# On Classical Solutions of $4 d$ Supersymmetric Higher Spin Theory 

Nadav Drukker
K ING'S
College
$\underline{\underline{\text { LONDON }}}$

Based on: arXiv:1411.7037- J. Bourdier and N.D.

Holography, Strings and Higher Spins
Swansea University
March 19, 2015.

## Introduction and motivation

- In this talk I will study classical solutions of higher spin theories.
- It is useful to recall the significance of classical solutions in gravity and supergravity, especially in the context of the $A d S /$ CFT correspondence.


## Introduction and motivation

- In this talk I will study classical solutions of higher spin theories.
- It is useful to recall the significance of classical solutions in gravity and supergravity, especially in the context of the $A d S /$ CFT correspondence.


## Solutions of (super)gravity

- Black holes with all their properties: Horizon, temperature, entropy...
- They may be black branes, so similar to black holes, but of different dimensionality.
- If there are extra charges, the solutions can be extremal. And with SUSY they can be BPS. They can indicate the existence of solitonic objects in the theory, like D-branes.


## Introduction and motivation

- In this talk I will study classical solutions of higher spin theories.
- It is useful to recall the significance of classical solutions in gravity and supergravity, especially in the context of the $A d S / C F T$ correspondence.


## Solutions of (super)gravity

- Black holes with all their properties: Horizon, temperature, entropy...
- They may be black branes, so similar to black holes, but of different dimensionality.
- If there are extra charges, the solutions can be extremal. And with SUSY they can be BPS. They can indicate the existence of solitonic objects in the theory, like D-branes.


## Holographically

- They can describe a thermal state.
- They can describe a pure state ("bubbling solutions").
- Should be able to perform calculations in those backgrounds instead of the usual $A d S$ vacuum.


## Higher spin theory

- We will work with the case of a 4 d bulk theory.
- Rather complicated interacting theory of fields of arbitrary integer spin (brief review to come).
- May also include half integer spins.
- Can be consistently defined in asymptotically $A d S_{4}$ space (but not flat space).


## Higher spin theory

- We will work with the case of a 4 d bulk theory.
- Rather complicated interacting theory of fields of arbitrary integer spin (brief review to come).
- May also include half integer spins.
- Can be consistently defined in asymptotically $A d S_{4}$ space (but not flat space).
- Holographically dual to 3d vector models (possibly coupled to Chern-Simons). [Sezgin,Sundell][Klebanov,Polyakov $]$
- It is known how to calculate correlation functions in the $A d S_{4}$ vacuum and match to field theory correlation functions.

$$
[\text { Giombi, Yin }][\ldots]
$$

## Higher spin theory

- We will work with the case of a 4 d bulk theory.
- Rather complicated interacting theory of fields of arbitrary integer spin (brief review to come).
- May also include half integer spins.
- Can be consistently defined in asymptotically $A d S_{4}$ space (but not flat space).
- Holographically dual to 3d vector models (possibly coupled to Chern-Simons). [Sezgin,Sundell][Klebanov,Polyakov $]$
- It is known how to calculate correlation functions in the $A d S_{4}$ vacuum and match to field theory correlation functions.

$$
[\text { Giombi,Yin }][\ldots]
$$

- How would one describe thermal states. Or other ensambles?
- Is the theory complete, or are there more degrees of freedom? Extended objects?
- ...


## Outline

- Introduction and motivation
- Lightning review of Vasiliev theory
- The Didenko-Vasiliev solution
- Embedding in SUSY theories
- Preserved SUSYs
- Bulk
- Boundary
- Summary


## Review of (SUSY) Vasiliev theory

- The theory is defined by the equations of motion of the three master fields
$W$ : The higher-spin connection, which is a space-time one-form. It containing the massless higher-spin gauge fields of $\operatorname{spin} s \geq 2$, as well as auxiliary fields.
$B$ : A space-time zero-form, which contains the curvature of the fields, such as the Weyl tensor and its higher-spin generalisation, as well as the massive scalar, massless fermion and Maxwell field.
$S$ : is an auxiliary field introduced to turn on interactions. It is a space-time zero-from, but a one-form in $Z$-space

$$
S=S_{\alpha} d z^{\alpha}+\bar{S}_{\dot{\alpha}} d \bar{z}^{\dot{\alpha}}
$$

## Review of (SUSY) Vasiliev theory

- The theory is defined by the equations of motion of the three master fields
$W$ : The higher-spin connection, which is a space-time one-form. It containing the massless higher-spin gauge fields of $\operatorname{spin} s \geq 2$, as well as auxiliary fields.
$B$ : A space-time zero-form, which contains the curvature of the fields, such as the Weyl tensor and its higher-spin generalisation, as well as the massive scalar, massless fermion and Maxwell field.
$S$ : is an auxiliary field introduced to turn on interactions. It is a space-time zero-from, but a one-form in $Z$-space

$$
S=S_{\alpha} d z^{\alpha}+\bar{S}_{\dot{\alpha}} d \bar{z}^{\dot{\alpha}}
$$

- All the master-fields depend on the following variables
$x$ : the space-time coordinates.
$y_{\alpha}, \bar{y}_{\dot{\alpha}}$ : Bosonic spinors. Expanding in them gives the higher spin fields.
Collectively denoted $Y$.
$z_{\alpha}, \bar{z}_{\dot{\alpha}}$ : Introduced to turn on interactions in an explicitly gauge-invariant way. Collectively denoted $Z$.
$\vartheta^{i}$ : $n$ SUSY parameters satisfying the Clifford algebra $\left\{\vartheta^{i}, \vartheta^{j}\right\}=2 \delta^{i j}$ turning every field into a $2^{n}$ component superfield ( $n=0$ is the bosonic theory).
[Chang,Minwalla,Sharma, Yin]

If we combine $\mathcal{A}=W+S$, then the Vasiliev equations can be written in the compact form

$$
\begin{aligned}
& \mathcal{F} \equiv d \mathcal{A}-\mathcal{A} \wedge_{\star} \mathcal{A}=-f_{\star}(B \star v) d z^{2}-\bar{f}_{\star}(B \star \bar{v} \Gamma) d \bar{z}^{2} \\
& d B-\mathcal{A} \star B+B \star \pi(\mathcal{A})=0
\end{aligned}
$$

This requires the following definitions

- Multiplication is performed using the star product

$$
\Phi(Y, Z) \star \Theta(Y, Z)=\Phi(Y, Z) \exp \left[-\epsilon^{\alpha \beta}\left(\overleftarrow{\partial}_{y^{\alpha}}+\overleftarrow{\partial}_{z^{\alpha}}\right)\left(\vec{\partial}_{y^{\beta}}-\vec{\partial}_{z^{\beta}}\right)+\text { c.c. }\right] \Theta(Y, Z)
$$

- $f(X)=1+X e^{i \theta(X)}$ controls the interactions. I'll assume $\theta$ is a constant.
- The Kleiniens $v=e^{z_{\alpha} y^{\alpha}}, \bar{v}=e^{\overline{z_{\alpha}} \bar{y}^{\dot{\alpha}}}$ which satisfy

$$
\begin{aligned}
v \star v & =1, & & v \star \Phi(Y, Z) \star v=\Phi(-\gamma Y,-\gamma Z), \\
\bar{v} \star \bar{v} & =1, & & \bar{v} \star \Phi(Y, Z) \star \bar{v}=\Phi(\gamma Y, \gamma Z), \\
\gamma\left(\circ_{\alpha}\right) & =\circ_{\alpha}, & & \gamma\left(\bar{o}_{\dot{\alpha}}\right)=-\bar{o}_{\dot{\alpha}}
\end{aligned}
$$

- The generalized twist operators $\pi$ and $\bar{\pi}$ acting by

$$
\begin{aligned}
& \pi(\Phi(Y, Z, d Z))=\Phi(-\gamma Y,-\gamma Z,-\gamma d Z) \\
& \bar{\pi}(\Phi(Y, Z, d Z))=\Phi(\gamma Y, \gamma Z, \gamma d Z)
\end{aligned}
$$

- The chirality operator $\Gamma=i^{\frac{n(n-1)}{2}} \vartheta^{1} \vartheta^{2} \ldots \vartheta^{n}$.
- The equations of motion are invariant under the gauge transformations

$$
\delta \mathcal{A}=d \epsilon-[\mathcal{A}, \epsilon]_{\star}, \quad \delta B=\epsilon \star B-B \star \pi(\epsilon) .
$$

where $\epsilon(Y, Z \mid x, \vartheta)$ is a zero-form which satisfies the same reality conditions and truncations as $W$.

- The equations of motion are invariant under the gauge transformations

$$
\delta \mathcal{A}=d \epsilon-[\mathcal{A}, \epsilon]_{\star}, \quad \delta B=\epsilon \star B-B \star \pi(\epsilon) .
$$

where $\epsilon(Y, Z \mid x, \vartheta)$ is a zero-form which satisfies the same reality conditions and truncations as $W$.

- In components the e.o.m. are

$$
\begin{aligned}
& d W-W \wedge_{\star} W=0 \\
& d B-W \star B+B \star \pi(W)=0, \\
& d S_{\alpha}-\left[W, S_{\alpha}\right]_{\star}=0, \\
& B \star \pi\left(S_{\alpha}\right)+S_{\alpha \star} B=0, \quad B \star \pi\left(\bar{S}_{\dot{\alpha}}-\left[W, \bar{S}_{\dot{\alpha}}\right]_{\star}=0, \bar{S}_{\dot{\alpha}} \star B=0,\right. \\
& S_{\alpha \star} S^{\alpha}=2 f_{\star}(B \star v), \quad \bar{S}_{\dot{\alpha} \star} \star \bar{S}^{\dot{\alpha}}=2 \bar{f}_{\star}(B \star \bar{v} \Gamma), \quad\left[S_{\alpha}, \bar{S}_{\dot{\alpha}}\right]_{\star}=0,
\end{aligned}
$$

and the gauge transformations take the form

$$
\delta W=d \epsilon-[W, \epsilon]_{\star}, \quad \delta B=\epsilon \star B-B \star \pi(\epsilon), \quad \delta S_{\alpha}=\left[\epsilon, S_{\alpha}\right]_{\star}, \quad \delta \bar{S}_{\dot{\alpha}}=\left[\epsilon, \bar{S}_{\dot{\alpha}}\right]_{\star} .
$$

## Spin statistics

- We project onto half of the components of all the fields by

$$
\begin{aligned}
W(Y, Z \mid x, \vartheta) & =\Gamma W(-Y,-Z \mid x, \vartheta) \Gamma \\
B(Y, Z \mid x, \vartheta) & =\Gamma B(-Y,-Z \mid x, \vartheta) \Gamma \\
S_{\alpha}(Y, Z \mid x, \vartheta) & =-\Gamma S_{\alpha}(-Y,-Z \mid x, \vartheta) \Gamma \\
\bar{S}_{\dot{\alpha}}(Y, Z \mid x, \vartheta) & =-\Gamma \bar{S}_{\dot{\alpha}}(-Y,-Z \mid x, \vartheta) \Gamma \\
\epsilon(Y, Z \mid x, \vartheta) & =\Gamma \epsilon(-Y,-Z \mid x, \vartheta) \Gamma .
\end{aligned}
$$

- Using the properties of the kleinians this is

$$
[v \bar{v} \Gamma, W]_{\star}=[v \bar{v} \Gamma, B]_{\star}=[v \bar{v} \Gamma, \epsilon]_{\star}=\{v \bar{v} \Gamma, S\}_{\star}=0 .
$$

- Thus even functions of $\vartheta^{i}$ (bosons) are even functions in $Y$ and $Z$ (even spin).

Odd functions of the $\vartheta^{i}$ (fermions) are odd functions in $Y, Z$ (odd spin).

## Reality conditions

- First we define the complex conjugation of the variables

$$
\left(y_{\alpha}\right)^{\dagger}=\bar{y}_{\dot{\alpha}}, \quad\left(z_{\alpha}\right)^{\dagger}=\bar{z}_{\dot{\alpha}}, \quad\left(d z_{\alpha}\right)^{\dagger}=d \bar{z}_{\dot{\alpha}}, \quad\left(\vartheta^{i}\right)^{\dagger}=\vartheta^{i}
$$

- From the definition of the star product we find

$$
(\Phi \star \Theta)^{\dagger}=\Theta^{\dagger} \star \Phi^{\dagger}
$$

## Reality conditions

- First we define the complex conjugation of the variables

$$
\left(y_{\alpha}\right)^{\dagger}=\bar{y}_{\dot{\alpha}}, \quad\left(z_{\alpha}\right)^{\dagger}=\bar{z}_{\dot{\alpha}}, \quad\left(d z_{\alpha}\right)^{\dagger}=d \bar{z}_{\dot{\alpha}}, \quad\left(\vartheta^{i}\right)^{\dagger}=\vartheta^{i}
$$

- From the definition of the star product we find

$$
(\Phi \star \Theta)^{\dagger}=\Theta^{\dagger} \star \Phi^{\dagger}
$$

- One then defines a second operator $\tau$, which reverses the order of the $\vartheta^{i}$ and otherwise acts by

$$
\tau[\Phi(Y, Z, d Z \mid x, \vartheta)]=\Phi(i Y,-i Z,-i d Z \mid x, \tau[\vartheta])
$$

- It also satisfies

$$
\tau(\Phi \star \Theta)=\tau(\Theta) \star \tau(\Phi)
$$

and

$$
\tau(\Gamma)^{\dagger}=\Gamma^{-1}=\Gamma
$$

## Reality conditions

- First we define the complex conjugation of the variables

$$
\left(y_{\alpha}\right)^{\dagger}=\bar{y}_{\dot{\alpha}}, \quad\left(z_{\alpha}\right)^{\dagger}=\bar{z}_{\dot{\alpha}}, \quad\left(d z_{\alpha}\right)^{\dagger}=d \bar{z}_{\dot{\alpha}}, \quad\left(\vartheta^{i}\right)^{\dagger}=\vartheta^{i}
$$

- From the definition of the star product we find

$$
(\Phi \star \Theta)^{\dagger}=\Theta^{\dagger} \star \Phi^{\dagger}
$$

- One then defines a second operator $\tau$, which reverses the order of the $\vartheta^{i}$ and otherwise acts by

$$
\tau[\Phi(Y, Z, d Z \mid x, \vartheta)]=\Phi(i Y,-i Z,-i d Z \mid x, \tau[\vartheta])
$$

- It also satisfies

$$
\tau(\Phi \star \Theta)=\tau(\Theta) \star \tau(\Phi)
$$

and

$$
\tau(\Gamma)^{\dagger}=\Gamma^{-1}=\Gamma
$$

We will use the non-minimal reality conditions

$$
\tau(W)^{\dagger}=-W, \quad \tau(S)^{\dagger}=-S, \quad \tau(B)^{\dagger}=\bar{v} \star B \star \bar{v} \Gamma=\Gamma v \star B \star v
$$

## The $A d S_{4}$ vacuum solution

- We use global coordinates for $A d S_{4}$ (of unit radius)

$$
d s^{2}=g_{\mu \nu}^{0} d x^{\mu} d x^{\nu} \equiv\left(1+\lambda^{-2} r^{2}\right) d t^{2}-\frac{1}{1+\lambda^{-2} r^{2}} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- Setting $\lambda=1$, we take for the vielbeins

$$
h^{0}=\sqrt{1+r^{2}} d t, \quad h^{1}=\frac{1}{\sqrt{1+r^{2}}} d r, \quad h^{2}=r d \theta, \quad h^{3}=r \sin \theta d \varphi,
$$

- The connection one-forms are

$$
\omega_{01}=r d t, \quad \omega_{12}=\sqrt{1+r^{2}} d \theta, \quad \omega_{13}=\sqrt{1+r^{2}} \sin \theta d \varphi, \quad \omega_{23}=\cos \theta d \varphi
$$

with all others zero.

## The $A d S_{4}$ vacuum solution

- We use global coordinates for $A d S_{4}$ (of unit radius)

$$
d s^{2}=g_{\mu \nu}^{0} d x^{\mu} d x^{\nu} \equiv\left(1+\lambda^{-2} r^{2}\right) d t^{2}-\frac{1}{1+\lambda^{-2} r^{2}} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- Setting $\lambda=1$, we take for the vielbeins

$$
h^{0}=\sqrt{1+r^{2}} d t, \quad h^{1}=\frac{1}{\sqrt{1+r^{2}}} d r, \quad h^{2}=r d \theta, \quad h^{3}=r \sin \theta d \varphi
$$

- The connection one-forms are

$$
\omega_{01}=r d t, \quad \omega_{12}=\sqrt{1+r^{2}} d \theta, \quad \omega_{13}=\sqrt{1+r^{2}} \sin \theta d \varphi, \quad \omega_{23}=\cos \theta d \varphi
$$

with all others zero.

- The $A d S_{4}$ vacuum solution to the interacting theory is then

$$
\begin{aligned}
W_{0} & =-\frac{1}{4}\left(\omega_{\alpha \beta} y^{\alpha} y^{\beta}+\omega_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}-\sqrt{2} h_{\alpha \dot{\beta}} y^{\alpha} \bar{y}^{\dot{\beta}}\right), \\
B_{0} & =0, \quad S_{0}=z_{\alpha} d z^{\alpha}+\bar{z}_{\dot{\alpha}} d \bar{z}^{\dot{\alpha}} .
\end{aligned}
$$

## Black holes in $A d S_{4}$

- The simplest black holes in $A d S_{4}$ can be written in the Kerr-Schild form

$$
g_{\mu \nu}=g_{\mu \nu}^{0}-\frac{2 M}{r} k_{\mu} k_{\nu}, \quad g^{\mu \nu}=g^{0 \mu \nu}+\frac{2 M}{r} k^{\mu} k^{\nu}, \quad k_{\mu} d x^{\mu}=d t-\frac{d r}{1+r^{2}} .
$$

- One can also construct traceless completely symmetric tensors

$$
\phi_{\mu_{1} \ldots \mu_{s}}=\frac{2 M}{r} k_{\mu_{1}} \ldots k_{\mu_{s}} .
$$

- They satisfy the equations of motion of a massless spin- $s$ field in a $A d S$ background

$$
D^{\mu} D_{\mu} \phi_{\nu(s)}-s D_{\mu} D_{\nu} \phi_{\nu(s-1)}^{\mu}=-2(s-1)(s+1) \phi_{\nu(s)} .
$$

## Black holes in $A d S_{4}$

- The simplest black holes in $A d S_{4}$ can be written in the Kerr-Schild form

$$
g_{\mu \nu}=g_{\mu \nu}^{0}-\frac{2 M}{r} k_{\mu} k_{\nu}, \quad g^{\mu \nu}=g^{0 \mu \nu}+\frac{2 M}{r} k^{\mu} k^{\nu}, \quad k_{\mu} d x^{\mu}=d t-\frac{d r}{1+r^{2}} .
$$

- One can also construct traceless completely symmetric tensors

$$
\phi_{\mu_{1} \ldots \mu_{s}}=\frac{2 M}{r} k_{\mu_{1}} \ldots k_{\mu_{s}} .
$$

- They satisfy the equations of motion of a massless spin- $s$ field in a $A d S$ background

$$
D^{\mu} D_{\mu} \phi_{\nu(s)}-s D_{\mu} D_{\nu} \phi_{\nu(s-1)}^{\mu}=-2(s-1)(s+1) \phi_{\nu(s)} .
$$

Lessons:

- A black-hole solution in $A d S_{4}$ can be written as a one loop perturbation.
- The perturbation is constructed from a vector $k$.
- $k$ generates an infinite tower of massless higher-spin fields.
- $k$ can be expressed in terms of the killing vector $V=\sqrt{2} \partial / \partial t$ and the associated Killing two-form $\kappa_{\alpha \beta}, \kappa_{\dot{\alpha} \dot{\beta}}$ through

$$
k_{\alpha \dot{\alpha}}=\frac{1}{1+r^{2}}\left(v_{\alpha \dot{\alpha}}-\frac{\kappa_{\alpha}^{\beta} v_{\beta \dot{\alpha}}}{r}\right) .
$$

## The Didenko-Vasiliev solution

- From $V$ (or $k$ ) we construct the Killing matrix

$$
K_{A B}=\left(\begin{array}{cc}
\sqrt{2} \kappa_{\alpha \beta} & v_{\alpha \dot{\beta}} \\
v_{\alpha \dot{\beta}} & \sqrt{2} \kappa_{\dot{\alpha} \dot{\beta}}
\end{array}\right)
$$

- It satisfies the covariantly constant condition

$$
D_{0}\left(K_{A B} Y^{A} Y^{B}\right)=0
$$

- We normalize it such that

$$
K_{A}{ }^{B} K_{B}^{C}=-\delta_{A}^{C},
$$

## The Didenko-Vasiliev solution

- From $V$ (or $k$ ) we construct the Killing matrix

$$
K_{A B}=\left(\begin{array}{cc}
\sqrt{2} \kappa_{\alpha \beta} & v_{\alpha \dot{\beta}} \\
v_{\alpha \dot{\beta}} & \sqrt{2} \kappa_{\dot{\alpha} \dot{\beta}}
\end{array}\right)
$$

- It satisfies the covariantly constant condition

$$
D_{0}\left(K_{A B} Y^{A} Y^{B}\right)=0
$$

- We normalize it such that

$$
K_{A}{ }^{B} K_{B}^{C}=-\delta_{A}^{C},
$$

- For the solution we take

$$
B=b F_{K} \star \delta(y), \quad F_{K} \equiv 4 \exp \left(\frac{i}{2} K_{A B} Y^{A} Y^{B}\right)
$$

- This solution has very interesting properties

$$
F_{K} \star \delta(y)=F_{K} \star \delta(\bar{y}), \quad F_{K} \star F_{K}=F_{K}
$$

## The Didenko-Vasiliev solution

- From $V$ (or $k$ ) we construct the Killing matrix

$$
K_{A B}=\left(\begin{array}{cc}
\sqrt{2} \kappa_{\alpha \beta} & v_{\alpha \dot{\beta}} \\
v_{\alpha \dot{\beta}} & \sqrt{2} \kappa_{\dot{\alpha} \dot{\beta}}
\end{array}\right)
$$

- It satisfies the covariantly constant condition

$$
D_{0}\left(K_{A B} Y^{A} Y^{B}\right)=0
$$

- We normalize it such that

$$
K_{A}^{B} K_{B}^{C}=-\delta_{A}^{C},
$$

- For the solution we take

$$
B=b F_{K} \star \delta(y), \quad F_{K} \equiv 4 \exp \left(\frac{i}{2} K_{A B} Y^{A} Y^{B}\right)
$$

- This solution has very interesting properties

$$
F_{K} \star \delta(y)=F_{K} \star \delta(\bar{y}), \quad F_{K} \star F_{K}=F_{K}
$$

- By virtue of the covariant constancy, it solves the equations of motion

$$
d B-W_{0} \star B+B \star \pi\left(W_{0}\right)=0
$$

- By performing the star-product explicitly we obtain

$$
B=\frac{4 b}{r} \exp \left[\frac{i}{2 \kappa^{2}}\left(\kappa_{\alpha \beta} y^{\alpha} y^{\beta}+\kappa_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}+2 i \kappa_{\alpha \gamma} v_{\dot{\beta}}^{\gamma} y^{\alpha} \bar{y}^{\dot{\beta}}\right)\right] .
$$

- We find the components of the generalised higher-spin Weyl tensors

$$
C_{\alpha(2 s)}=\frac{b}{s!2^{s-2} r}\left(\frac{i \kappa_{\alpha \alpha}}{\kappa^{2}}\right)^{s}, \quad \bar{C}_{\dot{\alpha}(2 s)}=\frac{b}{s!2^{s-2} r}\left(\frac{i \kappa_{\dot{\alpha} \dot{\alpha}}}{\kappa^{2}}\right)^{s}
$$

- This corresponds at the spin two level to a Petrov type-D Weyl tensor, describing a black hole.
- By performing the star-product explicitly we obtain

$$
B=\frac{4 b}{r} \exp \left[\frac{i}{2 \kappa^{2}}\left(\kappa_{\alpha \beta} y^{\alpha} y^{\beta}+\kappa_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}+2 i \kappa_{\alpha \gamma} v_{\dot{\beta}}^{\gamma} y^{\alpha} \bar{y}^{\dot{\beta}}\right)\right] .
$$

- We find the components of the generalised higher-spin Weyl tensors

$$
C_{\alpha(2 s)}=\frac{b}{s!2^{s-2} r}\left(\frac{i \kappa_{\alpha \alpha}}{\kappa^{2}}\right)^{s}, \quad \bar{C}_{\dot{\alpha}(2 s)}=\frac{b}{s!2^{s-2} r}\left(\frac{i \kappa_{\dot{\alpha} \dot{\alpha}}}{\kappa^{2}}\right)^{s}
$$

- This corresponds at the spin two level to a Petrov type-D Weyl tensor, describing a black hole.
- The solution for $S$ is more complicated.
- First we define a reduces set of oscillators

$$
F_{K} \star Z_{A} \equiv F_{K} A_{A}, \quad A_{A} \equiv\left(a_{\alpha}, \bar{a}_{\dot{\alpha}}\right) \equiv Z_{A}+i K_{A}^{B} Y_{B}, \quad\left[A_{A}, A_{B}\right]=4 \epsilon_{A B}
$$

such that $Z$ will always appear in this combination with $Y$.

- The star product of $F_{K}$ with any function then gives

$$
F_{K} \star \phi(Z \mid x)=F_{K} \phi(A \mid x)
$$

- Functions of this form define a subalgebra

$$
\left(F_{K} \phi_{1}\right) \star\left(F_{K} \phi_{2}\right)=F_{K}\left(\phi_{1} * \phi_{2}\right)
$$

- with the $*$-product

$$
\left(\phi_{1} * \phi_{2}\right)(A)=\int d^{4} u \phi_{1}\left(A+2 U_{+}\right) \phi_{2}\left(A-2 U_{-}\right) e^{2 U_{+A} U_{-}^{A}}
$$

- Here $U_{ \pm A}=\Pi_{ \pm}{ }_{A}^{B} U_{B}$ are defined in terms of the projectors

$$
\Pi_{ \pm A B}=\frac{1}{2}\left(\epsilon_{A B} \pm i K_{A B}\right), \quad \Pi_{ \pm A}^{B} \Pi_{ \pm B}^{C}=\Pi_{ \pm A}^{C}, \quad \Pi_{ \pm A}^{B} \Pi_{\mp B}^{C}=0
$$

- First we define a reduces set of oscillators

$$
F_{K} \star Z_{A} \equiv F_{K} A_{A}, \quad A_{A} \equiv\left(a_{\alpha}, \bar{a}_{\dot{\alpha}}\right) \equiv Z_{A}+i K_{A}^{B} Y_{B}, \quad\left[A_{A}, A_{B}\right]=4 \epsilon_{A B}
$$

such that $Z$ will always appear in this combination with $Y$.

- The star product of $F_{K}$ with any function then gives

$$
F_{K} \star \phi(Z \mid x)=F_{K} \phi(A \mid x) .
$$

- Functions of this form define a subalgebra

$$
\left(F_{K} \phi_{1}\right) \star\left(F_{K} \phi_{2}\right)=F_{K}\left(\phi_{1} * \phi_{2}\right)
$$

- with the $*$-product

$$
\left(\phi_{1} * \phi_{2}\right)(A)=\int d^{4} u \phi_{1}\left(A+2 U_{+}\right) \phi_{2}\left(A-2 U_{-}\right) e^{2 U_{+A} U_{-}^{A}}
$$

- Here $U_{ \pm A}=\Pi_{ \pm}{ }_{A}^{B} U_{B}$ are defined in terms of the projectors

$$
\Pi_{ \pm A B}=\frac{1}{2}\left(\epsilon_{A B} \pm i K_{A B}\right), \quad \Pi_{ \pm A}^{B} \Pi_{ \pm B}^{C}=\Pi_{ \pm A}^{C}, \quad \Pi_{ \pm A}^{B} \Pi_{\mp B}^{C}=0
$$

- In particular

$$
Y_{-A} \star F_{K}=F_{K} \star Y_{+A}=0
$$

- and

$$
\left(F_{K} \phi\right) \star Y_{+A}=\left(F_{K} \phi\right) \star F_{K} \star Y_{+A}=0
$$

- For any function $\phi(a)$ holomorphic in $a$

$$
\left[a_{\alpha}, \phi(a)\right]_{*}=2 \partial_{a^{\alpha}} \phi(a), \quad\left\{a_{\alpha}, \phi(a)\right\}_{*}=2\left(a_{\alpha}+i \kappa_{\alpha}^{\beta} \partial_{a^{\beta}}\right) \phi(a)
$$

- The $*$-product possesses Kleinien operators $\mathcal{K}, \overline{\mathcal{K}}$

$$
\begin{array}{ll}
F_{K} \star \delta(z)=F_{K} \mathcal{K}, & \mathcal{K}=\frac{1}{r} \exp \left[\frac{i \kappa_{\alpha \beta}}{2 \kappa^{2}} a^{\alpha} a^{\beta}\right], \\
F_{K} \star \delta(\bar{z})=F_{K} \overline{\mathcal{K}}, & \overline{\mathcal{K}}=\frac{1}{r} \exp \left[\frac{i \kappa_{\dot{\alpha} \dot{\beta}}}{2 \kappa^{2}} \bar{a}^{\dot{\alpha}} \bar{a}^{\dot{\beta}}\right] .
\end{array}
$$

- They satisfy

$$
\begin{gathered}
\mathcal{K} * \mathcal{K}=\overline{\mathcal{K}} * \overline{\mathcal{K}}=1, \quad\left\{\mathcal{K}, a_{\alpha}\right\}_{*}=\left\{\overline{\mathcal{K}}, \bar{a}_{\dot{\alpha}}\right\}_{*}=0, \\
{[\mathcal{K}, \overline{\mathcal{K}}]_{*}=\left[\mathcal{K}, \bar{a}_{\dot{\alpha}}\right]_{*}=\left[\overline{\mathcal{K}}, a_{\alpha}\right]_{*}=0 .}
\end{gathered}
$$

- We take the ansatz

$$
\begin{aligned}
W & =W_{0}+F_{K}[\Omega(a \mid x)+\bar{\Omega}(\bar{a} \mid x)] \\
B & =b F_{K} \star \delta(y) \\
S_{\alpha} & =z_{\alpha}+F_{K} \sigma_{\alpha}(a \mid x), \quad \bar{S}_{\dot{\alpha}}=\bar{z}_{\dot{\alpha}}+F_{K} \bar{\sigma}_{\dot{\alpha}}(\bar{a} \mid x),
\end{aligned}
$$

- We take the ansatz

$$
\begin{aligned}
W & =W_{0}+F_{K}[\Omega(a \mid x)+\bar{\Omega}(\bar{a} \mid x)] \\
B & =b F_{K} \star \delta(y) \\
S_{\alpha} & =z_{\alpha}+F_{K} \sigma_{\alpha}(a \mid x), \quad \bar{S}_{\dot{\alpha}}=\bar{z}_{\dot{\alpha}}+F_{K} \bar{\sigma}_{\dot{\alpha}}(\bar{a} \mid x),
\end{aligned}
$$

- Then in terms of

$$
\varsigma_{\alpha}=a_{\alpha}+\sigma_{\alpha}(a \mid x), \quad \bar{\varsigma}_{\dot{\alpha}}=\bar{a}_{\dot{\alpha}}+\bar{\sigma}_{\dot{\alpha}}(\bar{a} \mid x), \quad \mathcal{Q}=\left(\hat{d}-\frac{i}{2} d \kappa^{\alpha \beta} \partial_{a^{\alpha}} \partial_{a^{\beta}}\right)
$$

with $\hat{d}$ the standard exterior derivative except that $\hat{d} a=\hat{d} \bar{a}=0$

- We find the equations

$$
\begin{array}{ll}
{\left[\varsigma_{\alpha}(a \mid x), \varsigma_{\beta}(a \mid x)\right]_{*}=2 \epsilon_{\alpha \beta}\left(1+e^{i \theta} b \mathcal{K}\right),} & {\left[\varsigma_{\alpha}(a \mid x), \bar{\varsigma}_{\dot{\alpha}}(\bar{a} \mid x)\right]_{*}=0} \\
\left\{\mathcal{K}, \varsigma_{\alpha}(a \mid x)\right\}_{*}=0, & \left\{\varsigma_{\alpha}(a \mid x), \overline{\mathcal{K}}\right\}_{*}=0 \\
\mathcal{Q} \Omega-\Omega \wedge_{*} \Omega=0, & \mathcal{Q} \varsigma_{\alpha}-\left[\Omega, \varsigma_{\alpha}\right]_{*}=0
\end{array}
$$

- We take the ansatz

$$
\begin{aligned}
W & =W_{0}+F_{K}[\Omega(a \mid x)+\bar{\Omega}(\bar{a} \mid x)] \\
B & =b F_{K} \star \delta(y) \\
S_{\alpha} & =z_{\alpha}+F_{K} \sigma_{\alpha}(a \mid x), \quad \bar{S}_{\dot{\alpha}}=\bar{z}_{\dot{\alpha}}+F_{K} \bar{\sigma}_{\dot{\alpha}}(\bar{a} \mid x),
\end{aligned}
$$

- Then in terms of

$$
\varsigma_{\alpha}=a_{\alpha}+\sigma_{\alpha}(a \mid x), \quad \bar{\varsigma}_{\dot{\alpha}}=\bar{a}_{\dot{\alpha}}+\bar{\sigma}_{\dot{\alpha}}(\bar{a} \mid x), \quad \mathcal{Q}=\left(\hat{d}-\frac{i}{2} d \kappa^{\alpha \beta} \partial_{a^{\alpha}} \partial_{a^{\beta}}\right)
$$

with $\hat{d}$ the standard exterior derivative except that $\hat{d} a=\hat{d} \bar{a}=0$

- We find the equations

$$
\begin{array}{ll}
{\left[\varsigma_{\alpha}(a \mid x), \varsigma_{\beta}(a \mid x)\right]_{*}=2 \epsilon_{\alpha \beta}\left(1+e^{i \theta} b \mathcal{K}\right),} & {\left[\varsigma_{\alpha}(a \mid x), \bar{\varsigma}_{\dot{\alpha}}(\bar{a} \mid x)\right]_{*}=0} \\
\left\{\mathcal{K}, \varsigma_{\alpha}(a \mid x)\right\}_{*}=0, & \left\{\varsigma_{\alpha}(a \mid x), \overline{\mathcal{K}}\right\}_{*}=0 \\
\mathcal{Q} \Omega-\Omega \wedge_{*} \Omega=0, & \mathcal{Q} \varsigma_{\alpha}-\left[\Omega, \varsigma_{\alpha}\right]_{*}=0
\end{array}
$$

- To linear order in $b$ one finds

$$
\sigma_{\alpha}(a \mid x)=\frac{b e^{i \theta}}{r} \pi_{\alpha}^{+\beta} a_{\beta} \int_{0}^{1} d t \exp \left(\frac{i t}{2} \frac{\kappa_{\alpha \beta}}{\kappa^{2}} a^{\alpha} a^{\beta}\right)
$$

with a new set of projectors

$$
\pi_{\alpha \beta}^{ \pm}=\frac{1}{2}\left(\epsilon_{\alpha \beta} \pm \frac{\kappa_{\alpha \beta}}{\sqrt{-\kappa^{2}}}\right)
$$

- In fact, this solves the equations to all orders in $b$ with $\Omega=0$.
- For other choices of Killing vectors, $\Omega$ is non-trivial and not known in closed form.
- In fact, this solves the equations to all orders in $b$ with $\Omega=0$.
- For other choices of Killing vectors, $\Omega$ is non-trivial and not known in closed form.
- The solution is then

$$
\begin{aligned}
W & =W_{0}=-\frac{1}{4}\left(\omega_{\alpha \beta} y^{\alpha} y^{\beta}+\omega_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}-\sqrt{2} h_{\alpha \dot{\beta}} y^{\alpha} \bar{y}^{\dot{\beta}}\right) \\
B & =\frac{4 b}{r} \exp \left[-\frac{i}{2 r^{2}}\left(\kappa_{\alpha \beta} y^{\alpha} y^{\beta}+\kappa_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}+2 i \kappa_{\alpha \gamma} v^{\gamma}{ }_{\dot{\beta}}^{\alpha} \bar{y}^{\dot{\beta}}\right)\right] \\
S_{\alpha} & =z_{\alpha}+F_{K} \frac{e^{i \theta} b}{r} \pi_{\alpha}^{+\beta} a_{\beta} \int_{0}^{1} d t \exp \left(-\frac{i t \kappa_{\alpha \beta}}{2 r^{2}} a^{\alpha} a^{\beta}\right) \\
\bar{S}_{\dot{\alpha}} & =\bar{z}_{\dot{\alpha}}+F_{K} \frac{e^{-i \theta} b}{r} \pi_{\dot{\alpha}}^{+\dot{\beta}} \bar{a}_{\dot{\beta}} \int_{0}^{1} d t \exp \left(-\frac{i t \kappa_{\dot{\alpha} \dot{\beta}}}{2 r^{2}} \bar{a}^{\dot{\alpha}} \bar{a}^{\dot{\beta}}\right)
\end{aligned}
$$

- In fact, this solves the equations to all orders in $b$ with $\Omega=0$.
- For other choices of Killing vectors, $\Omega$ is non-trivial and not known in closed form.
- The solution is then

$$
\begin{aligned}
W & =W_{0}=-\frac{1}{4}\left(\omega_{\alpha \beta} y^{\alpha} y^{\beta}+\omega_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}-\sqrt{2} h_{\alpha \dot{\beta}} y^{\alpha} \bar{y}^{\dot{\beta}}\right) \\
B & =\frac{4 b}{r} \exp \left[-\frac{i}{2 r^{2}}\left(\kappa_{\alpha \beta} y^{\alpha} y^{\beta}+\kappa_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}+2 i \kappa_{\alpha \gamma} v_{\dot{\beta}}^{\gamma} y^{\alpha} \bar{y}^{\dot{\beta}}\right)\right] \\
S_{\alpha} & =z_{\alpha}+F_{K} \frac{e^{i \theta} b}{r} \pi_{\alpha}^{+\beta} a_{\beta} \int_{0}^{1} d t \exp \left(-\frac{i t \kappa_{\alpha \beta}}{2 r^{2}} a^{\alpha} a^{\beta}\right) \\
\bar{S}_{\dot{\alpha}} & =\bar{z}_{\dot{\alpha}}+F_{K} \frac{e^{-i \theta} b}{r} \pi_{\dot{\alpha}}^{+\dot{\beta}} \bar{a}_{\dot{\beta}} \int_{0}^{1} d t \exp \left(-\frac{\left.i t \kappa_{\dot{\alpha} \dot{\beta}} \bar{a}^{\dot{\alpha}} \bar{a}^{\dot{\beta}}\right)}{2 r^{2}}\right)
\end{aligned}
$$

- This solution is valid for the theory with arbitrary interaction term given by the angle $\theta_{0}$.


## Embeddings in the SUSY theory

- We can decompose the fields with the projectors

$$
\begin{aligned}
W & =\Gamma^{+} W_{+}+\Gamma^{-} W_{-} \\
B & =\Gamma^{+} B_{+}+i \Gamma^{-} B_{-}, \quad \Gamma^{ \pm}=\frac{1 \pm \Gamma}{2} \\
S & =\Gamma^{+} S_{+}+\Gamma^{-} S_{-}
\end{aligned}
$$

- Each of the $\Phi_{ \pm}$will have even and odd components (in $\vartheta$ ).
- For the classical solutions the odd components vanish.
- The bosonic part of $\Phi_{ \pm}$is a $2^{n-1} \times 2^{n-1}$ matrix.


## Embeddings in the SUSY theory

- We can decompose the fields with the projectors

$$
\begin{aligned}
W & =\Gamma^{+} W_{+}+\Gamma^{-} W_{-} \\
B & =\Gamma^{+} B_{+}+i \Gamma^{-} B_{-}, \quad \Gamma^{ \pm}=\frac{1 \pm \Gamma}{2} \\
S & =\Gamma^{+} S_{+}+\Gamma^{-} S_{-}
\end{aligned}
$$

- Each of the $\Phi_{ \pm}$will have even and odd components (in $\vartheta$ ).
- For the classical solutions the odd components vanish.
- The bosonic part of $\Phi_{ \pm}$is a $2^{n-1} \times 2^{n-1}$ matrix.
- Projecting the equation for $W$ we find identical equations for the two blocks

$$
\Gamma^{ \pm}\left(d W-W \wedge_{\star} W\right)=\Gamma^{ \pm} W_{ \pm}-\Gamma^{ \pm} W_{ \pm} \wedge_{\star} \Gamma^{ \pm} W_{ \pm}=\Gamma^{ \pm}\left(d W_{ \pm}-W_{ \pm} \wedge_{\star} W_{ \pm}\right)
$$

- Likewise for the flatness equation for $B$.
- The equations for $S$ has an explicit $\Gamma$, which complicates things

$$
\begin{array}{lll}
S_{+\alpha} \star S_{+}^{\alpha}=2 f_{\star}\left(B_{+} \star v\right), & \bar{S}_{+\dot{\alpha}} \star \bar{S}_{+}^{\dot{\alpha}}=2 \bar{f}_{\star}\left(B_{+} \star \bar{v}\right), & {\left[S_{+\alpha}, \bar{S}_{+\dot{\alpha}}\right]_{\star}=0} \\
S_{-\alpha} \star S_{-}^{\alpha}=2 f_{\star}\left(i B_{-\star v),}\right. & \bar{S}_{-\dot{\alpha}} \star \bar{S}_{-}^{\dot{\alpha}}=2 \bar{f}_{\star}\left(-i B_{-\star} \bar{v}\right), & {\left[S_{-\alpha}, \bar{S}_{-\dot{\alpha}}\right]_{\star}=0 .}
\end{array}
$$

## Embeddings in the SUSY theory

- We can decompose the fields with the projectors

$$
\begin{aligned}
W & =\Gamma^{+} W_{+}+\Gamma^{-} W_{-} \\
B & =\Gamma^{+} B_{+}+i \Gamma^{-} B_{-}, \quad \Gamma^{ \pm}=\frac{1 \pm \Gamma}{2} \\
S & =\Gamma^{+} S_{+}+\Gamma^{-} S_{-}
\end{aligned}
$$

- Each of the $\Phi_{ \pm}$will have even and odd components (in $\vartheta$ ).
- For the classical solutions the odd components vanish.
- The bosonic part of $\Phi_{ \pm}$is a $2^{n-1} \times 2^{n-1}$ matrix.
- Projecting the equation for $W$ we find identical equations for the two blocks

$$
\Gamma^{ \pm}\left(d W-W \wedge_{\star} W\right)=\Gamma^{ \pm} W_{ \pm}-\Gamma^{ \pm} W_{ \pm} \wedge_{\star} \Gamma^{ \pm} W_{ \pm}=\Gamma^{ \pm}\left(d W_{ \pm}-W_{ \pm} \wedge_{\star} W_{ \pm}\right)
$$

- Likewise for the flatness equation for $B$.
- The equations for $S$ has an explicit $\Gamma$, which complicates things

$$
\begin{array}{lll}
S_{+\alpha} \star S_{+}^{\alpha}=2 f_{\star}\left(B_{+} \star v\right), & \bar{S}_{+\dot{\alpha}} \star \bar{S}_{+}^{\dot{\alpha}}=2 \bar{f}_{\star}\left(B_{+} \star \bar{v}\right), & {\left[S_{+\alpha}, \bar{S}_{+\dot{\alpha}}\right]_{\star}=0} \\
S_{-\alpha} \star S_{-}^{\alpha}=2 f_{\star}\left(i B_{-\star v),}\right. & \bar{S}_{-\dot{\alpha}} \star \bar{S}_{-}^{\dot{\alpha}}=2 \bar{f}_{\star}\left(-i B_{-} \star \bar{v}\right), & {\left[S_{-\alpha}, \bar{S}_{-\dot{\alpha}}\right]_{\star}=0}
\end{array}
$$

- The equation for $S_{-}, \bar{S}_{-}$is the same as for the theory with $\theta \rightarrow \theta+\pi / 2$.
- We take the following embeddings of the DV solution

$$
\begin{aligned}
W(Y, Z \mid x) & =W_{0} \\
B(Y, Z \mid x) & =b\left[\eta_{p} F_{K}+\eta_{m} F_{-K}\right] \star \delta(y) \\
S_{\alpha}(Y, Z \mid x) & =z_{\alpha}+s\left[\eta_{p} F_{K} \sigma_{\alpha}(a, K \mid x)+\eta_{m} F_{-K} \sigma_{\alpha}(a,-K \mid x)\right] \\
\bar{S}_{\dot{\alpha}}(Y, Z \mid x) & =\bar{z}_{\dot{\alpha}}+\bar{s}\left[\eta_{p} F_{K} \bar{\sigma}_{\dot{\alpha}}(\bar{a}, K \mid x)+\eta_{m} F_{-K} \bar{\sigma}_{\dot{\alpha}}(\bar{a},-K \mid x)\right]
\end{aligned}
$$

where $b, s$ are even matrices.

- We allowed two different solutions with the Killing matrix $K$ replaced by $-K$.
- $\eta_{p}$ and $\eta_{m}$ are orthogonal projectors, such that these two solutions don't interact.
- We take the following embeddings of the DV solution

$$
\begin{aligned}
W(Y, Z \mid x) & =W_{0} \\
B(Y, Z \mid x) & =b\left[\eta_{p} F_{K}+\eta_{m} F_{-K}\right] \star \delta(y) \\
S_{\alpha}(Y, Z \mid x) & =z_{\alpha}+s\left[\eta_{p} F_{K} \sigma_{\alpha}(a, K \mid x)+\eta_{m} F_{-K} \sigma_{\alpha}(a,-K \mid x)\right] \\
\bar{S}_{\dot{\alpha}}(Y, Z \mid x) & =\bar{z}_{\dot{\alpha}}+\bar{s}\left[\eta_{p} F_{K} \bar{\sigma}_{\dot{\alpha}}(\bar{a}, K \mid x)+\eta_{m} F_{-K} \bar{\sigma}_{\dot{\alpha}}(\bar{a},-K \mid x)\right]
\end{aligned}
$$

where $b, s$ are even matrices.

- We allowed two different solutions with the Killing matrix $K$ replaced by $-K$.
- $\eta_{p}$ and $\eta_{m}$ are orthogonal projectors, such that these two solutions don't interact.
- In a diagonal basis

$$
\begin{aligned}
b & \equiv b_{+}+i b_{-} \\
s & \equiv e^{i \theta_{0}} s_{+}+e^{i\left(\theta_{0}+\pi / 2\right)} s_{-} \\
\bar{s} & \equiv e^{-i \theta_{0}} \bar{s}_{+}+e^{-i\left(\theta_{0}+\pi / 2\right)} \bar{s}_{-}
\end{aligned}
$$

- The equations of motion then impose

$$
s_{ \pm}=b_{ \pm}, \quad b s=s b, \quad s \bar{s}=\bar{s} s
$$

- The reality conditions are

$$
b_{ \pm}^{\dagger}=b_{ \pm}, \quad s^{\dagger}=\bar{s}
$$

## SUSY invariance, bulk

- Symmetries are given by trivial gauge transformations

$$
d \epsilon-\left[W_{0}, \epsilon\right]_{\star}=0 .
$$

- Taking an odd gauge parameter

$$
\epsilon(Y \mid x, \vartheta)=\Xi_{\alpha}(x, \vartheta) y^{\alpha}+i \bar{\Xi}_{\dot{\alpha}}(x, \vartheta) \bar{y}^{\dot{\alpha}}
$$

- The equation for the connection reduces to the Killing spinor equation

$$
\tilde{\nabla}\binom{\Xi}{\Xi} \equiv\left(d-\frac{i}{2} \omega_{a b} \gamma^{a b}+\frac{i}{\sqrt{2}} h_{a} \gamma^{a}\right)\binom{\Xi}{\Xi}=0
$$

## SUSY invariance, bulk

- Symmetries are given by trivial gauge transformations

$$
d \epsilon-\left[W_{0}, \epsilon\right]_{\star}=0 .
$$

- Taking an odd gauge parameter

$$
\epsilon(Y \mid x, \vartheta)=\Xi_{\alpha}(x, \vartheta) y^{\alpha}+i \bar{\Xi}_{\dot{\alpha}}(x, \vartheta) \bar{y}^{\dot{\alpha}}
$$

- The equation for the connection reduces to the Killing spinor equation

$$
\tilde{\nabla}\binom{\Xi}{\bar{\Xi}} \equiv\left(d-\frac{i}{2} \omega_{a b} \gamma^{a b}+\frac{i}{\sqrt{2}} h_{a} \gamma^{a}\right)\binom{\Xi}{\bar{\Xi}}=0
$$

- The general solution is given by the four Killing spinors of $A d S_{4}: \psi^{I}=\psi_{\alpha}^{I} y^{\alpha}+i \bar{\chi}_{\dot{\alpha}}^{I} \bar{y}^{\dot{\alpha}}$

$$
\epsilon(Y \mid x, \vartheta)=\psi^{I}(Y \mid x) \xi^{I}(\vartheta), \quad I=1,2, \overline{1}, \overline{2}
$$

- The reality condition imposes (with $i=1,2$ )

$$
\left(\xi^{i}\right)^{\dagger}=\xi^{\bar{i}}
$$

The parameters $\xi$ are also $2^{n-1} \times 2^{n-1}$ constant matrices.

- The gauge invariance of $B$ and $S$ imposes

$$
\begin{array}{r}
\psi^{I} \star B \xi^{I} b-B \star \pi\left(\psi^{I}\right) b \xi^{I}=0 \\
\psi^{I} \star S \xi^{I} s-S \star \psi^{I} s \xi^{I}=0
\end{array}
$$

- The gauge invariance of $B$ and $S$ imposes

$$
\begin{array}{r}
\psi^{I} \star B \xi^{I} b-B \star \pi\left(\psi^{I}\right) b \xi^{I}=0 \\
\psi^{I} \star S \xi^{I} s-S \star \psi^{I} s \xi^{I}=0
\end{array}
$$

- Both $B$ and $S$ are proportional to $F_{K}$, which acts as a projector on $Y$

$$
\left(\Pi_{-A}^{B} Y_{B}\right) \star F_{K}=F_{K} \star\left(\Pi_{+A}^{B} Y_{B}\right)=0, \quad \Pi_{ \pm A B}=\frac{1}{2}\left(\epsilon_{A B} \pm i K_{A B}\right)
$$

- Since $K_{A B}$ is a bilinear in the $A d S_{4}$ Killing spinors, it projects the four Killing spinors onto a two-dimensional subspace

$$
\psi^{i} \star F_{K}=F_{K} \star \psi^{\bar{i}}=0, \quad F_{K} \star \psi^{i}=2 F_{K} \psi^{i}, \quad \psi^{\bar{i}} \star F_{K}=2 \psi^{\bar{i}} F_{K}
$$

- The gauge invariance of $B$ and $S$ imposes

$$
\begin{aligned}
\psi^{I} \star B \xi^{I} b-B \star \pi\left(\psi^{I}\right) b \xi^{I} & =0 \\
\psi^{I} \star S \xi^{I} s-S \star \psi^{I} s \xi^{I} & =0
\end{aligned}
$$

- Both $B$ and $S$ are proportional to $F_{K}$, which acts as a projector on $Y$

$$
\left(\Pi_{-A}^{B} Y_{B}\right) \star F_{K}=F_{K} \star\left(\Pi_{+A}^{B} Y_{B}\right)=0, \quad \Pi_{ \pm A B}=\frac{1}{2}\left(\epsilon_{A B} \pm i K_{A B}\right)
$$

- Since $K_{A B}$ is a bilinear in the $A d S_{4}$ Killing spinors, it projects the four Killing spinors onto a two-dimensional subspace

$$
\psi^{i} \star F_{K}=F_{K} \star \psi^{\bar{i}}=0, \quad F_{K} \star \psi^{i}=2 F_{K} \psi^{i}, \quad \psi^{\bar{i}} \star F_{K}=2 \psi^{\bar{i}} F_{K}
$$

- With our ansatz for the matrix structure of $B$ and $S$ we get the equations for $b, \eta_{p}$ and $\eta_{m}$

$$
\psi^{i} F_{-K} \xi^{i} \eta_{m} b+\psi^{\bar{i}} F_{K} \xi^{\bar{i}} \eta_{p} b-F_{K} \psi^{i} \eta_{p} b \xi^{i}-F_{-K} \psi^{\bar{i}} \eta_{m} b \xi^{\bar{i}}=0
$$

- This equation is satisfied if

$$
\xi^{i} \eta_{m} b=\eta_{p} b \xi^{i}=0
$$

- This is a simple matrix equation.
- Let me consider the case of the theory with $n=4$.
- Let me consider the case of the theory with $n=4$.
- The simplest choice of $\eta$ 's is

$$
\eta_{p}=\operatorname{diag}(1,1,0,0), \quad \eta_{m}=\operatorname{diag}(0,0,1,1)
$$

- It preserves the supserymmetries

$$
\xi^{i}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & 0 & 0
\end{array}\right)
$$

- These are half of the SUSY generators (since $\xi$ is odd).
- Let me consider the case of the theory with $n=4$.
- The simplest choice of $\eta$ 's is

$$
\eta_{p}=\operatorname{diag}(1,1,0,0), \quad \eta_{m}=\operatorname{diag}(0,0,1,1)
$$

- It preserves the supserymmetries

$$
\xi^{i}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & 0 & 0
\end{array}\right)
$$

- These are half of the SUSY generators (since $\xi$ is odd).
- Another choice is

$$
\eta_{p}=\operatorname{diag}(1,0,1,0), \quad \eta_{m}=\operatorname{diag}(0,1,0,1), \quad \xi^{i}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right)
$$

- This is $1 / 4 \mathrm{BPS}$.

If $b$ is not full rank, we can preserve more SUSY.

- 3/8 BPS conficuration:

$$
\eta_{p}=\operatorname{diag}(1,0,0,0), \quad \eta_{m}=\operatorname{diag}(0,1,0,1), \quad \xi^{i}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & * & * \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right) .
$$

- Another $1 / 2$ BPS cases:

$$
\eta_{p}=\operatorname{diag}(1,0,0,0), \quad \eta_{m}=\operatorname{diag}(0,1,0,0), \quad \xi^{i}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & * & * \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right),
$$

- A 5/8-BPS case:

$$
\eta_{p}=\operatorname{diag}(1,0,0,0), \quad \eta_{m}=\operatorname{diag}(0,0,0,1), \quad \xi^{i}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & * & 0 \\
* & * & * & 0 \\
* & * & 0 & 0
\end{array}\right) .
$$

- And the 3/4 case:

$$
\eta_{p}=\operatorname{diag}(1,0,0,0), \quad \eta_{m}=\operatorname{diag}(0,0,0,0), \quad \xi^{i}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & * \\
* & * & 0 \\
* * & * & 0 & 0
\end{array}\right) .
$$

## SUSY invariance, boundary

- The theory has massless fields and we need to choose boundary conditions for the scalar, fermions and vector fields.
- For a scalar in $A d S_{d+1}$

$$
\Delta_{ \pm}=\frac{d \pm \sqrt{d^{2}+4 m^{2}}}{2}
$$

- The field in the bulk has fall-off

$$
C(r, x)=\frac{a}{r^{\Delta_{-}}}+\frac{b}{r^{\Delta_{+}}}+\ldots
$$

- The holographic dual depends of the choice of boundary conditions.


## SUSY invariance, boundary

- The theory has massless fields and we need to choose boundary conditions for the scalar, fermions and vector fields.
- For a scalar in $A d S_{d+1}$

$$
\Delta_{ \pm}=\frac{d \pm \sqrt{d^{2}+4 m^{2}}}{2}
$$

- The field in the bulk has fall-off

$$
C(r, x)=\frac{a}{r^{\Delta_{-}}}+\frac{b}{r^{\Delta_{+}}}+\ldots
$$

- The holographic dual depends of the choice of boundary conditions.
- The general fall-off of $B$ takes the form (for the scalar $m^{2}=-2$ )

$$
\begin{aligned}
& B^{(0)}=\frac{1}{r}\left(\Gamma^{+} \cos \gamma+i \Gamma^{-} \sin \gamma\right) \tilde{f}_{1}+\frac{1}{r^{2}}\left(\Gamma^{-} \cos \gamma+i \Gamma^{+} \sin \gamma\right) \tilde{f}_{2}+O\left(\frac{1}{r^{3}}\right), \\
& B^{(1)}=\frac{1}{r^{2}}\left[e^{i \beta} F_{\alpha \beta} y^{\alpha} y^{\beta}+\Gamma e^{-i \beta} \bar{F}_{\dot{\alpha} \dot{\beta}} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}\right]+O\left(\frac{1}{r^{3}}\right),
\end{aligned}
$$

- Different theories will have different conditions on $\tilde{f}_{1,2}, F$ and $\bar{F}$.
- All our solutions are based on the DV solution with asymptotics

$$
B=\frac{4}{r} b\left(\eta_{p}+\eta_{m}\right)-\frac{2 i}{r^{2}} b\left(\eta_{p}-\eta_{m}\right)\left(\frac{\kappa_{\alpha \beta}}{r} y^{\alpha} y^{\beta}+\frac{\kappa_{\dot{\alpha} \dot{\beta}}}{r} \bar{y}^{\dot{\alpha}} \bar{y}^{\dot{\beta}}\right)+O\left(Y^{4}\right)
$$

- In particular there is no $1 / r^{2}$, component, so $\tilde{f}_{2}=0$.
- We can invert the equation $\left(\tilde{f} \equiv \tilde{f}_{1}\right)$

$$
4 b\left(\eta_{p}+\eta_{m}\right)=\left(\Gamma^{+} \cos \gamma+i \Gamma^{-} \sin \gamma\right) \tilde{f}
$$

## $\mathcal{N}=2$ with $S U(2)$ flavor symmetry

- Let us consider a theory with $n=4$ and the boundary conditions

$$
\beta=\gamma=\theta_{0}, \quad\left[\vartheta^{1}, \tilde{f}\right]=0
$$

- The symmetry among $\vartheta^{2}, \vartheta^{3}$ and $\vartheta^{4}$ will be an $S U(2)$ flavor symmetry of the boundary theory.
- Two supersymmetries generated by $\vartheta^{1}$ and $\Gamma \vartheta^{1}$ are preserved.


## $\mathcal{N}=2$ with $S U(2)$ flavor symmetry

- Let us consider a theory with $n=4$ and the boundary conditions

$$
\beta=\gamma=\theta_{0}, \quad\left[\vartheta^{1}, \tilde{f}\right]=0
$$

- The symmetry among $\vartheta^{2}, \vartheta^{3}$ and $\vartheta^{4}$ will be an $S U(2)$ flavor symmetry of the boundary theory.
- Two supersymmetries generated by $\vartheta^{1}$ and $\Gamma \vartheta^{1}$ are preserved.
- We need to solve

$$
\xi^{i} \eta_{m} b=\eta_{p} b \xi^{i}=0 .
$$

- If $\xi^{i}=\Gamma^{+} \vartheta^{1}$, then $\eta_{m}$ is an eigenstate of $\Gamma^{-}$while $\eta_{p}$ is an eigenstate of $\Gamma^{+}$.
- $\xi^{i}$ can only be either of $\Gamma^{ \pm} \vartheta^{1}$, but not a linear combination.


## $\mathcal{N}=2$ with $S U(2)$ flavor symmetry

- Let us consider a theory with $n=4$ and the boundary conditions

$$
\beta=\gamma=\theta_{0}, \quad\left[\vartheta^{1}, \tilde{f}\right]=0
$$

- The symmetry among $\vartheta^{2}, \vartheta^{3}$ and $\vartheta^{4}$ will be an $S U(2)$ flavor symmetry of the boundary theory.
- Two supersymmetries generated by $\vartheta^{1}$ and $\Gamma \vartheta^{1}$ are preserved.
- We need to solve

$$
\xi^{i} \eta_{m} b=\eta_{p} b \xi^{i}=0
$$

- If $\xi^{i}=\Gamma^{+} \vartheta^{1}$, then $\eta_{m}$ is an eigenstate of $\Gamma^{-}$while $\eta_{p}$ is an eigenstate of $\Gamma^{+}$.
- $\xi^{i}$ can only be either of $\Gamma^{ \pm} \vartheta^{1}$, but not a linear combination.
- One can check that $\Gamma^{-} \vartheta^{1}$ can be embedded in $\xi^{i}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & 0 & 0 \\ * & * & 0 & 0\end{array}\right)$, but none of the other examples, so $\eta_{p}=\operatorname{diag}(1,1,0,0)$ and $\eta_{m}=\operatorname{diag}(0,0,1,1)$.
- Lastly we see that $b_{+}$and $b_{-}$are proportional to each other. Giving a two parameter family of $1 / 2 \mathrm{BPS}$ solutions.


## $\underline{\mathcal{N}=2 \text { with } U(1) \times U(1) \text { flavor symmetry }}$

- Another theory with $n=4$ has boundary conditions that leave two supersymmetries and a $U(1) \times U(1)$ flavor symmetry.
- The boundary conditions are

$$
\beta=\theta_{0}, \quad \gamma=\theta_{0} P_{1, \vartheta^{3} \vartheta^{4}}, \quad \tilde{f} \in \operatorname{span}\left\{1, \vartheta^{3} \vartheta^{4}, \vartheta^{3} \vartheta^{1}, \vartheta^{3} \vartheta^{2}, \vartheta^{4} \vartheta^{1}, \vartheta^{4} \vartheta^{2}\right\}
$$

where $P_{1, \vartheta^{3} \vartheta^{4}}$ projects onto the subspace spanned by $1, \vartheta^{3} \vartheta^{4}$.

- it has a a symmetry between $\{1,2\}$ and $\{3,4\}$.
- The SUSYs are generated by $\vartheta^{1}$ and $\vartheta^{2}$.


## $\underline{\mathcal{N}=2 \text { with } U(1) \times U(1) \text { flavor symmetry }}$

- Another theory with $n=4$ has boundary conditions that leave two supersymmetries and a $U(1) \times U(1)$ flavor symmetry.
- The boundary conditions are

$$
\beta=\theta_{0}, \quad \gamma=\theta_{0} P_{1, \vartheta^{3} \vartheta^{4}}, \quad \tilde{f} \in \operatorname{span}\left\{1, \vartheta^{3} \vartheta^{4}, \vartheta^{3} \vartheta^{1}, \vartheta^{3} \vartheta^{2}, \vartheta^{4} \vartheta^{1}, \vartheta^{4} \vartheta^{2}\right\}
$$

where $P_{1, \vartheta^{3} \vartheta^{4}}$ projects onto the subspace spanned by $1, \vartheta^{3} \vartheta^{4}$.

- it has a a symmetry between $\{1,2\}$ and $\{3,4\}$.
- The SUSYs are generated by $\vartheta^{1}$ and $\vartheta^{2}$.
- These SUSYs are compatible with $\xi^{i}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0\end{array}\right)$.
- This is consistent with $\eta_{p}=\operatorname{diag}(1,0,1,0)$ and $\eta_{m}=\operatorname{diag}(0,1,0,1)$.


## $\mathcal{N}=2$ with $U(1) \times U(1)$ flavor symmetry

- Another theory with $n=4$ has boundary conditions that leave two supersymmetries and a $U(1) \times U(1)$ flavor symmetry.
- The boundary conditions are

$$
\beta=\theta_{0}, \quad \gamma=\theta_{0} P_{1, \vartheta^{3} \vartheta^{4}}, \quad \tilde{f} \in \operatorname{span}\left\{1, \vartheta^{3} \vartheta^{4}, \vartheta^{3} \vartheta^{1}, \vartheta^{3} \vartheta^{2}, \vartheta^{4} \vartheta^{1}, \vartheta^{4} \vartheta^{2}\right\}
$$

where $P_{1, \vartheta^{3} \vartheta^{4}}$ projects onto the subspace spanned by $1, \vartheta^{3} \vartheta^{4}$.

- it has a a symmetry between $\{1,2\}$ and $\{3,4\}$.
- The SUSYs are generated by $\vartheta^{1}$ and $\vartheta^{2}$.
- These SUSYs are compatible with $\xi^{i}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0\end{array}\right)$.
- This is consistent with $\eta_{p}=\operatorname{diag}(1,0,1,0)$ and $\eta_{m}=\operatorname{diag}(0,1,0,1)$.
- Again $b_{+}$and $b_{-}$will have to be proportional to each other, and we find a two parameter family of $1 / 2 \mathrm{BPS}$ solutions.


## Summary

- We simplified the DV solution: $W=W_{0}$.
- We showed how to embed the DV solution into a several examples of SUSY higher spin theories.
- Non-trivial conditions for preserving bulk SUSY and preserving those not broken by boundary conditions.
- This can be done in other examples as well, including the theory conjectured to be dual to a certain limit of ABJ theory.
- Also developed the formalism for embedding more general soluitons.
- This can be applied also to theories with Chan-Paton factors.
- Allows to implement and test ideas in higher spin holography in a SUSY setting.


## Summary

- We simplified the DV solution: $W=W_{0}$.
- We showed how to embed the DV solution into a several examples of SUSY higher spin theories.
- Non-trivial conditions for preserving bulk SUSY and preserving those not broken by boundary conditions.
- This can be done in other examples as well, including the theory conjectured to be dual to a certain limit of ABJ theory.
- Also developed the formalism for embedding more general soluitons.
- This can be applied also to theories with Chan-Paton factors.
- Allows to implement and test ideas in higher spin holography in a SUSY setting.
- Still missing a proper understanding of these solutions...

The end

