other 
operators in the spectrum.

• Anomalous dimension of double trace operators is 
related to bulk Shapiro time delay. Sign of 
anomalous dimension is related to causality. 
Interplay between unitarity of CFT and causality of 
bulk.

• Can be extended to arbitrary (eg. 3d) dimensions. 
May be relevant for 3d Ising model at criticality.

Rychkov et al
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• Can compare with AdS/CFT.  Two different 
ways to calculate the anomalous dimensions a) 
Eikonal approximation of 2-2 scattering b) 
Energy shift in a black hole background.

• Turns out that the result matches exactly with 
the AdS/CFT prediction.

• Another example where dynamics match 
without needing supersymmetry.
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The di↵erential equation that generates the solution F (d)(⌧, u) for any d is given by,

u(1� u)g00(⌧, u)� [1 + (1� u)(d� 3� ⌧)]g0(⌧, u)� 1

4
(⌧ � d+ 2)2g(⌧, u) = 0 , (2.2)

where the derivatives are defined w.r.t u. For the crossed conformal blocks the analogous function

F (d)(⌧, v) is generated by the same di↵erential equation in (2.2) under the replacement u $ v. We

further define,

g(⌧, v) = (1� v)
d�2
2 F (d)(⌧, v) , (2.3)

to yield the di↵erential equation for F (d) given by,

v(1�v)2F 00(d)(⌧, v)�(1�v)[(d�1)�(1�v)(⌧+1)]F 0(d)(⌧, v)� 1

4
[(1�v)⌧2�(d�2)2]F (d)(⌧, v) = 0 ,

(2.4)

where now the derivatives are w.r.t v. The solution for the above equation is given by,
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where c1 and c2 are constants. The boundary condition is that for v ! 0, F (d)(⌧, v) ! 1, which

fixes the integration constants. The final solution for F (d)(⌧, v) after putting in these boundary

conditions become,

F (d)(⌧, v) =
2⌧

(1� v)
d�2
2

2F1


1

2
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1

2
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�
. (2.6)

The general recursion relation, relating the conformal blocks for d dimensions to those in d � 2

dimensions are worked out in section 5 of [1]. We write down the relation for the crossed conformal

blocks for convenience,
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In the limit when ` ! 1 at fixed ⌧ = � � `, and for z ! 0 and z̄ = 1 � v + O(z), the above
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[(1�v)⌧2�(d�2)2]F (d)(⌧, v) = 0 ,

(2.4)

where now the derivatives are w.r.t v. The solution for the above equation is given by,

F (d) =
(�1 + v)1/2
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(2.5)

where c1 and c2 are constants. The boundary condition is that for v ! 0, F (d)(⌧, v) ! 1, which

fixes the integration constants. The final solution for F (d)(⌧, v) after putting in these boundary

conditions become,

F (d)(⌧, v) =
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The general recursion relation, relating the conformal blocks for d dimensions to those in d � 2

dimensions are worked out in section 5 of [1]. We write down the relation for the crossed conformal

blocks for convenience,

✓
z̄ � z

(1� z)(1� z̄)

◆2

g(d)�,`

(v, u) =g(d�2)
��2,`(v, u)�

4(`� 2)(d+ `� 3)

(d+ 2`� 4)(d+ 2`� 2)
g(d�2)
��2,`(v, u)

� 4(d��� 3)(d��� 2)

d� 2�� 2)(d� 2�)


(�+ `)2

16(�+ `� 1)(�+ `+ 1)
g(d�2)
�,`+2(v, u)

� (d+ `� 4)(d+ `� 3)(d+ `��� 2)2

4(d+ 2`� 4)(d+ 2`� 2)(d+ `��� 3)(d+ `��� 1)
g(d�2)
�,`

(v, u)

�
.

(2.7)

In the limit when ` ! 1 at fixed ⌧ = � � `, and for z ! 0 and z̄ = 1 � v + O(z), the above

relation simplifies to,
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Dolan, Osborn;

Recursion relations for blocks in any dimension

Solution to recursion relations in closed form 
known only in even d.

In the large spin limit and                   the recursion 
relation simplifies.

u ⌧ 1, v < 1

Crossed 
channel

Inserting the ansatz for the factorized form of the conformal blocks at large ` given by,

g(d)
⌧,`

(v, u) = k2`(1� u)v
⌧
2F (d)(⌧, v) , (2.9)

at ` � 1 and u ⌧ 1 into the above recursion relation and noticing that k2(`+2)(1�u) = 24k2`(1�u),

we arrive at the following recursion relation satisfied by the functions F (d)(⌧, v) given in [2],
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As we have explicitly checked, the solutions in (2.6) satisfy these recursion relations for general d

dimensions.

3 Anomalous dimensions for general d

Modulo the overall factor of 2⌧/(1� v)(d�2)/2 the remaining part of F (d)(⌧, v) can be written as,
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where (a)
b

= �(a+b)/�(a). The MFT coe�cients for general d, after the large ` expansion (modulo

the ` dependent part) takes the form,
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On the lhs of the bootstrap equation, we will determine the coe�cients of v↵ as follows. To start

with, we move the part (1� v)���(d�2)/2 on the lhs to get the log v dependent part,
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We can carry out the sum due to the term (1 � v)b by regrouping various powers of v taking

n+ k = ↵ and performing the sum over the index k from 0 to 1,
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where for general d dimensions, the coe�cient b = ⌧m
2 + `

m

+ d�2
2 ��

�

. When b is positive integer,

the sum over k truncates from 0 to b. On the rhs of the bootstrap equation the coe�cient of

3
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Gauss Hypergeometric

Bootstrap equation demands at leading order

New results from bootstrap
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Gauss Hypergeometric

Bootstrap equation demands at leading order

To match powers of v, we 
must have 
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(1� v)��F (d)

(⌧, v)

Gauss Hypergeometric

Bootstrap equation demands at leading order

To match powers of v, we 
must have 

⌧ = 2�� + 2n

New results from bootstrap

Fitzpatrick et al; Komargodski, 
Zhiboedov

Needs large 

Kaviraj, Sen, AS
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1 ⇡ (function of u)⇥ v⌧/2���
(1� v)��F (d)

(⌧, v)

Gauss Hypergeometric

Bootstrap equation demands at leading order

To match powers of v, we 
must have 

⌧ = 2�� + 2n Same as what appears in 
MFT. OPE’s known. 

New results from bootstrap

Fitzpatrick et al; Komargodski, 
Zhiboedov

Needs large 

Kaviraj, Sen, AS
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We can go to 
subleading order

It can be shown that the anomalous dimension at 
large spin goes like an inverse power of the spin for 
dimension>2.

This means that we can treat the inverse spin as an 
expansion parameter and this result is true even for 
theories which does not have a “large N”.

Our objective is to determine the n-dependence for 
the anomalous dimension.
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�(n, `)`⌧m =
nX

m=0

C(d)
n,mB(d)

m

: Since k is a positive integer, this is a 
polynomial.

After some clever detective work we find
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At this stage, no amount of pleading with 
mathematica helped!

Kernel running for hours!

Saturday, 21 March 15



At this stage, no amount of pleading with 
mathematica helped!

Kernel running for hours!

After a lot of hard work, mathematica produces 
A=A
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Progress is possible in 4d (and similar techniques 
apply in even d)
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So effectively we just 
need to do the integral

which can be easily done by going to polar 
coordinates.
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So effectively we just 
need to do the integral

which can be easily done by going to polar 
coordinates.

This is negative and monotonically decreasing 
with n for any conformal dimension satisfying the 

unitarity bound
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n � 3
Always negative for
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If unitarity bound is violated anomalous 
dimensions can be positive.

n � 3
Always negative for
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• Nachtmann in 1973 proved the following under 
certain plausible assumptions (unitarity, Regge 
behaviour of amplitudes)

• This means that the leading twist operator for  
should have negative anomalous dimension.

• Our results extends this to non-zero twists.

Comments on Nachtmann theorem

@

@`
�(n = 0, `) > 0

`�#
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Large spin gymnastics from holography--
take I
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• Cornalba et al showed through a series of 
papers that the anomalous dimension of 
double trace operators can be calculated in 
the high energy Eikonal approximation of 2-2 
scattering in AdS spacetime. 

Large spin gymnastics from holography--
take I
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• Cornalba et al showed through a series of 
papers that the anomalous dimension of 
double trace operators can be calculated in 
the high energy Eikonal approximation of 2-2 
scattering in AdS spacetime. 

• The calculation is difficult but the bottom line 
is that in the t-channel the amplitude for 
double trace exchange is related to the 
exponential of the propagator of the 
exchanged particle (eg. graviton) in the s-
channel. 

Large spin gymnastics from holography--
take I
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Ladder and crossed ladder diagrams 
can be resummed using Eikonal 

approximation.

Cornalba, Costa, 
Penedones

Needs both large spin and twist
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• In the other channel the amplitude is 
dominated by the composite state of two 
incoming particles dual to the double trace 
operators. 
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dominated by the composite state of two 
incoming particles dual to the double trace 
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• The Eikonal approximation determines a 
phase shift due to the exchange of a 
particle.
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• In the other channel the amplitude is 
dominated by the composite state of two 
incoming particles dual to the double trace 
operators. 

• The Eikonal approximation determines a 
phase shift due to the exchange of a 
particle.

• This phase shift is related to the anomalous 
dimension.
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This matches exactly with the CFT bootstrap 
calculation!
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This matches exactly with the CFT bootstrap 
calculation!

There is a prediction from AdS/CFT in this 
limit.

4d CFT
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This matches exactly with the CFT bootstrap 
calculation!

There is a prediction from AdS/CFT in this 
limit.

4d CFT

N=4 normalizations
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• It turns out that we can give a saddle point 
argument leading to an exact agreement with this 
limit as well. 
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limit as well. 

• However, if n is very large, then the perturbation 
theory will break down. 

• Thus implicitly our result from bootstrap is valid 
only if 
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• In the AdS/CFT language the impact 
parameter is related by

• This means that there is a “mass gap” for 
this result to be valid.

• This is similar in spirit to the double 
expansion in Camanho, Edelstein, Maldacena, Zhiboedov

Cornalba, Costa, Penedones
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• There is a closely related recent discussion by 
Alday, Bissi and Lukowski. 

• They discussed N=4 SYM bootstrap. By 
assuming that the leading spectrum is the 
same as in SUGRA (AdS/CFT input) they 
found closed form expressions for the 
anomalous dimensions for

• Our results are in exact agreement with their 
findings in the two limits. 

• Our derivation suggests that the result should 
hold universally in any CFT (with the caveats).

�� = 4
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However!!!
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• At least to me the AdS/CFT Eikonal method 
obscures the reason why the result should be 
universal in holography.

However!!!
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• At least to me the AdS/CFT Eikonal method 
obscures the reason why the result should be 
universal in holography.

• In other words how do we see that higher 
derivative corrections will not spoil the 
universality?

However!!!
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• At least to me the AdS/CFT Eikonal method 
obscures the reason why the result should be 
universal in holography.

• In other words how do we see that higher 
derivative corrections will not spoil the 
universality?

• Namely why can’t the overall factor depend 
on the ‘t Hooft coupling?

However!!!
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Large spin gymnastics from holography--
take II
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• Fitzpatrick, Kaplan and Walters suggested 
the following simple calculation.

Large spin gymnastics from holography--
take II
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• Fitzpatrick, Kaplan and Walters suggested 
the following simple calculation.

• The double trace operators can be thought 
of as two massive particles in AdS rotating 
around each other. The anomalous 
dimension arises due to the interacting 
energy of these particles.

Large spin gymnastics from holography--
take II
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• Fitzpatrick, Kaplan and Walters suggested 
the following simple calculation.

• The double trace operators can be thought 
of as two massive particles in AdS rotating 
around each other. The anomalous 
dimension arises due to the interacting 
energy of these particles.

• Essential idea is to do perturbation theory 
in inverse distance corresponding to a 
Newtonian approximation in AdS.

Large spin gymnastics from holography--
take II
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• So from the gravity side we 
ignore backreaction due to 
the “distant” scalar field.
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• So from the gravity side we 
ignore backreaction due to 
the “distant” scalar field.

• We assume that the mass 
of this orbiting scalar field 
is big (in units of AdS 
radius).
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• So from the gravity side we 
ignore backreaction due to 
the “distant” scalar field.

• We assume that the mass 
of this orbiting scalar field 
is big (in units of AdS 
radius).

• We assume that the mass 
of the black hole which 
corresponds to the 
dimension of the 2nd scalar 
field is big.
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• It has been shown that for n=0, the result 
of the calculation agrees with the bootstrap 
prediction. (Unlike Eikonal where both spin 
and n needed to be large)

• Non-zero n is quite hard. However, we have 
been able to make progress (barring overall 
constants) at large n, i.e.,  

• It turns out to give exactly the same 
universal behaviour predicted by bootstrap!
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coming from the ↵0 corrections to the metric. This will modify the metric by adding corrections

to the factor r2�d(1 + ↵0hr�2h) where h is the order of correction in ↵0.

The general descendant scalar state derived from the primary is given by,
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Using the transformation tan ⇢ = r we can write the scalar operator as,
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where,
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Putting (5.8) in (5.4) and carrying out the other integrals we are left with just the radial part of

the integral,
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(5.9)

where I1 and I2 are the contributions from the first and the second parts of the above integral.

The leading ` dependence comes from the first part of the integral which is also true for n 6= 0

case. Thus we can just concentrate on the first part of the integral for the leading spin dominance

of the energy shifts. Thus the integral I1 can be written as,
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The r integral gives,
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(5.11)

7

Higher derivative correction

Non-renormalization from holography
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Putting (5.8) in (5.4) and carrying out the other integrals we are left with just the radial part of

the integral,

�Ed

n,`

orb

= �µ

2

Z
r(1 + ↵0hr�2h)dr


nX

k,↵=0

✓
E2

n,`

(1 + r2)2
 
k

(r) 
↵

(r) + @
r

 
k

(r)@
r

 
↵

(r)

◆�
= I1 + I2 ,

(5.9)

where I1 and I2 are the contributions from the first and the second parts of the above integral.

The leading ` dependence comes from the first part of the integral which is also true for n 6= 0

case. Thus we can just concentrate on the first part of the integral for the leading spin dominance

of the energy shifts. Thus the integral I1 can be written as,

I1 = � µ

2N2
�n`

nX

k,↵=0

(�n)
k

(�n)
↵

(�+ n+ `)
k

(�+ n+ `)
↵

(`+ d

2)k(`+
d

2)↵ k!↵!

Z 1

0
r(1+↵0hr�2h)dr

r2`+2k+2↵

(1 + r2)2+�+`+k+↵

.

(5.10)

The r integral gives,

Z 1

0
r(1+↵0hr�2h)dr

r2`+2k+2↵

(1 + r2)2+�+`+k+↵

=
�(1 +�)�(1 + `+ k + ↵) + ↵0h�(1 + h+�)�(1 + `+ k + ↵� h)

2�(2 +�+ `+ k + ↵)
.

(5.11)
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Higher derivative correction

Non-renormalization from holography

Hence the integral I1 becomes,

I1 =� µ

4N2
�n`

nX

k,↵=0

(�n)
k

(�n)
↵

(�+ n+ `)
k

(�+ n+ `)
↵

(`+ d

2)k(`+
d

2)↵ k!↵!

⇥ �(1 + `+ k + ↵)�(1 +�) + ↵0h�(1 + h+�)�(1 + `+ k + ↵� h)

�(2 +�+ `+ k + ↵)
.

(5.12)

Using the reflection formula for the �-functions we can write,

(�n)
k

(�n)
↵

= (�1)k+↵

�(n+ 1)2

�(n+ 1� k)�(n+ 1� ↵)
. (5.13)

Putting in the normalization and performing the first sum over ↵ we get,

I1 =�
µ(`+ 2n)2�(`+ d

2 + n)

4�(`+ d

2)�(1�
d

2 + n+�)

nX

k=0

(�1)k
�(k + `+ n+�)

�(`+ d

2 + k)�(n+ 1� k)�(2 + k + `+�)�(k + 1)

⇥

�(1 + `+ k)�(1 +�)3F2

✓
� n, k + `+ 1, `+ n+�; `+

d

2
, 2 + k + `+�; 1

◆

+ ↵0h�(1 + `+ k � h)�(1 +�+ h)3F2

✓
� n, k + `+ 1� h, `+ n+�; `+

d

2
, 2 + k + `+�; 1

◆�
.

(5.14)

To the leading order in `
orb

(after the exapnsion in large `
orb

) this is the expression for �E
n,`

orb

or

equivalently �
n,`

from the CFT for general d dimensions. Putting d = 4 in the above calculation,

we get,

�E4
n,`

orb

=� µ(`+ 2n)2�(`+ 2 + n)

4�(`+ 2)�(n+�� 1)

nX

k=0

(�1)k
�(k + `+ n+�)

�(`+ 2 + k)�(n+ 1� k)�(2 + k + `+�)�(k + 1)

⇥

�(1 + `+ k)�(1 +�)3F2

✓
� n, k + `+ 1, `+ n+�; `+ 2, 2 + k + `+�; 1

◆

+ ↵0h�(1 + `+ k � h)�(1 +�+ h)3F2

✓
� n, k + `+ 1� h, `+ n+�; `+ 2, 2 + k + `+�; 1

◆�
.

(5.15)

We have calculated the first few terms n = 0, 1, 2 · · · etc. of �E
n,`

orb

and after the large `
orb

expansion

we can see that the correction in ↵0 contributes at an order 1/`h+1
orb

(where h > 1) while the leading

order dependence is 1/`
orb

. So it does not change the leading order result. Using the first few terms

in �E
n,`

orb

we can try to fit a polynomial expression for the coe�cients �
n

. The CFT intuition

predicts that for 4d the polynomial expression should take the form,

�
n

= A1n
4 +A2n

3 +A3n
2 +A4n+A5 . (5.16)

By matching this with the first few coe�cients of �E
n,`

orb

after the large `
orb

expansion we see that
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The spin dependence for the Einstein term 
can be shown to be     while the higher 
derivative term gives        . Thus no ’t Hooft 
coupling dependence! 

Prediction for susy bootstrap: N=4 ’t Hooft 
coupling shows up at 
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• It will be interesting to work out what 
happens in the other limit.

• Here we expect higher order corrections 
to play a role.

• It will be interesting to derive constraints 
on the higher derivative couplings by 
demanding that the anomalous dimension is 
negative. 

• Do we need an infinite tower of higher spin 
massive particles for a consistent theory of 
quantum gravity?
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Comments on OPE coefficients

n–see [16] for a recent calculation for the dimension-2 case and [17] for earlier work related to the

dimension-3 case. Furthermore, in [12, 13, 14], using Eikonal approximation methods pertaining

to 2-2 scattering with spin-`
m

exchange in the gravity dual, the anomalous dimensions of large-`

and large-n operators have been calculated.

In this paper we examine �(n, `) and OPE coe�cients for general CFTs following [7, 8]. Our

findings are consistent with AdS/CFT predictions [12, 13, 14] where it was found that for ` � n �
1, �(n, `) / �n4/`2 while for n � ` � 1, �(n, `) / �n3/` for graviton exchange dominance in the

five dimensional bulk.

Summary of the results:

As we will summarize below, we can calculate the anomalous dimensions and OPE coe�cients for

the single tower of twist 2�
�

+ 2n operators with large spin-` which contribute to one side of the

bootstrap equation in an appropriate limit with the other side being dominated by certain minimal

twist operators. In this paper we will focus on the case where the minimal twist ⌧
m

= 2. One

can consider various spins `
m

for these operators. We will present our findings for various spins

separately; the case where di↵erent spins `
m

contribute together can be computed by adding up

our results. We begin by summarizing the ` � n � 1 case first. We note that, as was pointed out

in [7], in this limit we do not need to have an explicit 1/N2 expansion parameter to make these

claims. The 1/`2 suppression in both the anomalous dimensions and OPE coe�cients does the job

of a small expansion parameter2.

For the dominant ⌧
m

= 2, `
m

= 0 contribution, the anomalous dimension becomes independent

of n and is given by,

�(n, `) = �P
m

(�
�

� 1)2

2`2
. (1.2)

while the correction to the OPE coe�cient can be shown to approximate to,

C
n

=
1

q̃��,n

@
n

(q̃��,n�n) , (1.3)

in the large n limit similar to the observation made in [2]. The coe�cient q̃��,n is related to the

MFT coe�cients as shown in (2.12) later. Here P
m

is related to the OPE coe�cient corresponding

to the ⌧
m

= 2, `
m

= 0 operator. For the dominant ⌧
m

= 2 = `
m

contribution, the anomalous

dimension is given by,

�(n, `) =
�
n

`2
, (1.4)

where,

�
n

=� 15P
m

�2
�

[6n4 +�2
�

(�
�

� 1)2 + 12n3(2�
�

� 3) + 6n2(11� 14�
�

+ 5�2
�

)

+ 6n(2�
�

� 3)(�2
�

� 2�
�

+ 2)] .

(1.5)

2Strictly speaking we will need `2 � n4 for this to hold. Otherwise we will assume that there is a small expansion
parameter.

3

Heemskerk, Penedones, 
Polchinski, Sully; 

Alday, Bissi, Lukowski
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Comments on general dimensions
Assume minimal twist for stress tensor 
exchange d-2

For this to match with the AdS 
Eikonal calculation, we need

With some effort this can be derived 
analytically in all d. In terms of cT:

A1 = A2 = 0 and the expression for �
n

becomes,

�
n

= 6n2 + 6(�� 1)n+�(�� 1) . (5.17)

Thus the leading order result starts from n2. Clearly we are retrieving nd/2 part of the result for

4d.

6 Relation between GN and Pm for matching

We can now address the question of what is the relation between the overall constant P
m

appearing

in the CFT bootstrap equations and the constant G
N

appearing in [?, ?, ?]. To start with, note

that the anomalous dimension from the holographic calculation turns out to be,

�
h,h̄

= �16G
N

(hh̄)j�1⇧?(h, h̄) , (6.1)

where ⇧(h, h̄) is the graviton propagator given by,

⇧?(h, h̄) =
1

2⇡
d
2�1

�(�� 1)

�(�� d

2 + 1)


(h� h̄)2

hh̄

�1��

2F1


�� 1,

2�� d+ 1

2
, 2�� d+ 1;� 4hh̄

(h� h̄)2

�
,

(6.2)

where ⇧?(h, h̄) is the transverse propagator for the minimal spin field and j is the minimal spin

given by j = 2. Also � = d for the minimal spin and minimal twist field. Thus the overall factors

multiplying �
h,h̄

are given by,

�
h,h̄

= � 8G
N

⇡
d
2�1

�(d� 1)

�(d2 + 1)
(hh̄)g(h, h̄) (6.3)

From the CFT side, the leading order n dependence of the coe�cients �
n

are given in (4.18).

Equating the two expressions we have,

P
m

�(d+ 1)�(d+ 2)

2�(1 + d

2)
4�2

�

=
8G

N

⇡
d
2�1

�(d� 1)

�(d2 + 1)
, (6.4)

which gives the relation between P
m

and G
N

as,

P
m

=
16G

N

⇡

�(d� 1)�(1 + d

2)
3

�(d+ 1)�(d+ 2)
�2

�

. (6.5)

Using G
N

= ⇡

2N2 we get,

P
m

=
8

N2

�(d� 1)�(1 + d

2)
3

�(d+ 1)�(d+ 2)
�2

�

. (6.6)

As a check we put d = 4 and find that,

P
m

=
8

N2

�(3)4

�(5)�(6)
�2

�

=
2

45N2
�2

�

, (6.7)
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Exactly expected from AdS/CFT
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Plots in diverse spacetime dimensions for 
various conformal dimensions. Asymptotes 

indicate same intercept independent of 
conformal dimension.
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What is this secretly telling us?
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• The universality at large spin and twist is intriguing.  
Our proof says that any holographic dual is 
guaranteed to yield this agreement. [Note that the 
conformal dimension independence only works for 
a stress tensor exchange in the s-channel.]

What is this secretly telling us?
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• The universality at large spin and twist is intriguing.  
Our proof says that any holographic dual is 
guaranteed to yield this agreement. [Note that the 
conformal dimension independence only works for 
a stress tensor exchange in the s-channel.]

• Probably also suggests that one can “geometrize” 
the bootstrap equations in this limit in a “universal” 
way. You don’t know what that means? Neither do I! Jokes apart, this is tautological--of course we know it will          

work, the question is how to interpret it in terms of geometric objects.

What is this secretly telling us?
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• The universality at large spin and twist is intriguing.  
Our proof says that any holographic dual is 
guaranteed to yield this agreement. [Note that the 
conformal dimension independence only works for 
a stress tensor exchange in the s-channel.]

• Probably also suggests that one can “geometrize” 
the bootstrap equations in this limit in a “universal” 
way. You don’t know what that means? Neither do I! Jokes apart, this is tautological--of course we know it will          

work, the question is how to interpret it in terms of geometric objects.

• Will be very interesting to explore this further.

What is this secretly telling us?
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Thank you for listening
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