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Motivations

We are interested in exact (and preferably analytic) non-perturbative results
in (strongly coupled) quantum field theories

In dimension higher than 2 the most powerful tools are probably

I Holography

I Localization

When both can be applied, it is instructive to compare them
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Gauge/gravity duality

Equivalence between (quantum) gravity in bulk space-times and quantum
field theories on their boundaries

cartoon of
AdS space

CFT lives on the
boundary of AdS

  

Strongly coupled

GravityQFT

 AdS/CFT

Weakly coupled
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Localization

[See S. Murthy’s talk]

For certain supersymmetric field theories defined on (compact) curved
Riemannian manifolds the path integral may be computed exactly

Localization: functional integral over all fields of a theory→ integral/sum
over a reduced set of field configurations

Saddle point around a supersymmetric locus gives the exact answer

A priori the path integral (“partition function” Z) depends on the
parameters of the theory and of the background geometry

Dario Martelli (KCL) 20 March 2015 5 / 36



Uses of localization

Partition functions on S2 and S4 compute exact Kähler potential on the
space of marginal deformations of certain supersymmetric CFTs

When the manifold Md is of the form S1 ×Md−1 the path integral may be

interpreted as an index Tr (−1)F e−(operator), “counting” states in the field
theory (Hamiltonian formalism). In this case the name “partition function”
is more appropriate: think of S1 as compactified time

Indices and other partition functions may be used to test conjectured
non-perturbative Seiberg(-like) dualities

Quantum entropy of black holes [See S. Murthy’s talk]

. . . many more . . .

Dario Martelli (KCL) 20 March 2015 6 / 36



Localization vs holography

Localization Holography

Large N (semi-classical)
Supersymmetry

The simplest “observable” to be compared is the partition function, through

e−Ssupergravity[Md+1] = Z[Md = ∂Md+1]

where the supergravity action is evaluated on a solution Md+1 with conformal

boundary Md, on which the supersymmetric QFT is defined
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Four dimensional N = 1 supersymmetric field theories

Here we focus on d = 4, N = 1 supersymmetric gauge theories with matter

Vector multiplet: gauge field A; Weyl spinor λ; auxiliary scalar D, all
transforming in the adjoint representation of a group G

Chiral multiplet: complex scalar φ; Weyl spinor ψ; auxiliary scalar F, all
transforming in a representation R of the group G

In flat space with Lorentzian signature, supersymmetric Lagrangians
containing these fields are textbook material

A first caveat in Euclidean space is that degrees of freedom in multiplets are
a priori doubled: λ† → λ̃, φ† → φ̃, etcetera, where tilded fields are
regarded as independent
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Supersymmetry and Lagrangians (flat space)

For example, the supersymmetry transformations of the fields in the vector
multiplet are

δAµ = iζσµλ̃ δD = −ζσµDµλ̃

δλ = Fµν σµνζ + iDζ δλ̃ = 0

where ζ is a constant spinor parameter, Dµ = ∂µ − iAµ·, and
Fµν ≡ ∂µAν − ∂νAµ − i[Aµ,Aν]

The supersymmetric Yang-Mills Lagrangian reads

Lvector = tr

[
1

4
FµνFµν −

1

2
D2 + iλ̃ σ̃µDµλ

]

Similarly, there are supersymmetry transformations and supersymmetric
Lagrangians for the fields in the chiral multiplet
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Rigid supersymmetry on curved manifolds

One can try to define supersymmetric field theories on curved manifolds:
clearly ∂µ → ∇µ, but this is not enough

The supersymmetry transformations and Lagrangians must be modified.
[Witten]: “twist” N = 2 SYM→ supersymmetric on arbitrary Riemannian
manifod

Local supersymmetry studied since long time ago→ supergravity

[Festuccia-Seiberg]: take supergravity with some gauge and matter fields
and appropriately throw away gravity→ “rigid limit”

Important: in the process of throwing away gravity, some extra fields of the
supergravity multiplet remain, but are non-dynamical→ background fields
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Rigid new minimal supersymmetry

For d = 4 field theories with an R symmetry, one can use (Euclidean) new
minimal supergravity [Sohnius-West]. Gravitini variations:

δψµ ∼ (∇µ − iAµ) ζ + iVµζ + iVνσµνζ = 0

δψ̃µ ∼ (∇µ + iAµ) ζ̃ − iVµζ̃ − iVνσ̃µν ζ̃ = 0

Aµ,Vµ are background fields and ζ, ζ̃ are supersymmetry parameters

Existence of ζ or ζ̃ is equivalent to Hermitian metric
[Klare-Tomasiello-Zaffaroni], [Dumitrescu-Festuccia-Seiberg]

The supersymmetry transformations of the vector multiplet are

δAµ = iζσµλ̃ + iζ̃ σ̃µλ

δλ = Fµν σµνζ + iDζ δλ̃ = Fµν σ̃µν ζ̃ − iDζ̃

δD = −ζσµ
(
Dµλ̃− 3i

2
Vµλ̃

)
+ ζ̃ σ̃µ

(
Dµλ + 3i

2
Vµλ

)
where Dµ = ∇µ − iAµ · −iqRAµ
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Localization on four-manifolds: strategy outline

[Assel-Cassani-DM]

Work in Euclidean signature and start with generic background fields Aµ,
Vµ associated to a Hermitian manifold

Construct δ-exact Lagrangians for the vector and chiral multiplets→ set-up
localization on a general Hermitian manifold

Focus on manifolds with topology M4 ' S1 × S3 (these admit a second
spinor ζ̃ with opposite R-charge)

Prove that the localization locus is given by gauge field Aτ = constant,
with all other fields (λ,D;φ, ψ, F) vanishing

Partition function reduces to a matrix integral over Aτ → integrand is
infinite product of 3d super-determinants
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Localizing Lagrangians and saddle point equations

The bosonic parts of the localizing terms constructed with ζ only are

L(+)
vector = tr

(
1

4
F (+)
µν F

(+)µν +
1

4
D2

)
Lchiral = (gµν − iJµν) Dµφ̃Dνφ + F̃F

With the obvious reality conditions on the fields, A,D Hermitian, φ̃ = φ†,
F̃ = F†, we obtain the saddle point equations

vector : F (+)
µν = 0 , D = 0

chiral : JµνDνφ̃ = iDµφ̃ , F = 0
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Hopf surfaces

A Hopf surface is essentially a four-dimensional complex manifold with the
topology of S1 × S3. It can be described as a quotient of C2 − (0, 0), with
coordinates z1, z2 identified as

(z1, z2) ∼ (pz1, qz2)

where p, q are in general two complex parameters

We show that on a Hopf surface we can take a very general metric

ds2 = Ω2dτ 2 + f2dρ2 + mIJdϕIdϕJ I, J = 1, 2

while preserving two spinors ζ and ζ̃

τ is a coordinate on S1, while the 3d part has coordinates ρ, ϕ1, ϕ2,
describing S3 as a T2 fibration over an interval
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The matrix model

The localizing locus simplifies drastically, e.g. → F (+) = F (−) = 0→ full
contribution comes from zero-instanton sector! Flat connections Aτ =
constant, and all other fields vanishing

The localized path integral is reduced an infinite products of d = 3
super-determinants, that may be computed explicitly using the method of
pairing of eigenvalues [Hama et al], [Alday et al]

Using a “natural” regularisation prescription for infinite products, formulas
for elliptic gamma functions, we obtain (more on the regularisation
prescription later!)

Zchiral
1-loop =

∏
ρ∈∆R

∏
n∈Z

Zchiral
1-loop (3d)

[
σ

(n,ρ)
0

]

→ eiπΨ
(0)
chi eiπΨ

(1)
chi

∏
ρ∈∆R

Γe

(
e2πiρA0 (pq)

r
2 , p, q

)
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Supersymmetric index

Adding the contribution of the vector multiplet, everything combines nicely
into the following formula

Z[Hp,q] = e−F(p,q) I(p, q)

where I(p, q) is the supersymmetric index with p, q fugacities

I(p, q) =
(p; p)rG (q; q)rG

|W|

∫
TrG

dz

2πiz

∏
α∈∆+

θ
(

zα, p
)
θ
(

z−α
, q
)∏

J

∏
ρ∈∆J

Γe
(

zρ(pq)
rJ
2 , p, q

)

which may be defined as a sum over states as

I(p, q) = Tr[(−1)FpJ+J′− R
2 qJ−J′− R

2 ]

The fact that the index is computed by the localized path integral on a Hopf
surface was anticipated by [Closset-Dumitrescu-Festuccia-Komargodski]
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A curious pre-factor

Localised path integral + “natural” regularisation produced a pre-factor
F(p, q) explicitly given by (p ≡ e−2π|b1|, q ≡ e−2π|b2|)

F(p, q) =
4π

3

(
|b1|+ |b2| −

|b1|+ |b2|
|b1||b2|

)
(a− c)

+
4π

27

(|b1|+ |b2|)3

|b1||b2|
(3 c− 2 a)

a =
3

32

(
3 trR3 − trR

)
, c =

1

32

(
9 trR3 − 5 trR

)
Invariant depending only on complex structure of the manifold and anomaly
coefficients of the QFT a, c→ expect to be a physical observable

“Who ordered that?”
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Supersymmetric Casimir energy

For simplicity, from now we focus on the case p = q = e−β

In analogy with the ordinary (“zero temperature”) Casimir energy, i.e.
energy of the vacuum, we can define

Esusy ≡ − lim
β→∞

d

dβ
log Z(β)

Since Z(β) = e−F(β)I(β) and in the limit β →∞ the index
I(β)→ constant, we see that only F(β) contributes

F(β) captures a supersymmetric version of the Casimir energy

However, this is very sensitive to the regularisation used! The
regularisation in [ACM] yields the result

Esusy =
4

27
(a + 3c)
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Is the supersymmetric Casimir energy unambiguous?

From its path integral definition

Esusy ≡ − lim
β→∞

d

dβ
log Z(β)

one may be worried that this is an ambiguous quantity

1 There could be finite counterterms, i.e. integrals of local densities that can
be added to log Z shifting arbitrarily its value

2 The result can depend on the details of the regularisation prescription

The key is supersymmetry

From a systematic analysis of counterterms in new minimal supergravity we
proved that all finite supersymmetric counterterms on S1 ×M3 vanish
[Assel-Cassani-DM.2]

Make sure that the regularisation respects the relevant Ward identities
[Assel,Cassani,Di Pietro,Lorenzen,Komargodski,DM]
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Hamiltonian formalism

An alternative, but equivalent, point of view is to consider the
decompactified theory on R× S3 and perform canonical quantization

The supersymmetric Casimir energy should be recovered as the vacuum
expectation value of the (supersymmetric) Hamiltonian Hsusy that appears
in the definition of the index [Kim-Kim]

I(β) = Tr[(−1)Fe−βHsusy ]

namely
Esusy = 〈Hsusy〉

Hsusy is supersymmetric because [Hsusy,Q] = 0, where Q is the supercharge

In [Lorenzen,DM] we showed that using a natural regularisation prescription

〈Hsusy〉 =
4

27
(a + 3c)
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The Casimir energy is a subtle quantity

Regularising infinite sums is tricky: slightly different prescriptions (e.g.
different order in which operations are done) lead to different results!

This is the case for the regularisation of determinants in [Assel,Cassani,DM],
as well as of the sum giving 〈Hsusy〉 in [Lorenzen,DM]

More generally, this issue arises in any computation of 1-loop determinants,
as those appeared in the several papers using localization

It would be useful to understand what is the “correct” method to regularise
in general→ the key is supersymmetry
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Casimir energy in two dimensions

For a 2d CFT defined on the cylinder R× S1 the (ordinary) Casimir energy
is defined as

E0 =

∫
S1

〈Ttt〉

It measures degrees of freedom, indeed one finds that is proportional to the
central charge c [Cardy,...] [See also talks of J. David and A. O’Bannon]

E0 = −
c

12r1

This follows simply from starting with a theory on the plane, where
〈Tµν〉 = 0, and performing a conformal transformation

In d = 2 the only dimensionless counterterm that can be written is∫
d2x
√

gR

where R denotes the Ricci scalar. This vanishes on the cylinder and thus
does not shift the vacuum energy→ this is a physical quantity
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Casimir energy in higher dimensional CFT’s

In higher dimensional conformal field theories, defined on the “cylinder”
R× S2n+1, with n ≥ 1, one can similarly consider the vacuum energy

E0 =

∫
S2n+1

〈Ttt〉

A generalisation of the above rescaling trick allows to write an expression for
the energy momentum tensor [Brown et al,...]

In d = 4 one finds E0 = 3
4r3

(
a− b

2

)
, where a is the anomaly coefficient

and b is a coefficient in 〈Tµµ〉 = 1
(4π)2

(
aE(4) − cW2 + b2R

)
These depend ambiguously on the local counterterm − b

12(4π)2

∫
d4x
√

gR2

The Casimir energy in dimension d = 2n ≥ 4 is ambigous and therefore is
not a physical observable of CFTs!
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Back to the supersymmetric Casimir energy

Now back to the supersymmetric the Casimir energy: which strategy?

In the presence of background fields, Tµν is not conserved, so E0 is not
even a conserved quantity in general

Supersymmetry on S1 × S3 requires to have a fixed At = 1/r3: “no large
gauge transformations allowed”

This flat A changes dramatically the vacuum, i.e. it is not a “small
deformation” of flat space: the rescaling trick fails

Reduce to supersymmetric Quantum Mechanics [Assel,Cassani,Di
Pietro,Lorenzen,Komargodski,DM]

Supersymmetric Ward identity selects the regularisation prescription
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Implications of the supersymmetry algebra

Out of the four preserved supercharges we focus on two (Q and Q†), whose
algebra takes the form

1

2
{Q,Q†} = Hsusy−

1

r3

(R + 2J3) , [Hsusy,Q] = [R + 2J3,Q] = 0

From this we deduce that on the vacuum we have the Ward identity

r3〈Hsusy〉 = 〈R + 2J3〉

If we also use (we don’t really have to) the other two supercharges it’s
immediate to see that 〈J3〉 = 0, and hence our Ward identity is simply the
(vacuum!) “energy=charge” relation

r3〈Hsusy〉 = 〈R〉
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Reduction to SUSY QM

As we are interested in the limit of β →∞, it’s natural to do a KK
reduction on the S3

Supersymmetry implies that we get supersymmetric quantum mechanics for
infinitely many degrees of freedom, organised in 1d supermultiplets

The Ward identity implies that the term in the effective action that
computes 〈Hsusy〉 is

W ∼
∫

dt
(

1
r3

√
|gtt|+ AR

t

)
(∗)

where AR
t is the background gauge field associated to the R symmetry

In QM (*) is a local term→ looks like 〈Hsusy〉 and of 〈R〉 are ambiguous

However, the quantum-mechanical term (*) cannot descend from a
higher-dimensional counterterm and thus it is scheme independent
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1d multiplets: long and short

Since 〈R〉 is computed by the CS coefficient of

∫
dtAt, the susy Casimir

energy cannot depend on continuous coupling constants (and hence on the
RG scale)

It is sufficient to calculate the susy Casimir energy starting from the free
field theory limit in 4d (we assume a Lagrangian exists)

Focus on a free chiral multiplet in 4d (Φ, Ψ, F) and KK reduce to 1d→
two types of multiplets: chiral multiplet (φ, ψ) and a Fermi multiplet (λ, f)

chiral : δφ =
√

2ζψ , δψ = −
√

2iζ†Dtφ

Fermi : δλ =
√

2ζf + p
√

2ζ†φ , δf = −
√

2iζ†Dtλ− p
√

2ζ†ψ

When p = 0 the chiral and Fermi multiplets are independent→ short
multiplets. When p 6= 0 the two multiplets form one reducible but
indecomposable representation of supersymmetry→ long multiplets
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Shortening conditions

The supersymmetric Lagrangian of a long multiplet takes the form

L = |Dtφ|2 − iµ(φDtφ
† − φ†Dtφ) + iψ†Dtψ − 2µψψ†

+ iλ†Dtλ + |f|2 − p2|φ|2 − p(λψ† + ψλ†)

Starting from 4d Lagrangian, we reduce to 1d expanding in harmonics. E.g.

Φ =
∑
`,m,n

φ`,m,nYm,n
`

The parameter governing the shortening of the multiplets depends only on
the quantum numbers `,m and reads

r2
3p2 = (`− 2m)(2 + ` + 2m)

When p2 = 0 the long multiplet becomes short and reduces to

- a 1d chiral multiplet for m = `/2

- a 1d Fermi multiplet for m = −1− `/2
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Canonical quantization

The “oscillator” form of Hsusy, R, Q are obtained straightforwardly

Calculating the spectrum is a cute exercise in QM

For the long multiplets we find

〈Hlong〉 = 〈Rlong〉 = 0

For the short multiplets we find

chiral
(
m =

`

2

)
: 〈Hchiral〉 =

1

2r3

(` + r)

Fermi (m = −
`

2
− 1) : 〈HFermi〉 = −

1

2r3

(` + 2− r)
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A supersymmetric regularisation

The expectation value of the Hamiltonian is obtained by adding up the
contributions of all chiral and Fermi multiplets

Hsusy =
∑
`,m,n

Hlong
`,m,n +

∑
`,m,n

Hchiral
`,m,n +

∑
`,m,n

Hfermi
`,m,n

⇒ 〈Hsusy〉 =
∑
`≥0

1

2r3

(` + 1)(` + r)−
∑
`≥0

1

2r3

(` + 1)(` + 2− r)

In order to preserve supersymmetry in every multiplet, the contributions of
two types of short multiplets are regularised separately, e.g.

→ lim
s→0

∑
`≥0

1

2r3

(` + 1)(` + r)−s+1 −
∑
`≥0

1

2r3

(` + 1)(` + 2− r)−s+1

Eventually: 〈Hsusy〉 = Esusy =
4

27r3

(a + 3c)
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Summary

The final result for the supersymmetric partition function is

Zsusy

S3×S1
β

= e
− 4β

27r3
(a+3c)IS3×S1

β

where IS3×S1
β

is the usual supersymmetric index

The Casimir pre-factor should be important for modular-like properties,
generalising the 2d case [Cardy]

There is a similar result also for the partition function with fugacities p, q, with
Casimir energy pre-factor being (b ∼ log p/q)

Esusy =
2

3r3

(
|b|+ |b|−1

)
(a− c) +

2

27r3

(|b|+ |b|−1)3(3 c− 2 a)

Finally, we now have to go back to holography!
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Comments on holography

The standard holographically renormalised on shell action in AdS5 does not
agree with the supersymmetric Casimir energy

It agrees with the non-supersymmetric computation in the round cylinder, as
well as its infinitesimal deformations

Adding an appropriate flat A necessary for supersymmetry on S1 × S3 does
not affect the on shell action

The problem is open: there are at least two logical alternatives

1 There are new missing holographic boundary terms, that depend on A,
that would change the result when included

2 There exist a different solution, which is asymptotically AdS5 +
appropriate flat A, that has smaller on shell action, and hence
dominates the semiclassical path integral

... or both .... or something else ...
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Outlook

Push the localization technique: how many more path integrals can we
compute exactly and explicitly, and what can we learn from them? In
dimensions d ≥ 4 rigid supersymmetry allows for large classes of geometries

The supersymmetric Casimir energy may be defined for theories on S1 ×M
and it is a physical observable of a theory, generalising well-known results in
d = 2 [Cardy et el]. This also leads to revisit carefully the regularisation
prescription on S1 ×M, and a priori more general localization calculations

Supersymmetric localization yields very precise predictions for the
gauge/gravity duality, allowing to perform detailed tests. Supergravity
solutions should reproduce exactly numbers and functions. E.g. the
supersymmetric Casimir energy should be reproduced!!

This is forcing us to refine the holographic dictionary and to think about
“why” computations on the two sides match→ progress towards “proving”
the gauge/gravity duality in large sectors
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Extra slides
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Conserved charges

In the presence of background vector fields AI
µ the energy-momentum

tensor, defined as

Tµν =
−2
√
−g

δS

δgµν

is not conserved, but instead obeys the Ward identity

∇µTµν =
∑

I

(
FI
µνJµI − AI

ν∇µJµI

)
where the currents JµI =

1
√
−g

δS

δAI
µ

are not necessarily conserved

However for any Killing symmetry ξ of the background one can define a
conserved current

Yµξ = ξν

(
Tµν +

∑
I

JµI AνI

)

Dario Martelli (KCL) 20 March 2015 35 / 36



Supersymmetry algebra

In particular, the canonical Hamiltonian takes the form

H =

∫
S3

d3x

(
Ttt + Jt

RAt −
3

2
Jt
FZVt

)
It receives contributions from the R-charge operator

R =

∫
S3

d3x Jt
R

as well as the Ferrara-Zumino charge (not conserved)

In terms of the supercharge Q, one can compute explicitly the super-algebra

[H,Q] = −qQ , [R,Q] = Q , [J3,Q] = −
1

2
Q ,

{Q,Q†} = H + (1 + q)R + 2J3

⇒ H = Hsusy if and only if q = 0
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