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Motivation

Consider a critical physical system in 1+1 dimensions in some thermal
state

Pp

Perturb the state by a local primary operator
Ow(x0,0) ps O, (x0,0)
Evolve the system unitarily
e Ht ((’)W(XO,O) p3 (’)iV(XO,O)> et
Question : Is there any sense in which subsystems behave thermally after

some time scale t 7
AIA:B(t:;) =0
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Holographic Motivation

© Eternal BH ~ thermo field double (Maldacena)

> Recently re-interpreted in terms of EPR=ER (Maldacena-Susskind)
» Local Perturbation of this scenario : time evolution of the throat 7
» Improvement in the holographic dictionary

© BH physics suggest speed at which thermality is regained is faster
than in diffusive systems (scrambling) (Susskind-Sekino)

» No-cloning argument & causality bounds
t, ~ Blog$
» Small perturbations get blue shifted near horizon (Shenker-Stanford)
t* ~ Blogm, 3

Question : Any CFT evidence for any of these bulk effects ?
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Entanglement vs Correlations

Question : Is there any relation between quantum entanglement and
correlation lengths 7

Consider as measure of entanglement, mutual information

I(C: D)= S(pc)+ S(pp) — S(pcp)

Using Pinksler's inequality, one can
show (Wolf, Verstraete, Hastings,
Cirac)

1y = ({0cOp) — (0c)(0p))*
D) 2 == 52 [ooP
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Connected correlators as geodesics in AdS/CFT

The connected 2-pt correlation function of a heavy operator behaves like
(Balasubramanian & Ross)

(Oc(x)Op(xp)) — (Oc(x))(Op(xp)) ~ e~ MLouklxc, x0)

@ Lpuk(xc,xp) is the bulk geodesic distance between the boundary
points x¢c and xp

@ Ap = ml > 1 (not scaling with N or c)

@ Holographic dual correlation only depends mildly on the dual operator
(through Ap)

Simén (Edinburgh) Entanglement excited states Swansea 2015 5/ 44



Entanglement entropy in AdS/CFT

Entanglement entropy in an strongly coupled CFT vs bulk geometry.
Ryu & Takayanagi
S(pg) x Area(9B) o Area(Xpuik)

where 2,k is a bulk minimal surface anchored to 9B

@ Non-local diffeomorphism A Minimal Surface

invariant observables > /

@ Deep relation between the set of f @
minimal surfaces and Einstein's I
equations AdS 1 »

Bouﬂary
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Entanglement vs spacetime connectedness

Consider a full quantum system described by AU B
Study the limit of vanishing entanglement holographically

Spacetime connectedness

Sending entanglement to zero,

requires :
© Proper bulk distance to
infinity
© Area of the common

boundary to zero =
pinching
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Consequences

Quantum mechanics

Consider a Hilbert space H1 ® H» with no interactions

© Product states have vanishing connected correlators

© Entangled states have non-vanishing correlators !!

AdS/CFT

Consider 2 decoupled CFTs

© Product states having holographic duals correspond to disconnected
asymptotically AdS spacetimes
Example : |vac) ® |vac) = 2 disconnected AdS spacetimes

© Entangled states = d correlations = connected geometry !!
Example : eternal AdS black hole
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Eternal AdS BH revisited

g g
Y ¢
) . ) ¢
© Classical maximal extension of the '\ '»
s
eternal AdS BH H LA H
@ Connectedness through BH event L Pk R
: ¢
horizon ¢ ‘\
¢ .
PO e

For certain observables and low energies, an observer in H g measures a
thermal state :

- Z(ﬂ)z,:e“’ ENE],  |E)€Hr

Can we interpret pgy as a reduced density matrix ? (Maldacena)

\/Z(ﬁ

Quantum entanglement is responsible for the existence of correlations
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EPR = ER (Maldacena & Susskind)

Eternal black hole re-interpreted

© Non-vanishing correlators between H; and Hg are due to quantum
entanglement (EPR)

© These correlations are holographically captured by the bulk geodesic
distance between opposite boundaries = length of the ER bridge

© Entanglement entropy = black hole entropy = maximal cross-section
of the ER bridge
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Outline

2d CFT set-up
Free scalar 2d CFT at T = 0 (warm-up)
Large c 2d CFTs at finite T & thermo field double

Holographic remarks

Final remarks
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Set-up (single CFT)

Consider an excited state in a 2d CFT

(Wo(t)) = VN e Mt e=<HO(0, —1)|0)

o O isinserted at t = 0 and x = —/ and dynamically evolved afterwards

@ ¢ is a small parameter smearing the UV behaviour of the local
operator

Density matrix :

p(t) = N e Hte=<HO(0, —0)|0)(0|0T(0, —¢) et e=<H
:N(’)(W27@2)’O><O‘OT(W1,J}1)

where wy = =0+ i(e — it), wo = =€ — i(e + it) (01 = —€ — i(e — it))

Simén (Edinburgh) Entanglement excited states Swansea 2015 12 / 44



Set-up (notation)

Our calculations will be done in euclidean signature :
w=x+IiT, w=x—IiT

We use the euclidean continuation : 7 = it
@ The normalization factor NV is fixed by Tr(p(t)) =1

@ The cut-off € can be viewed as a separation in the insertion time

appearing in p(t)
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Replica trick - |

Following Cardy & Calabrese

1 Trp")
=%\ 5 <;§§‘)>

1 Iog[<O(w1,@1)OT(w2,@2)...OT(w2n,(IJQ,,)>):"
1—n ((O(w1,@1) Ot (w2, @2))x,)"

Notice no twisted operators but CFT defined on a Riemann surface

ASY) =

O (waky, @auin) \

® wypy1 = e¥kuwy

® wypy2 = ey
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Replica trick - 1l

Following Cardy & Calabrese
Trpp ~ (lo(wr,01)5 (w2, @2)[¢)

|1) stands for whatever CFT state you want to consider (vacuum or
excited state)
@ Non-trivial topology replaced by twist operators
@ Calculation done in n-copies of the original CFT
@ Twist operators emerge because of the existence of some internal
symmetry when swapping these copies
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Free scalar 2d CFT & finite region A

Compute the Renyi entropy variation for n = 2

Strategy : Map X, into X1 using the conformal transformation
(uniformization)
w

w—L:

The 4-pt function determining the Renyi entropy will equal

22

<OT(W1, @1)0((«02, @2)OT(W37 @3)0(“’47 @4)>22

L | dw; | 280
=11 d—zj (O1(21,21)O(22, 22) O (23, 23) (21, Z) )5,
=1
4 —2A
dw;j © _ _
=11 T |213204| 7*4© G (2, 2)
j—1 | 94

where the cross-ratio z = 2224 with z; = z;

— 7
213224 J
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Free scalar 2d CFT

Altogether

<OT(W1, @1)0((,02, QQ)OT(LLB, @3)(9(&)4, @4)>22
(O (w1, @1)O(wa, ®2))x,)?

We will consider two different excitations with Ap = %
@ When O; = ¢'?/2, then
1
Gi(z,2) = —
Vizlll = 2|
@ When O, = % (e"‘?/2 + e‘f¢/2),
1+1-
Golz.2) = TR =2 gz 2
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Specific details
Our points (z;, z;) equal

_ _ f—t—ie
AT BTN I
B B {—t+ie
e Vi iy R

In the limit of small ¢ we obtain
° (z,z) - (0,0) when O <t <lort>L+/{
[2¢2 [2¢2

TR (L2 CT Al (Ll o2

@ (z,z) - (1,0) when { <t < L+/

[2¢2 _ [2¢2
Z o~

40— t)2(L+ L — )2’ 40+ t)2(L+ L+ 1)2°

z~1
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Results & interpretation

A5£\2)((’)1) =0 all times

(2) _J 0 O<t<l,ort>l+1L
ASy (02)_{Iog2 (<t<l+L

° ASf)(Ol) = 0 because it can be viewed as a direct product state
ei¢L/2|0>L ® ei¢R/2|0>R

@ Since O creates a maximally entangled state at x = —/ propagating
in opposite directions

1 . . . .
= (ef¢L/2 ior/2 —idL/2 —i¢Rr/2
75 (2100 @ 0 /210)5 + eI40/20), & e97/2]0) )

» Causality makes both pairs to be in the complement of A for 0 < t < /¢
and t > /(4L
» for { < t < ¢+ L one member of the pair lies in A.
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Excitations at finite temperature

Same set-up as before, but now

© we perturb a thermal state :
p(t) = NO(wa, @) e PH O (w1, @1)

with
w1 =xp+t+t,+ie b1 =xg—t—t, — e

wr=xg+t+1t,—ie p =xg—t—t, +ie.

© A pair of operators will be inserted on a cylinder, separated 2i¢
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Our calculation & notion of ”scrambling”

@ Consider a thermofield double set-up.
@ Perturbed the system at —t, by a primary localised operator O

@ Evolve unitarily

Measure the amount of entanglement at t = 0 using the mutual

information
I(A: B;t,) =Sa+ Sg — Saus

We can ask what the time scale t,, has to be so that the perturbation can
not be distinguished from the original thermal state (scrambling time)

A/(A - B; tw) = ASp+ASg — ASp =0
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What our condition boils down to

Hartman & Maldacena showed that in the absence of perturbation :
@ at early times, mutual information decreases linearly

@ at late times, i.e. t > % Saue = Sa + Sp saturates and the mutual
information vanishes.

Thus, if we assume t3 > é our condition reduces to
I(A:B;t;)=0

This is what was analysed by Shenker & Stanford and what we will end up
discussing today.
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Thermofield double set-up

Consider two non-interacting 2d CFTs, say CFT; and CFTg, with
isomorphic Hilbert spaces H; g
Thermofield double state :

= L eng" ny, |n
|w5>_ mzn: | >L‘ >R

@ |n), is an eigenstate of the hamiltonian H; acting on H; with
eigenvalue E, (and similarly for |n)g).

@ |n), is the CPT conjugate of the state |n)
@ Notation : |n); ® |n)g as |n), |n)p.
@ Thermal reduced density

prR(B) = try, (|Ws) (Ws]) = Z e 75 |n)g (nlg

nE’H
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Thermofield double : observables

@ Single sided correlators are thermal

<W5| OR(Xl, tl) C OR(X,,, t,,) |W5> =

try, (PR(B)OR(x1, t1) - . - OR(Xn, tn)) -

@ Two sided correlators : by analytic continuation

(W5l OLlxa, —1) ... Or(xp, 1) [Wg) =

try, (PR(B)OR(XI; t— Iﬂ/2) R (’)/:()(X,I77 t;,)) .

Will use this observation when computing Renyi entropies
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CFT considerations

As discussed by Morrison & Roberts (see also Hartman & Maldacena) :

@ single sided thermal correlation functions are computed on a single
cylinder with periodicity 7 ~ 7+ f3

@ two-sided correlators involve a path integral over a cylinder with the
same periodicity 7 ~ 7 + 3, where all operators O are inserted at
T = i3/2, whereas O, are inserted at 7 = 0

Set-up : Consider thermofield double state

@ two finite intervals: A = [L1, Lp] in the left CFT, and B = [Ly, L] in
the right CFTg

@ perturb the TFD by the insertion of a local primary operator O;
actingon CFT  at x=0,t_ = —¢t,
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Bulk interpretation
© Single BH in thermal equilibrium : evolution by a boost (Hr — H;)

Htf:]IL®HR—HL®]IR.

Future
interior

Left " Right
Hu exterior ,,’”\_ exterior Hr

Past
interior

» Time propagates upwards in H g and downwards in H;.
» Thermofield double is (boost) invariant

@ Approximate description of the state at t = 0 of two AdS black holes
(HR + H/_)
H=1,®9Hr+H ®Ig=Hr+H,.

Time propagates upwards in both boundaries
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Calculation of S,

Spa=—lim
A n—1n—1

log (Tr pa(t))

where

nro (W(xa,X1)o(x, %2)5(x3, %3) 0T (xa, X)) ,
oAl = e ) G )} )"

with the insertion points

x1=—ie, xo=1L1—t,—t, x3=1Ly—t,—t, x4=-+ie

X1 =+ie, xo=L1+t,+t, x3=Lr+t,+t, Xs=—ie

with conformal dimensions

1
Hy = nhy , Haznha=n£<n——>
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Conformal maps

© From the cylinder to the plane
w(x) = e2mx/P
@ Standard map : w1 — 0, wp — z, w3 — 1 and wg — 00

_ (w1 —w)wsg
w13(w — wa)

where the cross-ratio satisfies

w12W34
zZ = ————
w13w24
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Result

SE\") = c(n;— D) log ( s sinh (Lo — Ll))

TEYy B

! log <|1 — z|*He G(z,?))

n—1

where
G(Z,?) = <¢| 0'(2,2)5'(1, 1) |¢>

Using the large c results derived by Fitzpatrick, Kaplan & Walters in the
limitn—1

3(1=ay)55(1=as) (1 _ ) (1 — 38
Z2 Z2 Z V4
ASA:%|0g< (1 —z7)( ))

aydy(l —z)(1-2)

where o, = /1 — o
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Cross-ratios

The cross-ratios are

. - m(La—Ly)
2mie sinh -5 5
=i B sinh ﬂ(LZ_Bt_t“) sinh ﬂ(Ll_Bt_t“) +OlE)

smh( & )smh( i )
s.nh( mHa )smh (%)

Drrie sinh 7(2-t1)

~1 2
=1 B sinh ™ thgt“w) sinh ”(LIZH%) +0(<)

zZ=
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Final result

Analysing the imaginary parts, we reach the conclusions :
o (z,z) » (1,1) for t + t, < Ly and t + t, > Ly
o (z,2) = (e 1) for Ly < t+1t, <Ly

The importance of this monodromy has been emphasized by several groups
including Asplund, Bernamonti, Galli & Hartman and Roberts & Stanford

(ASp=0, t +t,<Llyandt +1t,> Ly

3 si sinh (L=t =te) ) giph (mttt)

Li<t . +t, <Ly

where L = L, — [4
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Calculation of Sg

Very similar, but with different insertion points :

YR (1h(x1, %1 )0 (x5, X5)5 (X6, X6 )01 (x4, %)) c,
T oAl = ) s ) )

with the insertion points

x1 = —ie, X5:L2+i§—t, x6=L1+i§—t, X4 = +ie

X1 = +ie, )?5:L2—i§+t, Ro=Li—i2+t, Xu=—ie

We always obtain the expected thermal answer at all times
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Calculation of Sy 5

Very similar, but with different insertion points :

(9 (x1, %1) o (x2, %2)8 (x2X3) (X5, X5)5 (X6, X6) ! (xa, Xa)) ¢,

Tr pus(t) = (0 0x, %)v (. %)) )"

with the insertion points

x1 = —ie, xo=Li—t,—t., x3=Ly—t,—t_, x4=++ie,
X1 = +ie, Xo=Li1+t,+t., xz3=Lr+t,+t_, X4g=—le,
X5 = L2+i§—t+, X6:L1+i§_t+a
X5 = L2—i§+t+, )_(6:L1—I'§+t+.
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Strategy

Using conformal maps

8H,
|1 — z|*H7 | z56)*1

L
Trphos = %sinh <%>
{¥lo(2,2)5(1,1)o (25, 25)5 (26, 26 ) ¢))

where all cross-ratios z, z; are analytically known.

e (Y|o(z,2)d(1,1)o(zs,25)5(z6,26)|10) expected 6-pt function
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S-channel (1)

Let us introduce a resolution of the identity

(¥lo(z,2)(1,1)0(25, 25)5 (26, Z6)[¢))
= Z Ylo(z,2)6(1,1) |a) (o o(zs, 25)5 (26, 26) )

o (z,z) = (1,1) for t_ + t, > Ly = use OPE !l

@ 0(z,2)5(1,1) ~ I+ corrections in(z — 1)" O,

@ Orthogonality of 2-pt functions = |o) = |¢)) dominant
Thus,

(Ylo(z,2)5(1,1)0(z5, 25)5 (26, Z6)|¢))
=~ (¥lo(z,2)6(1,1) [¢) (Yl o(zs,25)5 (26, 26)[¢))
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S-channel (I1)

Using conformal maps

(] (25, 25)5 (25, 26)|00) = |1 — 25[*"" | 25| " (4] 0(25, Z5)5 (1, 1)) ,

we obtain

8 . (7TL>
Trph p =~ sinh | —
PAUB ’WGUV ﬁ

Since Zs = z5, the cross-ratio determining Sg, we derive

—8H,
11—z[* |1 — z5|*M G(2,2)G (35, Z5)+ ...

SauB = Sa + S, and lag =0

This resembles the bulk calculation from two geodesics joining pairs of
points in the same boundary !!
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T-channel (1)

We could introduce the resolution of the identity as follows

(Y|o(z,2)6(1,1)0(zs,25)5 (26, Z6) |10)
= Z<"¢1|0(272)5(Zﬁ726) o) (| o(z5,25)5 (1, 1)[4)) -

«

® (z5,25) — (1,1) for small € = use OPE !

@ As before, |a) = [¢)) dominant contribution !!
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T-channel (1)

In this case,

—8Hs 4H,

Tr 0" ~ 1— 4H01_~4Hg
PAuB 1—x \ z5[7| |

B sinh <7T—L>
TEYy B

G(EQ, EQ)G(Z5, 25) + ...

where (x, X) are the cross-ratios computed out of the insertion points of
the four twist operators

. 2 7T(L2—L1)
o 223756 _ W23ws6 2sinh B

=X,

75236 W25W36  cosh w + cosh w
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T-channel (I11)

For t_ + t, > Ly, we derive

Sag =~ 5 log B cosh (TAE + Slog B sinmoy
3 Teyv /8 3 TE Oy
c, sinh W cosh % sinh ﬂ'(t_—i-ﬁtw—L) cosh ﬂ(LEt+)
+ —lo
6 g cosh ”TAt cosh ”Tm

where weset L3 =0, Lo =Land At=t_+¢t,—t;
@ To derive this result we used Fitzpatrick, Kaplan & Walters
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Mutual information & ” Scrambling” time (1)

In the regime t_ + t, > Ly > Lj,

2c
lag ~ 3 log

TEYV

b sinh 7T—L>

B

< og (Esmalrpazb)

3 e

c | sinh m(t+tw) cosh % sinh W(tf-l/—é)tw—L) cosh W(L/gt+)
— —lo

6 g cosh ”TAt cosh ”Tm

@ take t_ =ty = 0 and look for t} satisfying

las(t;) =0
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Mutual information & ”Scrambling” time (I1)

Assuming t’ /3 > 1, we currently obtain
L B Bsinmay\ B 8sinh* 7
th=——_—log| =—")+ —log| ———~
4 27 TE 47 cosh %

e if hy < c, then

S/L
_f(L’5)+2ﬁ71|0g7r/E¢

where we used
6 sin 7TCK¢ Ew

TE Q) S/L

hy

€

with *z = 3[3 zand E, =
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Holographic considerations

Main idea & strategy :
@ Static point particle at r = 0 in global AdS;

R2dr?

2 2, p2 2
= _ R2 — e
ds (r*+ 1) dt +r2+R2—;1,

+ r2d<p2 ,
@ Holographic entanglement entropy known

s,— ¢ [IOg <r£c1>) : ré?) +log 2.cos (|AToo|cry,) — 2 cos (| Apoo| )

6 R2 al%

@ Map metric to Kruskal coordinates, while boosting the particle, to
describe a free falling particle in eternal BTZ

» Use an initial condition ensuring the particle carries the right energy,
from CFT and stress tensor perspective

@ Map endpoints & compute entanglement entropy
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Holographic comments

Calculations involve many explicit technical details, leading to

@ Exact matching of dominant CFT contributions with the holographic
model geodesic calculations

» S-channel and T-channel contributions precisely match the two
dominant geodesics computing Saus

@ In the limit of large t,, :

> free falling particle becomes almost null with energy localised at the
horizon

» matches the schock-wave descriptions proposed/used by Shenker,
Stanford, Roberts, Susskind
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Final remarks

@ Stringy corrections (Shenker & Stanford)
@ Our results in the CFT follow from properties of 2d correlators in the
large c limit

> they may exist in other slicings of AdS, i.e. hyperbolic slicing
responsible for AdS-Rindler physics

> this may be related to the bulk expectation that scrambling occurs
more generally than for event horizons (Susskind, Fischler et al)

@ Statistics of OPE coefficients : thermalisation, typicality of correlators
in CFTs and validity of ensembles in CFT
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