
HIGHER SPIN CORRECTIONS TO

ENTANGLEMENT ENTROPY FROM CFT

JHEP 1406 (2014) 096, Phys.Rev. D90 (2014) 4, 041903
with Shouvik Datta, Michael Ferlaino, S. Prem Kumar

1412.3946
with Shouvik Datta and S. Prem Kumar



INTRODUCTION AND MOTIVATION



• Entanglement entropy is emerging as an important physical
observable in quantum systems.

• Our interest in EE is due to its connection with holography.
It is a good observable to study in theories which admit a
gravity dual.

• Studying it in gravity will teach us how entanglement is
encoded in geometry.



• Definition: Consider a Hilbert space described by a set of
commuting observables.

Partition the observables into 2 set of disjoint observables:

A and B.

Let the density matrix of the system be ρ.

Define the reduced density matrix

ρA = TrBρ

Entanglement entropy is the Von-Neumann entropy given by

SA = −Tr(ρA ln ρA)

By definition entanglement entropy reduces to the thermal
entropy if ρ corresponds to the thermal state
and when the sub-system A tends to the full system.



• There is a closely associated measure of entanglement:
Rényi entropy.

Sn
A =

1
1− n

logTr(ρn
A)

In the n→ 1 limit, Sn
A → SA.

• In quantum field theories: RE/EE are usually very difficult to
evaluate.

• However there exists some exact results for 1 + 1 relativistic
quantum field theories at critical points.



• Consider a 1 + 1 dimensional conformal field theory with
central charge c on a real line.
Let the sub space A be an interval of length ∆.
Then EE is given by

SA =
c
3

ln(
∆

ε
)

ε is a UV cut off.

• If the CFT is on a circle of size L

SA =
c
3

ln
(

L
πε

sin(
π∆

L
)

)

• If the CFT is on the real line, but at finite temperature: β

SA =
c
3

ln
(
β

πε
sinh(

π∆

β
)

)



• There are similar expressions for the Rényi entropy eg.

SA =
c
6

(n +
1
n

) ln(
∆

ε
)

• Apart from the central charge c, EE/RE of a single interval
does not have any other information of the theory.
It is ‘universal’.

• In this respect it is similar to the high temperature behaviour
of the thermal entropy of CFT, given by the
Stefan-Boltzman-Cardy formula

s =
π2

3
c
β



• Since the result for the EE is universal it must be possible to
obtain the result in holography.

• There is a very simple geometric proposal to evaluate
entanglement entropy for field theories which admit a
gravitational dual
Ryu, Takayanagi 2006.



For the 1 + 1 dimensional case, one has to consider AdS3
geometry.

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdθ2)

Examine the geometry at a constant time slice.
Consider a geodesic which originates at the boundary
at point P and goes back to the boundary at Q.

P : (ρ0, θ = 0) Q : (ρ0, θ =
2π∆

L
)

Boundary CFT in on a circle of circumference L.



The proposal states that the entanglement entropy is given by

SA =
1

4GN
× (Geodesic length between P and Q)

GN is the 3 dimensional Newton’s constant.



The geodesic length is given by

cosh
(

lgeodesic
R

)
= 1 + 2 sinh2 ρ0 sin2 π∆

L

Push ρ0 →∞, the boundary

lgeodesic
R

= 2 ln
(

eρ0 sin
π∆

L

)
Then the proposal states

SA =
lgeodesic
4GN

=
1
4
× 2c

3R
× 2R ln

(
eρ0 sin

π∆

L

)
=

c
3

ln
(

eρ0 sin
π∆

L

)
Note eρ0 plays the role of the UV cut off.



• This proposal reproduces the known result for the
entanglement entropy of a single interval from CFT.

It also satisfies certain known properties of entanglement
entropy (eg. strong sub-additivity).

• There is no such simple proposal for the evaluation of the
Rényi entropy in holography.

It fails to capture more detailed properties of entanglement
entropy.



• How one get more information about the CFT from RE/EE?
(detailed properties).
We will list 3 methods.

Method1: Consider more than one disjoint intervals in the CFT.
Say consider 2 intervals with end points

A : (y1, y2) B : (y3, y4)

Then the more detailed behaviour of S(A ∪ B) is captured by
the cross ratio x(y1, y2, y3, y4).

As an expansion in the cross ratio there is information about
the spectrum of the theory.

The RT proposal is blind to this information of the CFT.

Recently methods have been developed on how to obtain these
corrections in holography and precise matching with CFT
results have been obtained.



• Method 2: Place the system on a ring of radius R and at finite
temperature β.
The CFT is on a torus. The EE of an interval of size ∆

SA =
c
3

ln
(
β

ε
sinh

π∆

β

)
+e−RT f (∆)

These are finite size corrections.
Finite size corrections capture information of the spectrum of
the theory.
The RT prescription does not reproduce the finite size
corrections.



Finite size corrections of RE/EE for free boson and free fermion
CFT’s on a torus has been evaluated.

The leading finite size corrections have been compared with
more refined methods of evaluating these in the gravity dual
developed by Faulkner, Barrella et. al 2013

and precise agreement obtained.
Datta, JRD JHEP 1404 (2014) 081



• Method 3: Consider CFT’s deformed by holomorphic currents
and held at temperature β.
The action is given by

SCFT = S(0)
CFT + µ

∫
d2z(W (z) + W̄ (z̄))

We consider currents of dimension (3,0) and (0,3), spin 3
current.
µ is the chemical potential.



• For any CFT which admits a spin 3 current we show that the
entanglement entropy for a single interval is corrected

SA(β, µ,∆) =
c
3

ln
(
β

ε
sinh

π∆

β

)
+
µ2

β2 S(2)
A (β,∆) + O(µ4)

We evaluate S(2)
A (β,∆) and also prove it is universal.



•Whats the motivation for this question ?

CFTs with higher spin symmetry is of interest due to the
proposal of Gopakumar, Gaberdiel 2011.

Certain coset minimal model CFT’s withW∞[λ] are dual to the
Vasiliev theory in AdS3 with an infinite tower of spins.

This theory can be written as a Chern-Simons theory based on
the group hs[λ].



• The thermal entropy of CFTs deformed with a (3,0) current
has been evaluated in the high temperature limit

s(µ, β, λ) =
π2c
3β

(1 +
32π2

3
µ2

β2 +
µ4

β4 f (λ) + O(µ6))

These are corrections to the Stefan-Botlzman-Cardy formula.

The O(µ2) term is universal, does not depend on λ.
Gaberdiel, Hartman, Jin 2012

• In the dual Vasiliev theory a black hole with spin-3 charge
has been constructed and an expression for its entropy
s(µ, β, λ) obtained.

It agrees to order the O(µ6) evaluated in the CFT.



• There is a proposal by deBoer, Jottar and Castro, Iqbal 2013
to evaluate entanglement entropy in holographic higher spin
theories by generalizing the proposal of Ryu, Takanayagi.

It uses the Chern-Simons formulation of the higher spin theory.

The EE is written in terms of a Wilson line in the bulk joining the
end points of the entangling interval.

A formula for the EE SA(µ, β, λ = 3),
(λ = 3 theory contains only spins 3 and spin 2 ),
has been written down resulting from this proposal.

• The CFT calculation and the fact the O(µ2) term is universal
will enable a precise check on the holographic proposal for
entanglement entropy in these theories.



EVALUATION OF
ENTANGLEMENT ENTROPY IN CFT



The Replica Trick

• Consider the evaluation of Trexp (−βH) in the path integral
language.

One evolves the CFT living on the real line and then sews up
after evolving to β because of the trace.

• The reduced density matrix ρA = TrB exp(−βH) is obtained
by evolving to β,

then sewing the CFT over the region B, the complement of A.

There is a cut along the interval A



• Then
Tr(ρn

A) = Tr(ρAρA · · · ρA)

is obtained by sewing n-copies of the CFT on the cut along the
interval A.

The last copy joined to the original sheet.



•We therefore have

Trρn
A =

Zn[A]

(Z [1])n

The partition function on the n -sheeted Riemann surface
joined along the interval A.

• The path integral representation is given by

Zn[A] =

∫
[dϕi ] exp(−S[ϕ1]− S[ϕ2]− · · ·S[ϕn])

with the boundary conditions

ϕk (σ, τ = β−) = ϕk+1(σ, τ = 0+), σ ∈ A = (y1, y2)

• It is easy to see by performing a discrete Fourier transform of
the fields ϕi that the points y1, y2 are fixed points of a Zn
orbifold.



• It can be shown that

Tr(ρn
A) =

Zn[A]

Z n

is equal to the 2 point function of branch point twist operator τn
of conformal dimensions

dn = d̄n =
c

24

(
n − 1

n

)

• The branch point twist operator implements the boundary
conditions

ϕk (τ + β−, σ)τn(y1) ∼ ϕk+1(τ + 0−, σ)

where σ ∈ A.



• Lets calculate

Tr(ρn
A) = 〈τn(∆)τ̄n(0)〉 =

( ε
∆

)4dn

Then
1

1− n
lnTrρn

A =
c
6

(
n +

1
n

)
ln

∆

ε

The n→ 1 limit results in the entanglement entropy.



• To evaluate the partition function on the n-sheeted Riemann
surface is to use the uniformization map

from the n-sheeted surface to the complex plane.

w =

(
z − y1

z − y2

) 1
n

z is the co-ordinate on the multi-sheeted Riemann surface Rn,

w is the co-ordinate on the complex plane.



• Consider the following correlator

〈T (z)τn(y1)τ̄n(y2)〉
〈τn(y1)τ̄n(y2)〉

=
〈T (z)〉Rn

〈1〉Rn

By using the map to the w-plane we obtain

〈T (z)〉Rn

〈1〉Rn
=

(
∂w
∂z

)2

〈T (w)〉+ {w , z}

where

{w , z} =
w ′′′

w ′
− 3

2

(
w ′′

w ′

)2

is the Schwarzian.

By translation invariance on the complex w plane we see that
〈T (w)〉 = 0.

Then the contribution to the correlator is entirely due to the
Schwarzian.



Evaluating the Schwarzian one can show

〈T (z)〉Rn = 〈T (z)τn(y1)τ̄n(y2)〉C

Thus the 1-point function of the stress tensor in the
multi-sheeted plane

is a 3-point function of the stress tensor with operators of
conformal dimensions

dn = d̄n =
c

24

(
n − 1

n

)

• Thus the correlator

Tr(ρn
A) = 〈1〉Rn = 〈τn(y1)τ̄n(y2)〉

the two point function of the twist operator.



• For a theory of complex free fermions,

there is an explicit construction of the twist operator in terms of
the bosonized fields

ψ = exp(iϕ)

• For a theory of complex free bosons,

though there is no explicit realization of the twist fields, all
correlators involving it can be evaluated using OPEs and
knowledge of the singularities.

Dixon, Friedan, Martinec, Shenker 1987



• The theory of N free fermions realizes aW1+∞ algebra.

After removing the over all U(1) it realizes the W∞[λ = 1]
algebra.

Therefore it admits a spin-3 current.

J = ψ∗aψ
a , T = 1

2

(
∂ψ̄∗aψ

a − ψ∗a∂ψa) ,
W = i

√
5

12π

(
∂2ψ∗aψ

a − 4 ∂ψ∗a∂ψ
a + ψ∗a∂

2ψa
)
.



• The theory of N free bosons realizes theW∞[λ = 0] algebra.

T (z) = −∂Xa∂X̄ a,

W (z) =

√
5

12π2 (∂2X̄i∂Xi − ∂X̄i∂
2Xi).



CONFORMAL PERTURBATION THEORY



•We are now ready to set up the the perturbation expansion of
the Rényi entropy, EE in terms of the chemical potential µ.

•We need to evaluate

Tr(ρn
A) =

1
Z n(µ)

∫
Rn

[dϕi ] exp

(
−

n∑
i=1

S[ϕi , µ]

)

where

S[ϕ, µ] = S(0)[ϕ] + µ

∫
d2z(W (z) + W̄ (z̄))

Note that there is a spin 3 current perturbation for each copy of
the sheet.



• Expanding in µ we need to evaluate

1
Z n(µ)

(
〈τn(y1)τ̄n(y2)〉(0) + µ〈τn(y1)τ̄n(y2)

∫
d2(W (z) + W̄ (z̄))〉(0)

+
1
2
µ2〈τn(y1)τ̄n(y2)

[∫
d2z(W (z) + W̄ (z̄))

]2

〉(0)

)

These correlators need to be evaluated on the cylinder and

the integrals need to be performed.

At O(µ2) there is a double integral to be performed.



• The linear term in µ vanishes. This can be seen by using the
uniformization map

〈τnτ̄nW 〉 = 〈W 〉Rn ,

=

(
∂w
∂z

)3

〈W 〉w−plane

= 0

The last step uses translational invariance in the w-plane.

This result can be explicitly checked either using the free
fermion or the free boson realization.



• The holomorphic and the anti-holomorphic currents are
decoupled,
the same argument can be used to show the correlators
involving cross terms between holomorphic and
anti-holomorphic spin-3 currents at O(µ2) vanish.

• Therefore the only correlator left to evaluate is

〈τn(y1)τ̄n(y2)W (z1)W (z2)〉



•We first evaluated this correlator in the theory of free fermion
and free boson theory.
We showed that they were same and agreed with the
holographic proposal of d’Boer and Jottar to the µ2 order.

•We will now present the outline of the calculation of this
correlator for any CFT which admits aW3 current and show it is
universal.



• By conformal invariance

〈τn(y1)τ̄n(y2)W (z1)W (z2)〉 = − 5c
6π2

F (x)

z6
12|y12|4dn

where

x =
(z1 − y2)(z2 − y1)

(z1 − y1)(z2 − y2)
,

z12 = z1 − z2, y12 = y1 − y2 = ∆



Determining F (x)

• From the fact the currents are holomorphic we have
F (x) is a holomorphic function in x .

• z1 → z2 is a symmetry of the correlator, therefore

F (x) = F
(

1
x

)

•We fix the normalization so that z1 → z2 limit

F (x = 1) = 1



• Look at limits

z1 → y1, z2 → y2, x →∞

or the limits
z2 → y2, z2 → y1, x → 0

In these limits the W current come close to the twist operator.



•We need the information of the following OPE

W (z)τn(y) =
O

(z − y)M

Note that O belongs to the twisted sector.

By definition τn creates the ground state of the twisted sector.

But O cannot be τn since 〈W (z)τnτ̄n〉 = 0.

Therefore
dimO > dim τn = dn

By dimensional analysis

M = 3 + dn − dimO < 3



• Note that the W current involves the sum over the W currents
over all the copies.

Therefore
W τn =

∑
i

Wiτn

should not have branch cuts.

The insertion of the twist operator τn just cyclically permutes
the copy label i and W is invariant under this.

Therefore M is an integer.



• This together with the fact F (x) = F (1/x) results in

F (x) = a0 + a1(x +
1
x

) + a2(x2 +
1
x2 )

such that a0 + 2a1 + 2a2 = 1.

We can re-write this by introducing the modified cross ratio

η = x +
1
x
− 2,

=
(z1 − z2)2(y1 − y2)2

(z1 − y1)(z1 − y2)(z2 − y1)(z2 − y2)

In terms of η we have

F (η) = 1 + f1η + f2η2



• To fix f1, f2 use the W (z1)W (z2) OPE.

− 1
π2 W (z1)W (z2) =

5c
6z6

12
+

5T (z2)

z4
12

+
5T ′(z2)

z3
12

+
1

z2
12

(
4U(4)(z2) +

16Λ(4)(z2)

c + 22
5

+
3
4

T ′′(z2)

)
1

z12

(
2∂U(z2) +

8
c + 22

5

∂Λ(4) +
1
6

T ′′′(z2)

)

Where
Λ(4) =: TT : − 3

10
∂2T

and U(4) is the spin 4 current, it is a conformal primary.

The coefficient of this term contains λ dependence.



• To fix f1, f2 substitute the OPE into the correlator.

then one obtains an expansion in (z1 − z2) with coefficients
involving the three point functions

〈U(4)τnτ̄n〉 = 〈∂U(4)τnτ̄n〉 = 0,

〈T τnτ̄n〉, 〈Λ(4)τnτ̄n〉, . . .

All of which can be evaluated by using the uniformization map.



•We can then perform the expansion in (z1 − z2) in RHS of the
expression

〈τn(y1)τ̄n(y2)W (z1)W (z2)〉 = − 5c
6π2

F (x)

z6
12|y12|4dn

,

= − 5c
6π2

1
z6

12|y12|4dn

(
1 + f1η + f2η2

)
Matching the coefficients fixes f1, f2.

In fact there are 4 equations but only 2 parameters.

But there exists a unique solution

f1 =
n2 − 1

4n2 , f2 =
(n2 − 1)2

120n4 − n2 − 1
40n4

• This determines the required correlation function of the spin 3
currents in presence of the twists.



•We have performed the following cross-checks on the result
for the 4-point function.

∗ The 4-point function agrees with that obtained for the free
field theories.

∗ Using the same procedure one can obtain the correlator of
the stress tensor in presence of the twists 〈TT τnτ̄n〉.

We can also obtain this correlator using the conformal Ward
identity on the 3-point function 〈T τnτ̄n〉.

Both results agree.



* Finally one can also evaluate the 4 point function 〈WW τnτ̄n〉
using the uniformization map.

〈WW τnτ̄n〉 =
∑
i,j

〈WiWjτnτ̄n〉,

=
∑
i,j

〈WiWj〉Rn

Using the uniformization map, this reduces to the two point
function of the spin 3 currents inserted at the images of the
respective Riemann sheet in the w-plane.

Then one needs to sum over the images.

The resultant correlator agrees with the OPE method.



• Now that one has the expression for the correlator,
we can go over to the cylinder using the conformal map

u =
β

2π
ln z

The we obtain

TrρnA
1− n

=
c(1 + n)

6n
ln
(

sinh
π∆

β

)
+ S(2)

n

where

S(2)
n =

5π4cµ2

6β6(n − 1)

∫
d2u1d2u2

f1ηβ + f2η2
β

sinh6(πu12
β )

ηβ =
sinh2[πβ (u1 − u2)] sinh2 π∆

β

sinh π
β (u1 − y1) sinh π

β (u1 − y2) sinh π
β (u2 − y1) sinh π

β (u2 − y2)



• The integral can be done on the cylinder using the following
prescription.

Integrate along the spatial direction infinite direction first.

Separate possible coincident point by insertion of an iε.

eg. one might encounter∫ ∞
−∞

dσ
∫ β

0
dτ

1
sinh2(σ + iτ − a)

=

−
∫ β

0
dτ coth(σ + iτ − a)|∞−∞ = −2β

• One can show, the result depends only on the

Residue of the double poles of the integrand

Residue of the simple poles and its location of the integrand.



• Note that integrating along the spatial direction first reduces
the current insertion to the conserved charge∫

cylinder
d2zW (z) =

∫ β

0
dτ
∫ ∞
−∞

dσW (σ, τ),

=

∫ β

0
dτQ

Therefore this prescription captures the deformation of the
Hamiltonian of the theory by µQ.



• The result for the correction to the Rényi entropy to O(µ2) is
given by

S(2)
n =

5cµ2n
6π2(n − 1)

(f1I1 + f2I2)



I1 (∆) =
4π4

3β2

(
4π∆

β
coth

(
π∆
β

)
− 1

)
+

+
4π4

β2 sinh−2
(
π∆
β

) {(
1− π∆

β
coth

(
π∆
β

))2

−
(
π∆
β

)2
}

and

I2 (∆) =
8π4

β2

(
5 − 4π∆

β
coth

(
π∆
β

))
+

+
72π4

β2 sinh−2
(
π∆
β

) {(
1− π∆

β
coth

(
π∆
β

))2

− 1
9

(
π∆
β

)2
}
.



• Taking the limit n→ 1 results in the entanglement entropy.

If one takes further the limit ∆
β >> 1, then one obtains the

correction to the expected correction to the thermal entropy as
evaluated by

Gaberdiel, Hartman, Jin 2012.

• The result agrees with the O(µ2) correction evaluated using
the Wilson line proposal of deBoer, Jottar.



• It is quite striking that the entire functional dependence (∆, β)
of the µ2 correction is captured in holography.

This usually indicates that there is an underlying symmetry
reason.



Summary of recent work

•We have studied the corrections to thermal entropy, single
interval Rényi entropy and Entanglement entropy for the theory
of the free fermions on the torus. The theory is deformed by:

U(1) chemical potential

Stress tensor

Spin 3-chemical potential.

• This was done to further test and establish our prescription for
doing the integrals.
It was also done to obtain finite size corrections: O(e−TR).

• Such prescriptions were developed in the context the
description of 2d Yang-Mills as a theory of free fermions
Dijkgraaf 1993, Douglas 1996



• The case of the U(1) deformation all results agreed with the
expectation:

The theory obeys twisted boundary conditions around the
thermal circle.

• For the case of the stress tensor deformation, the results
agreed with the expectation the temperature β of the theory is
shifted.



• The results for the corrections to thermal entropy can be
written in terms of quasi-modular forms of a definite weight (eg.
spin 3 case , weight 6 ).

• The results for the corrections to the Rényi entropy can be
written in terms of a quasi-elliptic functions of a definite weight.



• All these corrections were shown to satisfy several non-trivial
consistency checks. eg. cylinder limit, thermal entropy limit.



• The correction to the partition function:

lnZ = lnZCFT − βF (2) + . . .

−βF (2) = 1
2µ

2
∫
T2

d2z1

∫
T2

d2z2 〈W (z1)W (z2)〉 + h.c.



−βF (2) =

80Mµ2β2π
4

L4

[
1

25 · 34 · 5

(
10E3

2 − 6E4E2 − 4E6

)
− 1

25 · 32 (E4 − E2
2 )
ϑ′′ν
ϑν

− 1
26 · 32

(
ϑ

(6)
ν

ϑν
+ 2E2

ϑ
(4)
ν

ϑν
+ E2

2
ϑ′′ν
ϑν

)]
.

ν = 2,3 corresponds to periodic, anti-periodic fermions on the
spatial circle.



In the Hamiltonian picture we have

lnZ = 2M
∞∑

m=1

[
ln
(

1 + e2πiτm + bµm2
)

+ ln
(

1 + e2πiτm− bµm2
)]

,

b =
4
√

6π3

L
τγ . γ = i

√
5

6π2

Expanding to order µ2, the partition sum is

lnZ = 2M ln
[
ϑ2

η(τ)

]
+ 160Mµ2β2π

4

L4

∞∑
m=1

m4 qm

(1 + qm)2 + . . .

M is number of free fermions.
The q expansions in both approaches agree .
(ν = 2)



The Rényi entropy when the size of the interval equals the
system size ∆ = L, must agree in the n = 1 limit to the thermal
entropy.

The Rényi entropy correction at order µ2, with ∆ = L is given by



S(2)
RE(∆,n)

∣∣∣
∆=L

=
µ2M

(1− n)

80π4β2

L4

∑
k

[
1

25 · 32

(
E2

2 − E4

)(ϑ′′ν(x)

ϑν(x)
− ϑ′′ν
ϑν

)
− 1

26 · 32

{
E2

2

(
[lnϑν(x)]′′ − ϑ′′ν

ϑν

)
+ 2E2

(
ϑ

(4)
ν (x)

ϑν(x)
− ϑ

(3)
ν (x)

ϑν(x)

ϑ′ν(x)

ϑν(x)
− ϑ

(4)
ν

ϑν

)

+
ϑ

(6)
ν (x)

ϑν(x)
−

(
ϑ

(3)
ν (x)

ϑν(x)

)2

− ϑ
(6)
ν

ϑν




x= kπ
n

.

The sum over k runs from −(n − 1)/2 to (n − 1)/2 in steps of
unity.



We have

S(2)
RE(∆,n = 1)

∣∣∣
∆=L

= β2∂F (2)

∂β

(Non-trivial mathematical identity)


