Quantum Entanglement of locally perturbed thermal states

Joan Simón
University of Edinburgh and Maxwell Institute of Mathematical Sciences

Holography, strings and higher spins Swansea, March 20, 2015

Based on arXiv:1410.2287 and work in progress with P. Caputa, A. Štikonas, T. Takayanagi \& K. Watanabe

Motivation

Consider a critical physical system in $1+1$ dimensions in some thermal state

$$
\rho_{\beta}
$$

Perturb the state by a local primary operator

$$
\mathcal{O}_{w}\left(x_{0}, 0\right) \rho_{\beta} \mathcal{O}_{w}^{\dagger}\left(x_{0}, 0\right)
$$

Evolve the system unitarily

$$
e^{-i H t}\left(\mathcal{O}_{w}\left(x_{0}, 0\right) \rho_{\beta} \mathcal{O}_{w}^{\dagger}\left(x_{0}, 0\right)\right) e^{i H t}
$$

Question: Is there any sense in which subsystems behave thermally after some time scale t_{ω}^{\star} ?

$$
\Delta I_{A: B}\left(t_{\omega}^{\star}\right)=0
$$

Holographic Motivation

(1) Eternal $\mathrm{BH} \simeq$ thermo field double (Maldacena)

- Recently re-interpreted in terms of $E P R=E R$ (Maldacena-Susskind)
- Local Perturbation of this scenario : time evolution of the throat ?
- Improvement in the holographic dictionary
(2) BH physics suggest speed at which thermality is regained is faster than in diffusive systems (scrambling) (Susskind-Sekino)
- No-cloning argument \& causality bounds

$$
t_{\omega} \sim \beta \log S
$$

- Small perturbations get blue shifted near horizon (Shenker-Stanford)

$$
t^{\star} \sim \beta \log m_{p} \beta
$$

Question: Any CFT evidence for any of these bulk effects ?

Entanglement vs Correlations

Question: Is there any relation between quantum entanglement and correlation lengths ?
Consider as measure of entanglement, mutual information

$$
I(C: D)=S\left(\rho_{C}\right)+S\left(\rho_{D}\right)-S\left(\rho_{C D}\right)
$$

Using Pinksler's inequality, one can show (Wolf, Verstraete, Hastings, Cirac)

$$
I(C: D) \geq \frac{\left(\left\langle\mathcal{O}_{C} \mathcal{O}_{D}\right\rangle-\left\langle\mathcal{O}_{C}\right\rangle\left\langle\mathcal{O}_{D}\right\rangle\right)^{2}}{2\left\|\mathcal{O}_{C}\right\|^{2}\left\|\mathcal{O}_{D}\right\|^{2}}
$$

Connected correlators as geodesics in AdS/CFT

The connected 2-pt correlation function of a heavy operator behaves like (Balasubramanian \& Ross)

$$
\left\langle\mathcal{O}_{C}\left(x_{C}\right) \mathcal{O}_{D}\left(x_{D}\right)\right\rangle-\left\langle\mathcal{O}_{C}\left(x_{C}\right)\right\rangle\left\langle\mathcal{O}_{D}\left(x_{D}\right)\right\rangle \sim e^{-m L_{\text {bulk }}\left(x_{C}, x_{D}\right)}
$$

- $L_{\text {bulk }}\left(x_{C}, x_{D}\right)$ is the bulk geodesic distance between the boundary points x_{C} and x_{D}
- $\Delta_{\mathcal{O}}=m \ell \gg 1$ (not scaling with N or c)
- Holographic dual correlation only depends mildly on the dual operator (through $\Delta_{\mathcal{O}}$)

Entanglement entropy in AdS/CFT

Entanglement entropy in an strongly coupled CFT vs bulk geometry. Ryu \& Takayanagi

$$
S\left(\rho_{B}\right) \propto \operatorname{Area}(\partial B) \propto \operatorname{Area}\left(\Sigma_{\text {bulk }}\right)
$$

where $\Sigma_{\text {bulk }}$ is a bulk minimal surface anchored to ∂B

- Non-local diffeomorphism invariant observables
- Deep relation between the set of minimal surfaces and Einstein's equations

Entanglement vs spacetime connectedness

Consider a full quantum system described by $A \cup B$ Study the limit of vanishing entanglement holographically

Spacetime connectedness (van Raamsdonk)

Sending entanglement to zero, requires:
(1) Proper bulk distance to infinity
(2) Area of the common boundary to zero \Rightarrow pinching

Consequences

Quantum mechanics

Consider a Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ with no interactions
(1) Product states have vanishing connected correlators
(2) Entangled states have non-vanishing correlators !!

AdS/CFT

Consider 2 decoupled CFTs
(1) Product states having holographic duals correspond to disconnected asymptotically AdS spacetimes
Example : $|\mathrm{vac}\rangle \otimes|\mathrm{vac}\rangle \Rightarrow 2$ disconnected AdS spacetimes
(2) Entangled states $\Rightarrow \exists$ correlations \Rightarrow connected geometry !! Example : eternal AdS black hole

Eternal AdS BH revisited

(1) Classical maximal extension of the eternal AdS BH
(2) Connectedness through BH event horizon

For certain observables and low energies, an observer in \mathcal{H}_{R} measures a thermal state :

$$
\rho_{\mathrm{BH}}=\frac{1}{Z(\beta)} \sum_{i} e^{-\beta E_{i}}\left|E_{i}\right\rangle\left\langle E_{i}\right|, \quad\left|E_{i}\right\rangle \in \mathcal{H}_{R}
$$

Can we interpret ρ_{BH} as a reduced density matrix ? (Maldacena)
$\rho_{\mathrm{BH}}=\operatorname{tr}_{\mathcal{H}_{L}}|\Psi\rangle\langle\Psi|$ with $|\Psi\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{i} \mathrm{e}^{-\beta E_{i} / 2}\left|E_{i}\right\rangle \otimes\left|E_{i}\right\rangle \in \mathcal{H}_{L} \otimes \mathcal{H}_{R}$
Quantum entanglement is responsible for the existence of correlations.

$E P R=E R($ Maldacena \& Susskind $)$

Eternal black hole re-interpreted

(1) Non-vanishing correlators between \mathcal{H}_{L} and \mathcal{H}_{R} are due to quantum entanglement (EPR)
(2) These correlations are holographically captured by the bulk geodesic distance between opposite boundaries \Rightarrow length of the ER bridge
(3) Entanglement entropy $=$ black hole entropy \Rightarrow maximal cross-section of the ER bridge

Outline

- 2d CFT set-up
- Free scalar 2d CFT at $T=0$ (warm-up)
- Large c 2d CFTs at finite T \& thermo field double
- Holographic remarks
- Final remarks

Set-up (single CFT)

Consider an excited state in a 2 d CFT

$$
\left|\Psi_{\mathcal{O}}(t)\right\rangle=\sqrt{\mathcal{N}} e^{-i H t} e^{-\epsilon H} \mathcal{O}(0,-\ell)|0\rangle
$$

- \mathcal{O} is inserted at $t=0$ and $x=-\ell$ and dynamically evolved afterwards
- ϵ is a small parameter smearing the UV behaviour of the local operator
Density matrix :

$$
\begin{aligned}
\rho(t) & =\mathcal{N} e^{-i H t} e^{-\epsilon H} \mathcal{O}(0,-\ell)|0\rangle\langle 0| \mathcal{O}^{\dagger}(0,-\ell) e^{i H t} e^{-\epsilon H} \\
& =\mathcal{N} \mathcal{O}\left(\omega_{2}, \bar{\omega}_{2}\right)|0\rangle\langle 0| \mathcal{O}^{\dagger}\left(\omega_{1}, \bar{\omega}_{1}\right)
\end{aligned}
$$

where $\omega_{1}=-\ell+i(\epsilon-i t), \omega_{2}=-\ell-i(\epsilon+i t)\left(\bar{\omega}_{1}=-\ell-i(\epsilon-i t)\right)$

Set-up (notation)

Our calculations will be done in euclidean signature :

$$
\omega=x+i \tau, \quad \bar{\omega}=x-i \tau
$$

We use the euclidean continuation : $\tau=$ it

- The normalization factor \mathcal{N} is fixed by $\operatorname{Tr}(\rho(t))=1$
- The cut-off ϵ can be viewed as a separation in the insertion time appearing in $\rho(t)$

Replica trick - I

Following Cardy \& Calabrese

$$
\begin{aligned}
\Delta S_{A}^{(n)} & =\frac{1}{1-n} \log \left(\frac{\operatorname{Tr} \rho_{A}^{n}}{\operatorname{Tr}\left(\rho_{A}^{(0)}\right)^{n}}\right) \\
& =\frac{1}{1-n} \log \left[\frac{\left\langle\mathcal{O}\left(\omega_{1}, \bar{\omega}_{1}\right) \mathcal{O}^{\dagger}\left(\omega_{2}, \bar{\omega}_{2}\right) \ldots \mathcal{O}^{\dagger}\left(\omega_{2 n}, \bar{\omega}_{2 n}\right)\right\rangle_{\Sigma_{n}}}{\left(\left\langle\mathcal{O}\left(\omega_{1}, \bar{\omega}_{1}\right) \mathcal{O}^{\dagger}\left(\omega_{2}, \bar{\omega}_{2}\right)\right\rangle_{\Sigma_{1}}\right)^{n}}\right]
\end{aligned}
$$

Notice no twisted operators but CFT defined on a Riemann surface

$$
\begin{aligned}
& \omega_{2 k+1}=e^{2 \pi i k} \omega_{1} \\
& -\omega_{2 k+2}=e^{2 \pi i k} \omega_{2}
\end{aligned}
$$

Replica trick - II

Following Cardy \& Calabrese

$$
\operatorname{Tr} \rho_{A}^{n} \sim\langle\psi| \sigma\left(\omega_{1}, \bar{\omega}_{1}\right) \tilde{\sigma}\left(\omega_{2}, \bar{\omega}_{2}\right)|\psi\rangle
$$

$|\psi\rangle$ stands for whatever CFT state you want to consider (vacuum or excited state)

- Non-trivial topology replaced by twist operators
- Calculation done in n-copies of the original CFT
- Twist operators emerge because of the existence of some internal symmetry when swapping these copies

Free scalar 2d CFT \& finite region A

Compute the Renyi entropy variation for $n=2$
Strategy: Map Σ_{2} into Σ_{1} using the conformal transformation (uniformization)

$$
\frac{\omega}{\omega-L}=z^{2}
$$

The 4-pt function determining the Renyi entropy will equal

$$
\begin{aligned}
& \left\langle\mathcal{O}^{\dagger}\left(\omega_{1}, \bar{\omega}_{1}\right) \mathcal{O}\left(\omega_{2}, \bar{\omega}_{2}\right) \mathcal{O}^{\dagger}\left(\omega_{3}, \bar{\omega}_{3}\right) \mathcal{O}\left(\omega_{4}, \bar{\omega}_{4}\right)\right\rangle_{\Sigma_{2}} \\
& =\prod_{i=1}^{4}\left|\frac{d \omega_{i}}{d z_{i}}\right|^{-2 \Delta_{\mathcal{O}}}\left\langle\mathcal{O}^{\dagger}\left(z_{1}, \bar{z}_{1}\right) \mathcal{O}\left(z_{2}, \bar{z}_{2}\right) \mathcal{O}^{\dagger}\left(z_{3}, \bar{z}_{3}\right) \mathcal{O}\left(z_{4}, \bar{z}_{4}\right)\right\rangle_{\Sigma_{1}} \\
& =\prod_{i=1}^{4}\left|\frac{d \omega_{i}}{d z_{i}}\right|^{-2 \Delta_{\mathcal{O}}}\left|z_{13} z_{24}\right|^{-4 \Delta_{\mathcal{O}}} G(z, \bar{z})
\end{aligned}
$$

where the cross-ratio $z=\frac{z_{12} z_{34}}{z_{13} z_{24}}$, with $z_{i j}=z_{i}-z_{j}$

Free scalar 2d CFT

Altogether

$$
\frac{\left\langle\mathcal{O}^{\dagger}\left(\omega_{1}, \bar{\omega}_{1}\right) \mathcal{O}\left(\omega_{2}, \bar{\omega}_{2}\right) \mathcal{O}^{\dagger}\left(\omega_{3}, \bar{\omega}_{3}\right) \mathcal{O}\left(\omega_{4}, \bar{\omega}_{4}\right)\right\rangle_{\Sigma_{2}}}{\left(\left\langle\mathcal{O}^{\dagger}\left(\omega_{1}, \bar{\omega}_{1}\right) \mathcal{O}\left(\omega_{2}, \bar{\omega}_{2}\right)\right\rangle_{\Sigma_{1}}\right)^{2}}=|z|^{4 \Delta_{\mathcal{O}}}|1-z|^{4 \Delta_{\mathcal{O}}} G(z, \bar{z})
$$

We will consider two different excitations with $\Delta_{\mathcal{O}}=\frac{1}{8}$

- When $\mathcal{O}_{1}=e^{i \phi / 2}$, then

$$
G_{1}(z, \bar{z})=\frac{1}{\sqrt{|z||1-z|}}
$$

- When $\mathcal{O}_{2}=\frac{1}{2}\left(e^{i \phi / 2}+e^{-i \phi / 2}\right)$,

$$
G_{2}(z, \bar{z})=\frac{|z|+1+|1-z|}{2} G_{1}(z, \bar{z})
$$

Specific details

Our points $\left(z_{i}, \bar{z}_{i}\right)$ equal

$$
\begin{aligned}
& z_{1}=-z_{3}=\sqrt{\frac{\ell-t-i \epsilon}{\ell+L-t-i \epsilon}}, \\
& z_{2}=-z_{4}=\sqrt{\frac{\ell-t+i \epsilon}{\ell+L-t+i \epsilon}} .
\end{aligned}
$$

In the limit of small ϵ we obtain

- $(z, \bar{z}) \rightarrow(0,0)$ when $0<t<\ell$ or $t>L+\ell$

$$
z \simeq \frac{L^{2} \epsilon^{2}}{4(\ell-t)^{2}(L+\ell-t)^{2}}, \quad \bar{z} \simeq \frac{L^{2} \epsilon^{2}}{4(\ell+t)^{2}(L+\ell+t)^{2}} .
$$

- $(z, \bar{z}) \rightarrow(1,0)$ when $\ell<t<L+\ell$

$$
z \simeq 1-\frac{L^{2} \epsilon^{2}}{4(\ell-t)^{2}(L+\ell-t)^{2}}, \quad \bar{z} \simeq \frac{L^{2} \epsilon^{2}}{4(\ell+t)^{2}(L+\ell+t)^{2}}
$$

Results \& interpretation

$$
\begin{aligned}
& \Delta S_{A}^{(2)}\left(\mathcal{O}_{1}\right)=0 \quad \text { all times } \\
& \Delta S_{A}^{(2)}\left(\mathcal{O}_{2}\right)= \begin{cases}0 & 0<t<\ell, \text { or } t>\ell+L \\
\log 2 & \ell<t<\ell+L\end{cases}
\end{aligned}
$$

- $\Delta S_{A}^{(2)}\left(\mathcal{O}_{1}\right)=0$ because it can be viewed as a direct product state

$$
e^{i \phi_{L} / 2}|0\rangle_{L} \otimes e^{i \phi_{R} / 2}|0\rangle_{R}
$$

- Since \mathcal{O}_{2} creates a maximally entangled state at $x=-\ell$ propagating in opposite directions

$$
\frac{1}{\sqrt{2}}\left(e^{i \phi_{L} / 2}|0\rangle_{L} \otimes e^{i \phi_{R} / 2}|0\rangle_{R}+e^{-i \phi_{L} / 2}|0\rangle_{L} \otimes e^{-i \phi_{R} / 2}|0\rangle_{R}\right)
$$

- Causality makes both pairs to be in the complement of A for $0<t<\ell$ and $t>\ell+L$
- for $\ell<t<\ell+L$ one member of the pair lies in A.

Excitations at finite temperature

Same set-up as before, but now
(1) we perturb a thermal state:

$$
\rho(t) \equiv \mathcal{N} \mathcal{O}\left(\omega_{2}, \bar{\omega}_{2}\right) e^{-\beta H} \mathcal{O}^{\dagger}\left(\omega_{1}, \bar{\omega}_{1}\right)
$$

with

$$
\begin{array}{ll}
\omega_{1}=x_{0}+t+t_{\omega}+i \epsilon & \bar{\omega}_{1}=x_{0}-t-t_{\omega}-i \epsilon \\
\omega_{2}=x_{0}+t+t_{\omega}-i \epsilon & \bar{\omega}_{2}=x_{0}-t-t_{\omega}+i \epsilon .
\end{array}
$$

(2) A pair of operators will be inserted on a cylinder, separated $2 i \epsilon$

Our calculation \& notion of "scrambling"

- Consider a thermofield double set-up.
- Perturbed the system at $-t_{\omega}$ by a primary localised operator \mathcal{O}
- Evolve unitarily

Measure the amount of entanglement at $t=0$ using the mutual information

$$
I\left(A: B ; t_{\omega}\right)=S_{A}+S_{B}-S_{A \cup B}
$$

We can ask what the time scale t_{ω} has to be so that the perturbation can not be distinguished from the original thermal state (scrambling time)

$$
\Delta I\left(A: B ; t_{\omega}\right)=\Delta S_{A}+\Delta S_{B}-\Delta S_{A \cup B}=0
$$

What our condition boils down to

Hartman \& Maldacena showed that in the absence of perturbation :

- at early times, mutual information decreases linearly
- at late times, i.e. $t>\frac{L}{2}, S_{A \cup B}=S_{A}+S_{B}$ saturates and the mutual information vanishes.
Thus, if we assume $t_{\omega}^{\star}>\frac{L}{2}$, our condition reduces to

$$
I\left(A: B ; t_{\omega}^{\star}\right)=0
$$

This is what was analysed by Shenker \& Stanford and what we will end up discussing today.

Thermofield double set-up

Consider two non-interacting 2d CFTs, say CFT_{L} and CFT_{R}, with isomorphic Hilbert spaces $\mathcal{H}_{L, R}$
Thermofield double state :

$$
\left|\Psi_{\beta}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n\rangle_{L}|n\rangle_{R}
$$

- $|n\rangle_{L}$ is an eigenstate of the hamiltonian H_{L} acting on \mathcal{H}_{L} with eigenvalue E_{n} (and similarly for $|n\rangle_{R}$).
- $|n\rangle_{L}$ is the CPT conjugate of the state $|n\rangle_{R}$
- Notation : $|n\rangle_{L} \otimes|n\rangle_{R}$ as $|n\rangle_{L}|n\rangle_{R}$.
- Thermal reduced density

$$
\rho_{R}(\beta)=\operatorname{tr}_{\mathcal{H}_{L}}\left(\left|\Psi_{\beta}\right\rangle\left\langle\Psi_{\beta}\right|\right)=\frac{1}{Z(\beta)} \sum_{n \in \mathcal{H}_{R}} e^{-\beta E_{n}}|n\rangle_{R}\left\langle\left. n\right|_{R},\right.
$$

Thermofield double : observables

- Single sided correlators are thermal

$$
\begin{aligned}
& \left\langle\Psi_{\beta}\right| \mathcal{O}_{R}\left(x_{1}, t_{1}\right) \ldots \mathcal{O}_{R}\left(x_{n},\right. \\
& \left.\quad t_{n}\right)\left|\Psi_{\beta}\right\rangle= \\
& \\
& \operatorname{tr}_{\mathcal{H}_{R}}\left(\rho_{R}(\beta) \mathcal{O}_{R}\left(x_{1}, t_{1}\right) \ldots \mathcal{O}_{R}\left(x_{n}, t_{n}\right)\right) .
\end{aligned}
$$

- Two sided correlators: by analytic continuation

$$
\begin{aligned}
\left\langle\Psi_{\beta}\right| \mathcal{O}_{L}\left(x_{1},-t\right) \ldots & \mathcal{O}_{R}\left(x_{n}^{\prime}, t_{n}^{\prime}\right)\left|\Psi_{\beta}\right\rangle= \\
& \operatorname{tr}_{\mathcal{H}_{R}}\left(\rho_{R}(\beta) \mathcal{O}_{R}\left(x_{1}, t-i \beta / 2\right) \ldots \mathcal{O}_{R}\left(x_{n}^{\prime}, t_{n}^{\prime}\right)\right) .
\end{aligned}
$$

Will use this observation when computing Renyi entropies

CFT considerations

As discussed by Morrison \& Roberts (see also Hartman \& Maldacena) :

- single sided thermal correlation functions are computed on a single cylinder with periodicity $\tau \sim \tau+\beta$
- two-sided correlators involve a path integral over a cylinder with the same periodicity $\tau \sim \tau+\beta$, where all operators \mathcal{O}_{R} are inserted at $\tau=i \beta / 2$, whereas \mathcal{O}_{L} are inserted at $\tau=0$

Set-up : Consider thermofield double state

- two finite intervals: $A=\left[L_{1}, L_{2}\right]$ in the left CFT_{L} and $B=\left[L_{1}, L_{2}\right]$ in the right CFT_{R}
- perturb the TFD by the insertion of a local primary operator \mathcal{O}_{L} acting on CFT_{L} at $x=0, t_{-}=-t_{\omega}$

Bulk interpretation

(1) Single BH in thermal equilibrium : evolution by a boost $\left(H_{R}-H_{L}\right)$

$$
H_{\mathrm{tf}}=\mathbb{I}_{L} \otimes H_{R}-H_{L} \otimes \mathbb{I}_{R}
$$

- Time propagates upwards in \mathcal{H}_{R} and downwards in \mathcal{H}_{L}.
- Thermofield double is (boost) invariant
(2) Approximate description of the state at $t=0$ of two AdS black holes $\left(H_{R}+H_{L}\right)$

$$
H=\mathbb{I}_{L} \otimes H_{R}+H_{L} \otimes \mathbb{I}_{R} \equiv H_{R}+H_{L} .
$$

Time propagates upwards in both boundaries

Calculation of S_{A}

$$
S_{A}=-\lim _{n \rightarrow 1} \frac{1}{n-1} \log \left(\operatorname{Tr} \rho_{A}^{n}(t)\right)
$$

where

$$
\operatorname{Tr} \rho_{A}^{n}(t)=\frac{\left\langle\psi\left(x_{1}, \bar{x}_{1}\right) \sigma\left(x_{2}, \bar{x}_{2}\right) \tilde{\sigma}\left(x_{3}, \bar{x}_{3}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle c_{n}}{\left(\left\langle\psi\left(x, \bar{x}_{1}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle c_{C_{1}}\right)^{n}}
$$

with the insertion points

$$
\begin{array}{llll}
x_{1}=-i \epsilon, & x_{2}=L_{1}-t_{\omega}-t, & x_{3}=L_{2}-t_{\omega}-t, & x_{4}=+i \epsilon \\
\bar{x}_{1}=+i \epsilon, & \bar{x}_{2}=L_{1}+t_{\omega}+t, & \bar{x}_{3}=L_{2}+t_{\omega}+t, & \bar{x}_{4}=-i \epsilon
\end{array}
$$

with conformal dimensions

$$
H_{\psi}=n h_{\psi}, \quad H_{\sigma}=n h_{\sigma}=n \frac{c}{24}\left(n-\frac{1}{n}\right)
$$

Conformal maps

(1) From the cylinder to the plane

$$
\omega(x)=e^{2 \pi x / \beta}
$$

(2) Standard map: $\omega_{1} \rightarrow 0, \omega_{2} \rightarrow z, \omega_{3} \rightarrow 1$ and $\omega_{4} \rightarrow \infty$

$$
z(\omega)=\frac{\left(\omega_{1}-\omega\right) \omega_{34}}{\omega_{13}\left(\omega-\omega_{4}\right)}
$$

where the cross-ratio satisfies

$$
z=\frac{\omega_{12} \omega_{34}}{\omega_{13} \omega_{24}}
$$

Result

$$
\begin{aligned}
S_{A}^{(n)} & =\frac{c(n+1)}{6} \log \left(\frac{\beta}{\pi \epsilon} \sinh \frac{\pi\left(L_{2}-L_{1}\right)}{\beta}\right) \\
& -\frac{1}{n-1} \log \left(|1-z|^{4 H_{\sigma}} G(z, \bar{z})\right)
\end{aligned}
$$

where

$$
G(z, \bar{z})=\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1)|\psi\rangle
$$

Using the large c results derived by Fitzpatrick, Kaplan \& Walters in the limit $n \rightarrow 1$

$$
\Delta S_{A}=\frac{c}{6} \log \left(\frac{z^{\frac{1}{2}\left(1-\alpha_{\psi}\right)} \bar{z}^{\frac{1}{2}\left(1-\bar{\alpha}_{\psi}\right)}\left(1-z_{\psi}^{\alpha}\right)\left(1-\bar{z}^{\bar{\alpha}_{\psi}}\right)}{\alpha_{\psi} \bar{\alpha}_{\psi}(1-z)(1-\bar{z})}\right)
$$

where $\alpha_{\psi}=\sqrt{1-\frac{h_{\psi}}{c}}$.

Cross-ratios

The cross-ratios are

$$
\begin{aligned}
z & =\frac{\sinh \left(\frac{\pi x_{12}}{\beta}\right) \sinh \left(\frac{\pi x_{34}}{\beta}\right)}{\sinh \left(\frac{\pi x_{13}}{\beta}\right) \sinh \left(\frac{\pi x_{24}}{\beta}\right)} \\
& \simeq 1+\frac{2 \pi i \epsilon}{\beta} \frac{\sinh \frac{\pi\left(L_{2}-L_{1}\right)}{\beta}}{\sinh \frac{\pi\left(L_{2}-t-t_{\omega}\right)}{\beta} \sinh \frac{\pi\left(L_{1}-t-t_{\omega}\right)}{\beta}}+\mathcal{O}\left(\epsilon^{2}\right) \\
\bar{z} & =\frac{\sinh \left(\frac{\pi \bar{x}_{12}}{\beta}\right) \sinh \left(\frac{\pi \bar{x}_{34}}{\beta}\right)}{\sinh \left(\frac{\pi \bar{x}_{13}}{\beta}\right) \sinh \left(\frac{\pi \bar{x}_{24}}{\beta}\right)} \\
& \simeq 1-\frac{2 \pi i \epsilon}{\beta} \frac{\sinh \frac{\pi\left(L_{2}-L_{1}\right)}{\beta}}{\sinh \frac{\pi\left(L_{2}+t+t_{\omega}\right)}{\beta} \sinh \frac{\pi\left(L_{1}+t+t_{\omega}\right)}{\beta}}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Final result

Analysing the imaginary parts, we reach the conclusions :

- $(z, \bar{z}) \rightarrow(1,1)$ for $t+t_{\omega}<L_{1}$ and $t+t_{\omega}>L_{2}$
- $(z, \bar{z}) \rightarrow\left(e^{2 \pi i}, 1\right)$ for $L_{1}<t+t_{\omega}<L_{2}$

The importance of this monodromy has been emphasized by several groups including Asplund, Bernamonti, Galli \& Hartman and Roberts \& Stanford

$$
\Delta S_{A}=0, \quad t_{-}+t_{\omega}<L_{1} \text { and } t_{-}+t_{\omega}>L_{2}
$$

$$
\begin{aligned}
\Delta S_{A}= & \frac{c}{6} \log \left[\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}} \frac{\sinh \left(\frac{\pi\left(L-t_{--} t_{\omega}\right)}{\beta}\right) \sinh \left(\frac{\pi\left(t_{-}+t_{\omega}\right)}{\beta}\right)}{\sinh \left(\frac{\pi L}{\beta}\right)}\right] \\
& L_{1}<t_{-}+t_{\omega}<L_{2}
\end{aligned}
$$

where $L=L_{2}-L_{1}$

Calculation of S_{B}

Very similar, but with different insertion points :

$$
\operatorname{Tr} \rho_{A}^{n}(t)=\frac{\left\langle\psi\left(x_{1}, \bar{x}_{1}\right) \sigma\left(x_{5}, \bar{x}_{5}\right) \tilde{\sigma}\left(x_{6}, \bar{x}_{6}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle C_{n}}{\left(\left\langle\psi\left(x, \bar{x}_{1}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle c_{1}\right)^{n}}
$$

with the insertion points

$$
\begin{array}{lll}
x_{1}=-i \epsilon, & x_{5}=L_{2}+i \frac{\beta}{2}-t, & x_{6}=L_{1}+i \frac{\beta}{2}-t,
\end{array} x_{4}=+i \epsilon, ~\left(\bar{x}_{6}=L_{1}-i \frac{\beta}{2}+t, \quad \bar{x}_{4}=-i \epsilon\right.
$$

We always obtain the expected thermal answer at all times

$$
S_{B}=\frac{c}{3} \log \left(\frac{\beta}{\pi \epsilon_{\mathrm{UV}}} \sinh \frac{\pi L}{\beta}\right)
$$

Calculation of $S_{A \cup B}$

Very similar, but with different insertion points :

$$
\operatorname{Tr} \rho_{A \cup B}^{n}(t)=\frac{\left\langle\psi\left(x_{1}, \bar{x}_{1}\right) \sigma\left(x_{2}, \bar{x}_{2}\right) \tilde{\sigma}\left(x_{2} \bar{x}_{3}\right) \sigma\left(x_{5}, \bar{x}_{5}\right) \tilde{\sigma}\left(x_{6}, \bar{x}_{6}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle_{C_{n}}}{\left(\left\langle\psi\left(x, \bar{x}_{1}\right) \psi^{\dagger}\left(x_{4}, \bar{x}_{4}\right)\right\rangle_{C_{1}}\right)^{n}}
$$

with the insertion points

$$
\begin{aligned}
& x_{1}=-i \epsilon, \quad x_{2}=L_{1}-t_{\omega}-t_{-}, \quad x_{3}=L_{2}-t_{\omega}-t_{-}, \quad x_{4}=+i \epsilon \\
& \bar{x}_{1}=+i \epsilon, \quad \bar{x}_{2}=L_{1}+t_{\omega}+t_{-}, \quad \bar{x}_{3}=L_{2}+t_{\omega}+t_{-}, \quad \bar{x}_{4}=-i \epsilon \\
& x_{5}=L_{2}+i \frac{\beta}{2}-t_{+}, \quad x_{6}=L_{1}+i \frac{\beta}{2}-t_{+}, \\
& \bar{x}_{5}=L_{2}-i \frac{\beta}{2}+t_{+}, \quad \bar{x}_{6}=L_{1}-i \frac{\beta}{2}+t_{+} .
\end{aligned}
$$

Strategy

Using conformal maps

$$
\begin{gathered}
\operatorname{Tr} \rho_{A \cup B}^{n}=\left|\frac{\beta}{\pi \epsilon_{U V}} \sinh \left(\frac{\pi L}{\beta}\right)\right|^{-8 H_{\sigma}}|1-z|^{4 H_{\sigma}}\left|z_{56}\right|^{4 H_{\sigma}} \\
\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle
\end{gathered}
$$

where all cross-ratios z, z_{i} are analytically known.

- $\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle$ expected 6-pt function

S-channel (I)

Let us introduce a resolution of the identity

$$
\begin{aligned}
&\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle \\
&=\sum_{\alpha}\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1)|\alpha\rangle\langle\alpha| \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle
\end{aligned}
$$

- $(z, \bar{z}) \rightarrow(1,1)$ for $t_{-}+t_{\omega}>L_{2} \Rightarrow$ use OPE !!
- $\sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sim \mathbb{I}+$ corrections in $(z-1)^{r} \mathcal{O}_{r}$
- Orthogonality of 2-pt functions $\Rightarrow|\alpha\rangle=|\psi\rangle$ dominant

Thus,

$$
\begin{aligned}
\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sigma\left(z_{5}\right. & \left., \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle \\
& \simeq\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1)|\psi\rangle\langle\psi| \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle
\end{aligned}
$$

S-channel (II)

Using conformal maps

$$
\langle\psi| \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle=\left|1-\tilde{z}_{5}\right|^{4 H_{\sigma}}\left|z_{56}\right|^{-4 H_{\sigma}}\langle\psi| \sigma\left(\tilde{z}_{5}, \bar{z}_{5}\right) \tilde{\sigma}(1,1)|\psi\rangle,
$$

we obtain
$\operatorname{Tr} \rho_{A \cup B}^{n} \simeq\left|\frac{\beta}{\pi \epsilon_{U V}} \sinh \left(\frac{\pi L}{\beta}\right)\right|^{-8 H_{\sigma}}|1-z|^{4 H_{\sigma}}\left|1-\tilde{z}_{5}\right|^{4 H_{\sigma}} G(z, \bar{z}) G\left(\tilde{z}_{5}, \overline{\tilde{z}}_{5}\right)+\ldots$
Since $\tilde{z}_{5}=z_{5}$, the cross-ratio determining S_{B}, we derive

$$
S_{A \cup B}=S_{A}+S_{B}, \quad \text { and } \quad I_{A: B}=0
$$

This resembles the bulk calculation from two geodesics joining pairs of points in the same boundary !!

T-channel (I)

We could introduce the resolution of the identity as follows

$$
\begin{aligned}
&\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}(1,1) \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\psi\rangle \\
&=\sum_{\alpha}\langle\psi| \sigma(z, \bar{z}) \tilde{\sigma}\left(z_{6}, \bar{z}_{6}\right)|\alpha\rangle\langle\alpha| \sigma\left(z_{5}, \bar{z}_{5}\right) \tilde{\sigma}(1,1)|\psi\rangle .
\end{aligned}
$$

- $\left(z_{5}, \bar{z}_{5}\right) \rightarrow(1,1)$ for small $\epsilon \Rightarrow$ use OPE !!
- As before, $|\alpha\rangle=|\psi\rangle$ dominant contribution!!

T-channel (II)

In this case,

$$
\begin{gathered}
\operatorname{Tr} \rho_{A \cup B}^{n} \simeq\left|\frac{\beta}{\pi \epsilon_{U V}} \sinh \left(\frac{\pi L}{\beta}\right)\right|^{-8 H_{\sigma}}\left|\frac{x}{1-x}\right|^{4 H_{\sigma}}\left|1-z_{5}\right|^{4 H_{\sigma}}\left|1-\tilde{z}_{2}\right|^{4 H_{\sigma}} \\
G\left(\tilde{z}_{2}, \bar{z}_{2}\right) G\left(z_{5}, \bar{z}_{5}\right)+\ldots
\end{gathered}
$$

where (x, \bar{x}) are the cross-ratios computed out of the insertion points of the four twist operators

$$
x=\frac{z_{23} z_{56}}{z_{25} z_{36}}=\frac{w_{23} w_{56}}{w_{25} w_{36}}=\frac{2 \sinh ^{2} \frac{\pi\left(L_{2}-L_{1}\right)}{\beta}}{\cosh \frac{2 \pi\left(L_{2}-L_{1}\right)}{\beta}+\cosh \frac{2 \pi\left(t_{-}+t_{\omega}-t_{+}\right)}{\beta}}=\bar{x}
$$

T-channel (III)

For $t_{-}+t_{\omega}>L_{2}$, we derive

$$
\begin{aligned}
S_{A \cup B} & \simeq \frac{2 c}{3} \log \left|\frac{\beta}{\pi \epsilon_{\mathrm{UV}}} \cosh \left(\frac{\pi \Delta t}{\beta}\right)\right|+\frac{c}{3} \log \left(\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}}\right) \\
& +\frac{c}{6} \log \left(\frac{\sinh \frac{\pi\left(t_{-}+t_{w}\right)}{\beta} \cosh \frac{\pi t_{+}}{\beta}}{\cosh \frac{\pi \Delta t}{\beta}} \frac{\sinh \frac{\pi\left(t_{-}+t_{w}-L\right)}{\beta} \cosh \frac{\pi\left(L-t_{+}\right)}{\beta}}{\cosh \frac{\pi \Delta t}{\beta}}\right)
\end{aligned}
$$

where we set $L_{1}=0, L_{2}=L$ and $\Delta t=t_{-}+t_{\omega}-t_{+}$

- To derive this result we used Fitzpatrick, Kaplan \& Walters

Mutual information \& "Scrambling" time (I)

In the regime $t_{-}+t_{\omega}>L_{2}>L_{1}$,

$$
\begin{aligned}
I_{A: B} & \simeq \frac{2 c}{3} \log \left(\frac{\beta}{\pi \epsilon_{\mathrm{UV}}} \sinh \frac{\pi L}{\beta}\right)-\frac{2 c}{3} \log \left|\frac{\beta}{\pi z_{\infty}} \cosh \left(\frac{\pi \Delta t}{\beta}\right)\right| \\
& -\frac{c}{3} \log \left(\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha \psi}\right) \\
& -\frac{c}{6} \log \left(\frac{\sinh \frac{\pi\left(t_{-}+t_{\omega}\right)}{\beta} \cosh \frac{\pi t_{+}}{\beta} \sinh \frac{\pi\left(t_{-}+t_{\omega}-L\right)}{\beta} \cosh \frac{\pi\left(L-t_{+}\right)}{\beta}}{\cosh \frac{\pi \Delta t}{\beta}}\right)
\end{aligned}
$$

- take $t_{-}=t_{+}=0$ and look for t_{ω}^{\star} satisfying

$$
I_{A: B}\left(t_{\omega}^{\star}\right)=0
$$

Mutual information \& "Scrambling" time (II)

Assuming $t_{\omega}^{\star} / \beta \gg 1$, we currently obtain

$$
t_{\omega}^{\star}=\frac{L}{4}-\frac{\beta}{2 \pi} \log \left(\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}}\right)+\frac{\beta}{4 \pi} \log \left(\frac{8 \sinh ^{4} \frac{\pi L}{\beta}}{\cosh \frac{\pi L}{\beta}}\right)
$$

- if $h_{\psi} \ll c$, then

$$
t_{\omega}^{\star}=f(L, \beta)+\frac{\beta}{2 \pi} \log \frac{S / L}{\pi E_{\psi}}
$$

where we used

$$
\frac{\beta}{\pi \epsilon} \frac{\sin \pi \alpha_{\psi}}{\alpha_{\psi}} \sim \frac{\pi E_{\psi}}{S / L}
$$

with $\frac{S}{L}=\frac{\pi c}{3 \beta}$ and $E_{\psi}=\frac{h_{\psi}}{\epsilon}$

Holographic considerations

Main idea \& strategy :

- Static point particle at $r=0$ in global AdS_{3}

$$
d s^{2}=-\left(r^{2}+R^{2}-\mu\right) d \tau^{2}+\frac{R^{2} d r^{2}}{r^{2}+R^{2}-\mu}+r^{2} d \varphi^{2}
$$

- Holographic entanglement entropy known

$$
S_{A}=\frac{c}{6}\left[\log \left(\frac{r_{\infty}^{(1)} \cdot r_{\infty}^{(2)}}{R^{2}}\right)+\log \frac{2 \cos \left(\left|\Delta \tau_{\infty}\right| \alpha_{\mu}\right)-2 \cos \left(\left|\Delta \varphi_{\infty}\right| \alpha_{\mu}\right)}{\alpha_{\mu}^{2}}\right]
$$

- Map metric to Kruskal coordinates, while boosting the particle, to describe a free falling particle in eternal BTZ
- Use an initial condition ensuring the particle carries the right energy, from CFT and stress tensor perspective
- Map endpoints \& compute entanglement entropy

Holographic comments

Calculations involve many explicit technical details, leading to
(1) Exact matching of dominant CFT contributions with the holographic model geodesic calculations

- S-channel and T-channel contributions precisely match the two dominant geodesics computing $S_{A \cup B}$
(2) In the limit of large t_{ω} :
- free falling particle becomes almost null with energy localised at the horizon
- matches the schock-wave descriptions proposed/used by Shenker, Stanford, Roberts, Susskind

Final remarks

- Stringy corrections (Shenker \& Stanford)
- Our results in the CFT follow from properties of 2d correlators in the large c limit
- they may exist in other slicings of AdS, i.e. hyperbolic slicing responsible for AdS-Rindler physics
- this may be related to the bulk expectation that scrambling occurs more generally than for event horizons (Susskind, Fischler et al)
- Statistics of OPE coefficients : thermalisation, typicality of correlators in CFTs and validity of ensembles in CFT

