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Introduction and motivation

e In this talk I will study classical solutions of higher spin theories.

e It is useful to recall the significance of classical solutions in gravity and supergravity,
especially in the context of the AdS/CFT correspondence.
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4 N

Introduction and motivation

e In this talk I will study classical solutions of higher spin theories.

e It is useful to recall the significance of classical solutions in gravity and supergravity,
especially in the context of the AdS/CFT correspondence.

Solutions of (super)gravity

e Black holes with all their properties: Horizon, temperature, entropy. . .
e They may be black branes, so similar to black holes, but of different dimensionality.

e If there are extra charges, the solutions can be extremal. And with SUSY they can be
BPS. They can indicate the existence of solitonic objects in the theory, like D-branes.
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4 N

Introduction and motivation

e In this talk I will study classical solutions of higher spin theories.

e It is useful to recall the significance of classical solutions in gravity and supergravity,
especially in the context of the AdS/CFT correspondence.

Solutions of (super)gravity

e Black holes with all their properties: Horizon, temperature, entropy. . .
e They may be black branes, so similar to black holes, but of different dimensionality.
e If there are extra charges, the solutions can be extremal. And with SUSY they can be

BPS. They can indicate the existence of solitonic objects in the theory, like D-branes.

Holographically

e They can describe a thermal state.
e They can describe a pure state (“bubbling solutions”).

e Should be able to perform calculations in those backgrounds instead of the usual AdS

vacuuln.
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Higher spin theory

e We will work with the case of a 4d bulk theory.

e Rather complicated interacting theory of fields of arbitrary integer spin (brief review

to come). [Vasiliev,. . }

e May also include half integer spins.

e Can be consistently defined in asymptotically AdSy, space (but not flat space).
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Higher spin theory

N

e We will work with the case of a 4d bulk theory.

e Rather complicated interacting theory of fields of arbitrary integer spin (brief review

to come). [Vasiliev,. .

e May also include half integer spins.

e Can be consistently defined in asymptotically AdSy, space (but not flat space).

e Holographically dual to 3d vector models (possibly coupled to Chern-Simons).
[Sezgin,Sundell} [Klebanov,Polyakov}

e It is known how to calculate correlation functions in the AdS, vacuum and match to

field theory correlation functions. [Giombi,Yin} [ .
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Higher spin theory

N

e We will work with the case of a 4d bulk theory.

e Rather complicated interacting theory of fields of arbitrary integer spin (brief review

to come). [Vasiliev,. .

e May also include half integer spins.
e Can be consistently defined in asymptotically AdSy, space (but not flat space).

e Holographically dual to 3d vector models (possibly coupled to Chern-Simons).
[Sezgin,Sundell} [Klebanov,Polyakov}

e It is known how to calculate correlation functions in the AdS, vacuum and match to

field theory correlation functions. [Giombi,Yin} [ .

e How would one describe thermal states. Or other ensambles?

e Is the theory complete, or are there more degrees of freedom? Extended objects?

~
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|
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Outline

e Introduction and motivation

e Lightning review of Vasiliev theory
e The Didenko-Vasiliev solution

e FEmbedding in SUSY theories

e Preserved SUSYs
— Bulk
— Boundary

e Summary

N /

Nadav Drukker 4 SUSY higher spin solutions




/ Review of (SUSY) Vasiliev theory N

e The theory is defined by the equations of motion of the three master fields

W The higher-spin connection, which is a space-time one-form. It containing the
massless higher-spin gauge fields of spin s > 2, as well as auxiliary fields.

B: A space-time zero-form, which contains the curvature of the fields, such as the
Weyl tensor and its higher-spin generalisation, as well as the massive scalar,
massless fermion and Maxwell field.

S: is an auxiliary field introduced to turn on interactions. It is a space-time zero-from,

but a one-form in Z-space
S = S,dz® + S;dz°
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/ Review of (SUSY) Vasiliev theory N

e The theory is defined by the equations of motion of the three master fields

W The higher-spin connection, which is a space-time one-form. It containing the
massless higher-spin gauge fields of spin s > 2, as well as auxiliary fields.

B: A space-time zero-form, which contains the curvature of the fields, such as the
Weyl tensor and its higher-spin generalisation, as well as the massive scalar,
massless fermion and Maxwell field.

S: is an auxiliary field introduced to turn on interactions. It is a space-time zero-from,
but a one-form in Z-space

S = S,dz® + S5dz
e All the master-fields depend on the following variables

x: the space-time coordinates.

Yo, Yo: Bosonic spinors. Expanding in them gives the higher spin fields.
Collectively denoted Y.

Za, Za: Introduced to turn on interactions in an explicitly gauge-invariant way.
Collectively denoted Z.

¥*: n SUSY parameters satisfying the Clifford algebra {ﬁi, ¥ } = 20% turning every
field into a 2™ component superfield (n = 0 is the bosonic theory).
[Chang,Minwalla,Sharma,Yin}
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/If we combine A = W + S, then the Vasiliev equations can be written in the compact form\
F=dA— AN A= —f, (Bxv)dz* — f, (BxoI')dz°,
dB—-—AxB+ Bx7(A)=0.
This requires the following definitions

e Multiplication is performed using the star product

—>

B(Y,Z)xO(Y, Z) = ®(Y, Z) exp [_eaﬁ(gya 1 5,0) (8,5 — Bas) + c.c.} o, 7).

o f(X) =1+ Xe"X) controls the interactions. I'll assume @ is a constant.
e The Kleiniens v = e*¥", & = %+¥" which satisfy

vrxv =1, vxO(Y,Z)*xv=D(—vY,—vZ),
v+ DY, Z) O (vY,vZ),

I
)_\

*
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7(0a
e The generalized twist operators m and 7 acting by

T (®(Y,Z,dZ)) = ®(—Y, —vZ, —~dZ),
T (®(Y,Z,dZ)) = (vY,vZ,~vdZ)

n(n 1)

\ e The chirality operator I' =4 992 .. 9.
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e The equations of motion are invariant under the gauge transformations
0A =de— [A €], 0B=ec¢xB— B* 7(e) .

where €(Y, Z|x, ) is a zero-form which satisfies the same reality conditions and

truncations as W.
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e The equations of motion are invariant under the gauge transformations
0A =de— [A €], 0B=ec¢xB— B* 7(e) .

where €(Y, Z|z, 1) is a zero-form which satisfies the same reality conditions and

truncations as W.

e In components the e.o.m. are
dW —W N, W =0,
dB—W xB+ Bxm(W)=0,

dSs — [W,S.], =0, dSe — W, Ss], =
Bx7(Sy) + Sa*xB =0, B*7(Sy) — SaxB =0,
Sa xS =2f, (Bxv), Sax S =2f(Bx0I'), [Sa,S4], =0,

and the gauge transformations take the form

W =de—[W,e],, 0B=exB—Bxm(e), 5, =€ S4]

N
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Spin statistics

e We project onto half of the components of all the fields by
WY, Z|z,¥) =TW (=Y, —Z|z,9)T,

B(Y, Z|z,9) =TB(-Y,—Z|z,9)T,
Sa(Y, Z|x,¥) = —T'So (=Y, —Z|z,9),
Sa(Y, Z|z,9) = —T'Ss(-Y, —Z|z, T,

(Y, Z|x,9) =Te(=Y, - Z|z,9)T.

e Using the properties of the kleinians this is

N

lvol', W], = [vol', B], = [vol', €], = {vvl', S},

=0.

e Thus even functions of 9* (bosons) are even functions in Y and Z (even spin).
Odd functions of the 9" (fermions) are odd functions in Y, Z (odd spin).

/
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Reality conditions

e First we define the complex conjugation of the variables
(ya>T — ?ja ’ (ZQ>T = Za& ’ (dZa>T — dzoz ’

e From the definition of the star product we find

(®+0)" = O6f o,

N

(0t ="
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Reality conditions

e First we define the complex conjugation of the variables
(ya)T = Yo 5 (Zoé)T = Za , (dza)T = dZzg , (r&”)T — 9"

e From the definition of the star product we find

(®+«0)" = of o,

e One then defines a second operator 7, which reverses the order of the ¥* and otherwise
acts by
T|®(Y, Z,dZ|x,0) = @Y, —iZ, —idZ|z, T[V]) .

e [t also satisfies
T(®P*x0O)=7(0)*x7(PD),

and
) =r"'=r.
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Reality conditions

e First we define the complex conjugation of the variables
We) =70, (o) =2Zs, (dzo)t=dzs, (@)=0

e From the definition of the star product we find

(®+«0)" = of o,

e One then defines a second operator 7, which reverses the order of the ¥* and otherwise
acts by
T|®(Y, Z,dZ|x,0) = @Y, —iZ, —idZ|z, T[V]) .

e [t also satisfies
T(®P*x0O)=7(0)*x7(PD),

and
T =r"1=r.

We will use the non-minimal reality conditions

T =-W, 7(8)T=-8, 7(B) =9xB*ol'=Tv*Bxv.
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The AdS,; vacuum solution

e We use global coordinates for AdSy (of unit radius)

1
ds® = ggydx’“‘dx” = (14 A7%r?)dt? — T 2,2 dr?® — r?(df* + sin® 0 dyp?) .
e Setting A = 1, we take for the vielbeins
1
R = /1 +r2dt, hl= ——dr, h? =rdf, h3 =rsinfdyp,

V14 1r?

e The connection one-forms are

wo1 = rdt, wizg = V1+1r2do, wiz = V1+r2sinfdy, wag = cosfdy,

with all others zero.
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The AdS,; vacuum solution

e We use global coordinates for AdSy (of unit radius)

1
ds® = ggydx’“‘dx” = (14 A7%r?)dt? — T 2,2 dr?® — r?(df* + sin® 0 dyp?) .
e Setting A = 1, we take for the vielbeins
1
R = /1 +r2dt, hl= ——dr, h? =rdf, h3 =rsinfdyp,

V14 1r?

e The connection one-forms are

wo1 = rdt, wizg = V1+1r2do, wiz = V1+r2sinfdy, wag = cosfdy,

with all others zero.

e The AdS, vacuum solution to the interacting theory is then

1 o — &y —[3 o[
Wy = = (Wozﬁ?/ P +wys5°9° — ﬂhagy y6>,

BO = 0, S() = zadzo‘ -+ deid.

N /
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/Black holes in AdS,

e The simplest black holes in AdS, can be written in the Kerr-Schild form

2M v v 2M 124 d/r.
Juv = 921/ o Tkukvv gt = gOM + Tkuk y kudl‘“ = dt — 142

e One can also construct traceless completely symmetric tensors

2M
qb,ul...us — —k,ul oo kHs c

T

e They satisfy the equations of motion of a massless spin-s field in a AdS background

DMD,UJ¢1/(5) - SDMDV¢5(3_1) — _2<S - 1)<S + 1)¢1/(s)-

N
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/Black holes in AdS, \

e The simplest black holes in AdS, can be written in the Kerr-Schild form

2M v v 2M 124 d/]"
Juv = 921/ o Tkukvv gt = gOM + Tkuk y kudl‘“ = dt — 142

e One can also construct traceless completely symmetric tensors

2M
qb,ul...us — —k,ul oo kHs c

T

e They satisfy the equations of motion of a massless spin-s field in a AdS background
DMD,UJ¢1/(5) - SDMDV¢5(3_1) — _2<S - 1)<S + 1)¢1/(s)-

Lessons:
e A black-hole solution in AdS4 can be written as a one loop perturbation.
e The perturbation is constructed from a vector k.
e k generates an infinite tower of massless higher-spin fields.

e k can be expressed in terms of the killing vector V = \/5(9/ Ot and the associated
Killing two-form kag, k4 ; through
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Nadav Drukker 11-a SUSY higher spin solutions




-

N

The Didenko-Vasiliev solution

e From V (or k) we construct the Killing matrix
\/§Ha5 Vo f
Vo f \/ilidﬁ'

e It satisfies the covariantly constant condition

Kap =

Do (KapY?Y?) =0.

e We normalize it such that
KPKS =55,

~

[Didenko,\/asiliev}
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/ The Didenko-Vasiliev solution \

[Didenko,\/asiliev}

e From V (or k) we construct the Killing matrix
\/iliag Vo f
Vo f \/ilidﬁ'

e It satisfies the covariantly constant condition

Kap =

Do (KapY?Y?) =0.

e We normalize it such that
KPKS =55,

e For the solution we take

B =bFk x6(y), Fy = 4exp (%KABYAYB>.

e This solution has very interesting properties

FK*(S(y):FK*(S(g), FK*FK:FK.
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/ The Didenko-Vasiliev solution \

[Didenko,\/asiliev}

e From V (or k) we construct the Killing matrix
\/iliag Vo f
Vo f \/ilidﬁ'

e It satisfies the covariantly constant condition

Kap =

Do (KapY?Y?) =0.

e We normalize it such that
KPKS =55,

e For the solution we take
B =bFk x6(y), Fy = 4exp (%KABYAYB>.
e This solution has very interesting properties

FK*(S(y):FK*(S(g), FK*FK:FK.

e By virtue of the covariant constancy, it solves the equations of motion

\ dB — Wy B+ B*7(Wp) =0, /
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e By performing the star-product explicitly we obtain
?

_ o B Ty ; v —3
B = - exXp [21%2 (/{aﬁyay | /{aﬁyoﬁy 2,“%01’)/,0 Byay )] .

e We find the components of the generalised higher-spin Weyl tensors

b ilﬁaa ° = b i/‘fdd °
Ca2s) = §l25—2p ( K2 ) ’ Ca(as) = §l25—2p ( K2 )

e This corresponds at the spin two level to a Petrov type-D Weyl tensor, describing a
black hole.

N /
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e By performing the star-product explicitly we obtain
?

4b - '
_ B e - Y 00
B = . eXp [21%2 (liaﬁyay + /i(wyo‘y + 21K Byo‘y )] :

e We find the components of the generalised higher-spin Weyl tensors

b ilﬁaa ° = b i/‘fdd °
Ca2s) = §l25—2p ( K2 ) ’ Ca(as) = §l25—2p ( K2 )

e This corresponds at the spin two level to a Petrov type-D Weyl tensor, describing a
black hole.

e The solution for S is more complicated.
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/ e First we define a reduces set of oscillators \
FK*ZAEFKAA, AAE<aa,C_Ld)EZA+iKABYB, [AA,AB]:4€AB,
such that Z will always appear in this combination with Y .

e The star product of Fix with any function then gives
Fr * ¢(Z|z) = Fx ¢(Alz) .
e Functions of this form define a subalgebra

(Fr¢1) * (Fxd2) = F (¢1 * ¢2),

e with the x-product
(910 62)(4) = [ dhugu(A-+ 20,954 — 20 )e?raV?,

e Here UL 4 =11 iﬁ Up are defined in terms of the projectors

1 .
HUiap =3 (eap T 1KapB) , 0L 70 = .7, I A1 % =

N /
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N

First we define a reduces set of oscillators

FxxZa=FrxAx,  Aa=(00,00) = Za+iKYp,  [Aa, Ap] =4easn,
such that Z will always appear in this combination with Y .
The star product of Fx with any function then gives

Fg x ¢(Z]x) = Fx ¢(Alz).

Functions of this form define a subalgebra
(Fx¢1) * (Fr2) = Fi (91 % ¢2)

with the *-product
(910 62)(4) = [ dhugu(A-+ 20,954 — 20 )e?raV?,

Here UL 4 =11 iﬁ Up are defined in terms of the projectors

1 .
HUiap =3 (eap T 1KapB) , 0L 70 = .7, I A1 % =

In particular
Y_A*FK :FK*Y+A :O,

and
(Fr¢)xYia=(Fr¢)x Fx xY, 4 = 0.
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e For any function ¢(a) holomorphic in a

[aas $(a)], = 20aad(a),  {aa, d(a)}, =2 (aa + ik 0us) ¢(a),

e The *-product possesses Kleinien operators I, K

1 [ iKq |
Fr*0(2) = FKK, K = —exp af jagh :
T | 2K2 ]
_ _ 1 (1K,
Fig*6(Z) = FxK, K= —exp 5 fd a’
K

e They satisfy

SUSY higher spin solutions

Nadav Drukker 15




/ e We take the ansatz

N

W =Wy + Fg [Q(CL|SB) + Q(d‘l‘)} .
B =bFk xd(y),

S :ZQ+FKJQ(G‘$), gd :Ed—FFK&d(C_L‘a?),

/
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/ e We take the ansatz
W =Wy + Fk |Q(alz) + Q(alz)] .

B = bFK *5<y) )
Sa = 2o + Frog(alz), S, = Zs + Fraoga(alz),
e Then in terms of
So = U + 04 (alx), So = Qg + 04 (alz), Q = (cZ— %d/ﬁaﬁaaaaaﬁ) :

with d the standard exterior derivative except that da = da =0

e We find the equations

[sa(alz), sp(alz)], = 2eqp (1 + €bK), [Sa(alz),Sa(alx)], =0,
{K,calalz)}, =0, {sa(alz),K} =0,
QN0 —ON, Q=0, Qe — [2,64], =0,

N

/
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/ e We take the ansatz

N

W =Wy + Fk [Q(a|z) + Q(alz)] .

B = bFK *5(y) .
Sa = 2o + Frog(alz), S, = Zs + Fraoga(alz),
e Then in terms of
So = U + 04 (alx), So = Qg + 04 (alz), Q = (CZ— %dmaﬁaaa8a5> :

with d the standard exterior derivative except that da = da =0

e We find the equations

[sa(alz), sp(alz)], = 2eqp (1 + €bK), [Sa(alz),Sa(alx)], =0,
{K,calalz)}, =0, {sa(alz),K} =0,
QN0 —ON, Q=0, Qe — [2,64], =0,

e To linear order in b one finds

be® ! it K
oo (alx) = W&LBCLB/ dt exp (—ﬂao‘a6> :
0

2 K2

with a new set of projectors

/
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e In fact, this solves the equations to all orders in b with 2 = 0.

e For other choices of Killing vectors, €2 is non-trivial and not known in closed form.

/
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e In fact, this solves the equations to all orders in b with 2 = 0.
e For other choices of Killing vectors, {2 is non-trivial and not known in closed form.

e The solution is then

1
W=Wo=—7 (waﬁy P+ wes7° T — V2R, 5y )

4b i o [ : =
B = —exp [_ﬁ (/ﬁagy yP + K3y gP + ZZ&MUVBy yﬁ)]
O ! it
So = Za + FKe 7'('3;5@5/ dt exp ( M—Ofao‘a6>
r 0 2r
—16 . 1 , .
_ e h Ky o .
Se = Zs + Fk Wzﬁdﬁ'/ dt exp (——25&“@5)
r 0 2r

N
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e In fact, this solves the equations to all orders in b with 2 = 0.
e For other choices of Killing vectors, {2 is non-trivial and not known in closed form.

e The solution is then

1
W=Wo=—7 (waﬁy Y+ we 5797 — V2h,5y°9 )
B—4—beX _L e 5_|_ .—0'4—5._|_22'/€ 2l o =B
— p 972 Raply Y RagY Y oy By Y
e'fp ! 1Ko
So = 2o + Fk Wgﬁag/ dt exp —an‘aﬁ
r 0 2r
B —i@b i 1 itk ., | -
Sé :5a+FK€ Wzﬁdﬁ'/ dt exp (——O;Bao‘aﬁ)
r 0 2r

e This solution is valid for the theory with arbitrary interaction term given by the angle
0o .

N /
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/ Embeddings in the SUSY theory

e We can decompose the fields with the projectors
W=T"W,_+T"W_,

B=T"B, +i"B_, I+ = %
S=Tt8, +T-8_,

e Fach of the & will have even and odd components (in ).

e For the classical solutions the odd components vanish.

e The bosonic part of ®4 is a 277! x 2"~! matrix.

N

/
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/ Embeddings in the SUSY theory \

e We can decompose the fields with the projectors

W=TtW, +T"W_,

B=TTB, +i'"B_, TI*= %
S=Tt8, +T-8_,

e Each of the &, will have even and odd components (in ¥/).

e For the classical solutions the odd components vanish.

e The bosonic part of & is a 277! x 2"~ matrix.

e Projecting the equation for W we find identical equations for the two blocks

TE@dW — WA W) =TEWL —TEWL A, TEWL = TF (dWy — Wi A, Wa).

e Likewise for the flatness equation for B.

e The equations for S has an explicit I', which complicates things
Sta xS} =2f (B *v) , Sia*ST =2f (B %), [Sta,Sialx =0,
S_ox8* =2f, (iB_xv), S_gxS%=2f(—iB_x0), [S_a,5 4]lx=0.

N /
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/ Embeddings in the SUSY theory \

e We can decompose the fields with the projectors

W=TtW, +T"W_,

B=TTB, +i'"B_, TI*= %
S=Tt8, +T-8_,

e Each of the &, will have even and odd components (in ¥/).

e For the classical solutions the odd components vanish.

e The bosonic part of & is a 277! x 2"~ matrix.

e Projecting the equation for W we find identical equations for the two blocks

TE@dW — WA W) =TEWL —TEWL A, TEWL = TF (dWy — Wi A, Wa).

e Likewise for the flatness equation for B.

e The equations for S has an explicit I', which complicates things

Sta* 8¢ =2f, (Bt *v), Sia* 8% = 2f(By % 9), [Stas Stals =0,
S_oxS* =2f, (iB_xv), S_4xS5%=2f(—iB_x7), [S_0,S_a]s =0.
\ e The equation for S_,S_ is the same as for the theory with 6 — 6 + 7 /2. /
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/ e We take the following embeddings of the DV solution

N

WY, Zlx) =W,,
Y, Z|x) = zo + s[onKaa(a, Klz) + nmnF_gos(a, —K]x)] :
)

Sal

Sa(Y, Z|z) = Za + 8[npFr 64(a, K|7) + nn F-k 04 (a, —K|z)] ,
where b, s are even matrices.

e We allowed two different solutions with the Killing matrix K replaced by — K.

e 1), and 7, are orthogonal projectors, such that these two solutions don’t interact.

/
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/ e We take the following embeddings of the DV solution \
W(Y, Z|x) = Wo,
B(Y, Z|z) =bnyFx + nmF_k|*xd(y),
Sa(Y,Z|x) = 2o + s [onKaa(a, Klz) + nmnF_gos(a, —K]x)] :
Sa(Y, Z|z) = Za + 8[npFr 64(a, K|7) + nn F-k 04 (a, —K|z)] ,
where b, s are even matrices.
e We allowed two different solutions with the Killing matrix K replaced by — K.
e 1), and 7, are orthogonal projectors, such that these two solutions don’t interact.

e In a diagonal basis
b = b_|_ —|— Zb_ ,
S = 6i908+ _|_ 6i(90—|—7‘(‘/2)8_ :

- )

e The equations of motion then impose

S+ = by, bs = sb, s

Va]
I

W

»

e The reality conditions are

b =by, st=3.

N /
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SUSY invariance, bulk

e Symmetries are given by trivial gauge transformations
de — [Woy, €], = 0.
e Taking an odd gauge parameter
e(Y|z,9) = Bo(z, 9)y® + iZ4(x, Y™,

e The equation for the connection reduces to the Killing spinor equation

(1]

i i
\Y/ = (d— —wepY® + —=hy7* =0,
( 2! +ﬂ 7)

[1]

N /
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SUSY invariance, bulk \

e Symmetries are given by trivial gauge transformations

de — [Woy, €], = 0.
e Taking an odd gauge parameter
e(Y|z,9) = Ba(z,9)y* +iZ4 (2, 9)7*

e The equation for the connection reduces to the Killing spinor equation

(1]

~

i i
\Y/ = (d— —wepY® + —=hy7* =0,
( 2! +ﬂ 7)

—
L
b

(1]

[1]

e The general solution is given by the four Killing spinors of AdSy: ! = Lly® + ixiy®
Y|z, 9) =" (Y|2)e' (¢), I1=1,2,1,2.
e The reality condition imposes (with ¢ = 1,2)
i\ T i
(&) =¢",
\ The parameters ¢ are also 271 x 27~ constant matrices.

Nadav Drukker 20-a

SUSY higher spin solutions




-

N

e The gauge invariance of B and S imposes
P! x BEb — Bxm(y!)be! =0,
Pl x Sels — S*ypl sl =0.

/
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e The gauge invariance of B and S imposes
P! x BEb — Bxm(y!)be! =0,
Pl x Sels — S*ypl sl =0.

e Both B and S are proportional to F'x, which acts as a projector on Y

1

(TT_°Yp) x Fx = Fe (I, ,°Y5) =0, Iiap = > (eap £iKaB)

e Since K zp is a bilinear in the AdS, Killing spinors, it projects the four Killing spinors

onto a two-dimensional subspace

Wik Fx = Fg x' =0, Fr x ' = 2Fk9)"

Wk Fie = 200" Fie .

/
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N

The gauge invariance of B and S imposes
P! x BEb — Bxm(y!)be! =0,
Pl x Sels — S*ypl sl =0.

Both B and S are proportional to F'x, which acts as a projector on Y

1 .
(TT_°Yp) x Fx = Fe (I, ,°Y5) =0, Iiap = > (eap £iKaB)

Since K 4p is a bilinear in the AdS, Killing spinors, it projects the four Killing spinors

onto a two-dimensional subspace

W xFre = Fe ' =0,  Frxo' =2Fy’, o« Fx = 2 Fic.
With our ansatz for the matrix structure of B and S we get the equations for b, 7,
and 1,
P F_ g€ Nmb + ' Fr&'npb — Fr'npbe® — F_gp'nmbg* = 0.
This equation is satisfied if

ENmb = npbE" = 0.

This is a simple matrix equation.

/
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e Let me consider the case of the theory with n = 4.

/
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e Let me consider the case of the theory with n = 4.

e The simplest choice of n’s is

n, = diag(1,1,0,0),

e It preserves the supserymmetries

[0 0 0 0)
.10 0 0 0
G :
x x 0 0
\**OO/

Nm = diag(0,0,1,1),

e These are half of the SUSY generators (since £ is odd).

N
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e The simplest choice of n’s is

n, = diag(1,1,0,0),

e It preserves the supserymmetries

-

e Let me consider the case of the theory with n = 4.

Nm = diag(0,0,1,1),

0
0
0 ;
0

e These are half of the SUSY generators (since £ is odd).

e Another choice is

n, = diag(1,0,1,0),

e This is 1/4 BPS.

N

(00 0 0)
: : 0 0 x O
nm = diag(0,1,0,1), £ =
00 0 0
\* 0 0 0/

/
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3/8 BPS conficuration:

n, = diag(1,0,0,0),

Another 1/2 BPS cases:

n, = diag(1,0,0,0),

A 5/8-BPS case:

n, = diag(1,0,0,0),

And the 3/4 case:

n, = diag(1,0,0,0),

If b is not full rank, we can preserve more SUSY.

nm = diag(0,1,0,1),

nm = diag(0,1,0,0),

nm = diag(0,0,0,1),

nm = diag(0,0,0,0),

¢ =

gi_

gi_

VRN
% ¥ OO
cococo
ocococo
~__

OO *x O

* ¥ OO
[evlenlen)en)
OO *x O

QO *x O
N—

N\
* * OO
¥ ¥ OO
cococo
N~

OO * O

VR
% ¥ OO
% * OO
cox o
~

OO *x O

/
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SUSY invariance, boundary

e The theory has massless fields and we need to choose boundary conditions for the

scalar, fermions and vector fields.

e For a scalar in AdSy11

Ag = 5
e The field in the bulk has fall-off
a b
C(r,x) = A + Ay +

e The holographic dual depends of the choice of boundary conditions.

N /
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SUSY invariance, boundary

N

e The theory has massless fields and we need to choose boundary conditions for the

scalar, fermions and vector fields.

For a scalar in AdSg1

Ay = 5
The field in the bulk has fall-off
a b
C _
(r,x) A +7“A++

The holographic dual depends of the choice of boundary conditions.

The general fall-off of B takes the form (for the scalar m? = —2)
1 < 1 5 1
BO _ = (F+ cosy + I~ sinfy) i+ = (F_ cosy + il sinfy) fo + O<—3),
r r r
LT o —iB G | Gf 1

Different theories will have different conditions on fl,g, F and F.

~

/
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e All our solutions are based on the DV solution with asymptotics
B="_% _ = e — KaB o B MaB _a_p 0 %
=~ 0(0p + m) = —5 0(p = 1m) { ——y%y" + =597 | + O(Y7).

e In particular there is no 1/ r2, component, S0 fg = 0.

e We can invert the equation ( f= f1)

4b(np + M) = (LT cosy + 0~ siny) f

N /
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N =2 with SU(2) flavor symmetry

N

e Let us consider a theory with n = 4 and the boundary conditions

5:7:607

[0, f] =0.

e The symmetry among 92, 92 and 9* will be an SU(2) flavor symmetry of the

boundary theory.

e Two supersymmetries generated by 9! and I'Y! are preserved.

/
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N =2 with SU(2) flavor symmetry

e Let us consider a theory with n = 4 and the boundary conditions
5:7:807 [191,]2;}:0.
e The symmetry among 92, 92 and 9* will be an SU(2) flavor symmetry of the
boundary theory.
e Two supersymmetries generated by 9! and I'Y! are preserved.
e We need to solve
ENmb = 1pbE* = 0.
o If & =T"Y! then 7, is an eigenstate of I'~ while 7, is an eigenstate of I'".

e &' can only be either of 9!, but not a linear combination.

N
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N =2 with SU(2) flavor symmetry

N

Let us consider a theory with n = 4 and the boundary conditions
B=y=6, [9f]=0.
The symmetry among 92, 93 and 94 will be an SU(2) flavor symmetry of the
boundary theory.
Two supersymmetries generated by ¥! and I'9! are preserved.
We need to solve
ENmb = 1pbE* = 0.
If & =T, then 7, is an eigenstate of I~ while 7, is an eigenstate of T'".

¢% can only be either of TT9!, but not a linear combination.

One can check that I'"9! can be embedded in £ = (

* ¥ OO
* ¥ OO
OO0
OO O

), but none of the other
examples, so 7, = diag(1,1,0,0) and 7, = diag(0,0,1,1).

Lastly we see that b, and b_ are proportional to each other. Giving a two parameter

family of 1/2 BPS solutions.
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N =2 with U(1) x U(1) flavor symmetry

e Another theory with n = 4 has boundary conditions that leave two supersymmetries
and a U(1) x U(1) flavor symmetry.

e The boundary conditions are
B =10, v = 0P 9394, f € span {1, 9394, 939t 9392, 9o, 194192} :
where P; g3+ projects onto the subspace spanned by 1, 9394,

e it has a a symmetry between {1,2} and {3,4}.
e The SUSYs are generated by 9! and 2.

N /
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N =2 with U(1) x U(1) flavor symmetry

N

e Another theory with n = 4 has boundary conditions that leave two supersymmetries
and a U(1) x U(1) flavor symmetry.

e The boundary conditions are
B =10, v = 0P 9394, f € span {1, 9394, 939t 9392, 9o, 194192} :
where P; g3+ projects onto the subspace spanned by 1, 9394,

e it has a a symmetry between {1,2} and {3,4}.
e The SUSYs are generated by 9! and 2.

, 0000
e These SUSYs are compatible with & = (8 8 0 8
* 000

e This is consistent with 7, = diag(1,0, 1,0) and 7,, = diag(0,1,0,1).

~

/
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N =2 with U(1) x U(1) flavor symmetry

N

e Another theory with n = 4 has boundary conditions that leave two supersymmetries
and a U(1) x U(1) flavor symmetry.

e The boundary conditions are
B =10, v = 0P 9394, f € span {1, 9394, 939t 9392, 9o, 194192} :
where P; g3+ projects onto the subspace spanned by 1, 9394,

e it has a a symmetry between {1,2} and {3,4}.
e The SUSYs are generated by 9! and 2.

e These SUSYs are compatible with £ = (

* QOO
[e]e]e)en}

)

e This is consistent with 7, = diag(1,0, 1,0) and 7,, = diag(0,1,0,1).

OO O

0
*
0
0

e Again b, and b_ will have to be proportional to each other, and we find a two
parameter family of 1/2 BPS solutions.

~
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Summary

e We simplified the DV solution: W = W.

e We showed how to embed the DV solution into a several examples of SUSY higher
spin theories.

e Non-trivial conditions for preserving bulk SUSY and preserving those not broken by
boundary conditions.

e This can be done in other examples as well, including the theory conjectured to be
dual to a certain limit of ABJ theory.

e Also developed the formalism for embedding more general soluitons.
e This can be applied also to theories with Chan-Paton factors.

e Allows to implement and test ideas in higher spin holography in a SUSY setting.

N /
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Summary

e We simplified the DV solution: W = W.

e We showed how to embed the DV solution into a several examples of SUSY higher
spin theories.

e Non-trivial conditions for preserving bulk SUSY and preserving those not broken by
boundary conditions.

e This can be done in other examples as well, including the theory conjectured to be
dual to a certain limit of ABJ theory.

e Also developed the formalism for embedding more general soluitons.
e This can be applied also to theories with Chan-Paton factors.
e Allows to implement and test ideas in higher spin holography in a SUSY setting.

e Still missing a proper understanding of these solutions. . .
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The end
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