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July 10, 1908

Heike Kamerlingh Onnes liquifies helium

Leiden, the Netherlands

(1 atm)T � 4.2 K



Shortly Thereafter

Leiden, the Netherlands

Begins studying low-temperature properties of metals

T � 1 to 10 K



April 8, 1911

Heike Kamerlingh Onnes discovers superconductivity

R



“for his investigations on the properties of matter 
at low temperatures which led, inter alia,

to the production of liquid helium”

1913

Onnes receives the Nobel Prize in Physics
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Debye Temperature

Quantized vibrational modes of a solid = Phonons

It is reasonable to assume that the minimum wavelength of a phonon is twice the atom separation, as
shown in the lower figure. There are  atoms in a solid. Our solid is a cube, which means there are

 atoms per edge. Atom separation is then given by , and the minimum wavelength is

making the maximum mode number  (infinite for photons)

This is the upper limit of the triple energy sum

For slowly-varying, well-behaved functions, a sum can be replaced with an integral (also known as
Thomas-Fermi approximation)

So far, there has been no mention of , the number of phonons with energy  Phonons obey
Bose-Einstein statistics. Their distribution is given by the famous Bose-Einstein formula

Debye model - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Debye_model
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Minimum wavelength:
2 x (lattice spacing)

Maximal Frequency

lowest temperature at 
which maximal-energy 

phonon excited
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The Kondo Effect

P H Y S I C S W O R L D J A N U A R Y 2 0 0 134

below TK emerged in the late 1960s from Phil Anderson’s idea
of “scaling” in the Kondo problem. Scaling assumes that the
low-temperature properties of a real system are adequately
represented by a coarse-grained model. As the temperature 
is lowered, the model becomes coarser and the number of
degrees of freedom it contains is reduced. This approach can
be used to predict the properties of a real system close to
absolute zero.

Later, in 1974, Kenneth Wilson, who was then at Cornell
University in the US, devised a method known as “numerical
renormalization” that overcame the shortcomings of conven-
tional perturbation theory, and confirmed the scaling hypo-
thesis. His work proved that at temperatures well below TK,
the magnetic moment of the impurity ion is screened entirely
by the spins of the electrons in the metal. Roughly speaking,
this spin-screening is analogous to the screening of an electric
charge inside a metal, although the microscopic processes are
very different.

The role of spin
The Kondo effect only arises when the defects are magnetic –
in other words, when the total spin of all the electrons in the
impurity atom is non-zero. These electrons coexist with the
mobile electrons in the host metal, which behave like a sea
that fills the entire sample. In such a Fermi sea, all the states
with energies below the so-called Fermi level are occupied,
while the higher-energy states are empty.

The simplest model of a magnetic impurity, which was
introduced by Anderson in 1961, has only one electron level
with energy εo. In this case, the electron can quantum-
mechanically tunnel from the impurity and escape provided
its energy lies above the Fermi level, otherwise it remains
trapped. In this picture, the defect has a spin of 1/2 and its 
z-component is fixed as either “spin up” or “spin down”.

However, so-called exchange processes can take place that
effectively flip the spin of the impurity from spin up to spin
down, or vice versa, while simultaneously creating a spin ex-
citation in the Fermi sea. Figure 2 illustrates what happens
when an electron is taken from the localized impurity state
and put into an unoccupied energy state at the surface of the

Fermi sea. The energy needed for such a process is large,
between about 1 and 10 electronvolts for magnetic impur-
ities. Classically, it is forbidden to take an electron from the
defect without putting energy into the system. In quantum
mechanics, however, the Heisenberg uncertainty principle
allows such a configuration to exist for a very short time –
around h/|εo|, where h is the Planck constant. Within this
timescale, another electron must tunnel from the Fermi sea
back towards the impurity. However, the spin of this electron
may point in the opposite direction. In other words, the initial
and final states of the impurity can have different spins.

This spin exchange qualitatively changes the energy spec-
trum of the system (figure 2c). When many such processes are
taken together, one finds that a new state – known as the
Kondo resonance – is generated with exactly the same energy
as the Fermi level.

The low-temperature increase in resistance was the first
hint of the existence of the new state. Such a resonance is
very effective at scattering electrons with energies close to the
Fermi level. Since the same electrons are responsible for the
low-temperature conductivity of a metal, the strong scatter-
ing contributes greatly to the resistance.

The Kondo resonance is unusual. Energy eigenstates usu-
ally correspond to waves for which an integer number of half
wavelengths fits precisely inside a quantum box, or around
the orbital of an atom. In contrast, the Kondo state is gener-
ated by exchange processes between a localized electron and
free-electron states. Since many electrons need to be involved,
the Kondo effect is a many-body phenomenon.

It is important to note that that the Kondo state is always “on
resonance” since it is fixed to the Fermi energy. Even though
the system may start with an energy, εo, that is very far away
from the Fermi energy, the Kondo effect alters the energy of
the system so that it is always on resonance. The only require-
ment for the effect to occur is that the metal is cooled to suffi-
ciently low temperatures below the Kondo temperature TK.

Back in 1978 Duncan Haldane, now at Princeton University
in the US, showed that TK was related to the parameters of
the Anderson model by TK = 1/2(ΓU )1/2exp[πεo(εo +U )/ΓU ],
where Γ is the width of the impurity’s energy level, which 

1 The Kondo effect in metals and in quantum dots
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(a) As the temperature of a metal is lowered, its resistance decreases until it saturates at some residual value (blue). Some metals become superconducting at a
critical temperature (green). However, in metals that contain a small fraction of magnetic impurities, such as cobalt-in-copper systems, the resistance increases
at low temperatures due to the Kondo effect (red). (b) A system that has a localized spin embedded between metal leads can be created artificially in a
semiconductor quantum-dot device containing a controllable number of electrons. If the number of electrons confined in the dot is odd, then the conductance
measured between the two leads increases due to the Kondo effect at low temperature (red). In contrast, the Kondo effect does not occur when the dot contains
an even number of electrons and the total spin adds up to zero. In this case, the conductance continuously decreases with temperature (blue).
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Electrical resistivity of an (La, Ce)B 6 sample with 1"2 a t .~  Ce versus temperature  for various 
magnetic fields (after Samwer  and Winzer  1976). 
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MAGNETIC Impurities

Curie:
Exact results in the theory of magnetic alloys 

Fig. 1.1 
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Ce as a function of temperature T. The insert shows the behaviour at low temperature 
on an expanded scale. The dashed line is an extrapolation of the Curie-Weiss law fitted 
to the data (after Felsch 1978). 
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ions. The dotted line is the behaviour of Ce 3 + ions in the cubic crystal field of LaB 6 
(after Felsch 1978). 
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Pauli: � � T 0 � � T�1

Fermi liquid Free magnetic moment





The Kondo Hamiltonian

Conduction electronsck�c†k�

� =�, �

Dispersion relation

,

Spin SU(2)

HK =
�

k,�

�(k) c†k�ck� + gK
�S ·

�

k�k���

c†k�

1
2
�����ck���

�(k) =
k2

2m
� �F



gK > 0 Anti-Ferromagnetic

gK Kondo coupling

gK < 0 Ferromagnetic

Spin of magnetic impurity�S

�� Pauli matrices

The Kondo Hamiltonian

HK =
�

k,�

�(k) c†k�ck� + gK
�S ·

�

k�k���

c†k�

1
2
�����ck���



concentration of impurities

DECREASES�(T )
decreasesT�

UV cutoff=

c, c̃ �

as

�(T ) = �0 + aT 2 + b T 5 + c g2
K
� c̃ g3

K
ln (T/�F )

�F

gK < 0
Ferromagnetic



DECREASES�(T )
decreasesT� asgK < 0

Ferromagnetic

�(T ) = �0 + aT 2 + b T 5 + c g2
K
� c̃ g3

K
ln (T/�F )

concentration of impurities

UV cutoff=
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�F



�(T ) = �0 + aT 2 + b T 5 + c g2
K
� c̃ g3

K
ln (T/�F )

concentration of impurities

INCREASES�(T )
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UV cutoff=
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Anti-Ferromagnetic
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Breakdown of Perturbation Theory

“Kondo temperature”

O(g3
K) O(g2

K)term is same order as term when

�(T ) = �0 + aT 2 + b T 5 + c g2
K
� c̃ g3

K
ln (T/�F )

TK � �F e�
c
c̃

1
gK



The Kondo Problem

The coupling GROWS at low energies

Asymptotic freedom!

�g
K
� �g2

K
+O(g3

K
)

Cross section for electron scattering off a
MAGNETIC impurity

INCREASES as energy DECREASES

TK � �QCD



The Kondo Problem

What is the ground state?

We know the answer!

The coupling diverges at low energy!



Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability
(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)
(Affleck and Ludwig 1990s)

Large-N expansion
(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo
(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)



UV

IR

One electron binds with impurity
ground state is “Kondo singlet”



UV

IR

One electron binds with impurity
ground state is “Kondo singlet”

Anti-symmetric singlet of SU(2)

1�
2

(|�i �e� � |�i �e�)



Fermi liquid
+

decoupled spin

UV

IR

Fermi liquid

+ electrons EXCLUDED 
from impurity location

+ NO spin



Fermi liquid
+

NON-MAGNETIC impurity

Fermi liquid
+

decoupled spin

UV
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Kondo Effect in Many Systems

Heavy fermion compounds

Quantum dots

SERC School on Magnetism and Superconductivity ’06

VBS The Kondo Effect – 9

Not Impressed? How about Quantum Dots?

Regions that can hold a few hundred electrons!

Can drive a current through these!

This is Nano!

Nature © Macmillan Publishers Ltd 1998
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Kondoeffect ina

single-electron transistor
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How localized electrons interact with delocalized electrons is a
central question to many problems in sold-state physics1–3. The
simplest manifestation of this situation is the Kondo effect, which
occurs when an impurity atom with an unpaired electron is placed
in a metal2. At low temperatures a spin singlet state is formed
between the unpaired localized electron and delocalized electrons
at the Fermi energy. Theories predict4–7 that a Kondo singlet
should form in a single-electron transistor (SET), which contains
a confined ‘droplet’ of electrons coupled by quantum-mechanical
tunnelling to the delocalized electrons in the transistor’s leads. If
this is so, a SET could provide a means of investigating aspects of
the Kondo effect under controlled circumstances that are not
accessible in conventional systems: the number of electrons can be
changed from odd to even, the difference in energy between the
localized state and the Fermi level can be tuned, the coupling to
the leads can be adjusted, voltage differences can be applied to
reveal non-equilibrium Kondo phenomena7, and a single localized
state can be studied rather than a statistical distribution. But for
SETs fabricated previously, the binding energy of the spin singlet
has been too small to observe Kondo phenomena. Ralph and
Buhrman8 have observed the Kondo singlet at a single accidental
impurity in a metal point contact, but with only two electrodes
and without control over the structure they were not able to
observe all of the features predicted. Here we report measure-
ments on SETs smaller than those made previously, which exhibit
all of the predicted aspects of the Kondo effect in such a system.

When the channel of a transistor is made very small and is
isolated from its leads by tunnel barriers it behaves in an unusual
way. A transistor can be thought of as an electronic switch that is on
when it conducts current and off when it does not. Whereas a
conventional field-effect transistor, such as one in a computer
memory, turns on only once when electrons are added to it, the
SET turns on and off again every time a single electron is added to
it9,10. This increased functionality may eventually make SETs tech-
nologically important.

The unusual behaviour of SETs is a manifestation of the quanti-
zation of charge and energy caused by the confinement of the
droplet of electrons in the small channel. As similar quantization
occurs when electrons are confined in an atom, the small droplet of
electrons is often called an artificial atom11,12.

We have fabricated SETs using multiple metallic gates (electrodes)
deposited on a GaAs/AlGaAs heterostructure (Fig. 1a) containing a
two-dimensional electron gas, or 2DEG. First, the electrons are
trapped in a plane by differences in the electronic properties of the
heterostructure’s layers. Second, they are excluded from regions of
the plane beneath the gates when negative voltages are applied to

Figure 1 a, Scanning electron microscope image showing top view of sample.

Three gate electrodes, the one on the right and the upper and lower ones on the

left, control the tunnel barriers between reservoirs of two-dimensional electron

gas (at top and bottom) and the droplet of electrons. The middle electrode on the

left is used as a gate to change the energy of the droplet relative to the two-

dimensional electron gas. Source and drain contacts at the top and bottom are

not shown. Although the lithographic dimensions of the confined region are

150 nm square, we estimate lateral depletion reduces the electron droplet to

dimensions of 100nm square. The gate pattern shown was deposited on top of a

shallow heterostructure with the following layer sequence grown on top of a thick

undoped GaAs buffer: 5 nm Al0.3Ga0.7As, 5 3 1012 cm2 1 Si d-doping, 5 nm

Al0.3Ga0.7As, d-doping, 5 nm Al0.3Ga0.7As, 5 nm GaAs cap (H.S., D.G.-G. and U.M.,

manuscript in preparation). Immediately before depositing the metal, we etched

off the GaAs cap in the areas where the gates would be deposited, to reduce

leakage between the gates and the electron gas. b, Schematic energy diagram of

the artificial atom and its leads. The situation shown corresponds to Vds , kT=e,

for which theFermi energies in sourceanddrainarenearlyequal, and to avalueof

Vg near a conductance minimum between a pair of peaks corresponding to the

same spatial state. For this case there is an energy cost ,U to add or remove an

electron. To place an extra electron in the lowest excited state costs ,U þ De.

...with Cr, Fe, Mo, Mn, Re, Os, ... impurities
alloys of Cu, Ag, Au, Mg, Zn, ...

UBe13 UPt3

CeCu6

YbAl3
CePd2Si2
YbRh2Si2

200nm



Enhance the spin group

Generalizations

SU(2)� SU(N)

Observation of the SU(4) Kondo state in a

double quantum dot

A. J. Keller1, S. Amasha1,†, I. Weymann2, C. P. Moca3,4, I. G. Rau1,‡, J. A. Katine5,

Hadas Shtrikman6, G. Zaránd3, and D. Goldhaber-Gordon1,*

1Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA
2Faculty of Physics, Adam Mickiewicz University, Poznań, Poland

3BME-MTA Exotic Quantum Phases “Lendület” Group, Institute of Physics, Budapest University

of Technology and Economics, H-1521 Budapest, Hungary
4Department of Physics, University of Oradea, 410087, Romania

5HGST, San Jose, CA 95135, USA
6Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 96100, Israel

†Present address: MIT Lincoln Laboratory, Lexington, MA 02420, USA
‡Present address: IBM Research – Almaden, San Jose, CA 95120, USA

*Corresponding author; goldhaber-gordon@stanford.edu

Central to condensed matter physics are quantum impurity models,

which describe how a local degree of freedom interacts with a continuum.

Surprisingly, these models are often universal in that they can quantitatively

describe many outwardly unrelated physical systems. Here we develop a

double quantum dot-based experimental realization of the SU(4) Kondo

model, which describes the maximally symmetric screening of a local four-

fold degeneracy. As demonstrated through transport measurements and

detailed numerical renormalization group calculations, our device a↵ords

exquisite control over orbital and spin physics. Because the two quan-

tum dots are coupled only capacitively, we can achieve orbital state- or

“pseudospin”-resolved bias spectroscopy, providing intimate access to the

interplay of spin and orbital Kondo e↵ects. This cannot be achieved in the

few other systems realizing the SU(4) Kondo state.
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Multiple “channels” or “flavors”

Enhance the spin group

Representation of impurity spin

Generalizations

SU(2)� SU(N)

c� c� � = 1, . . . , k

simp = 1/2 � Rimp

U(1)� SU(k)



IR fixed point:

“Non-Fermi liquids”

NOT always
a fermi liquid

Generalizations

Kondo model specified by 

Apply the techniques mentioned above...

N, Rimp, k



Multiple Impurities

Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling

Heavy fermion compounds

H = HK +
�

ij

gRKKY
ij

�Si · �Sj

J. Custers et al., Nature 424, 524 (2003)

Kondo lattice
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FIG. 1: Quantum critical points in heavy fermion metals. a: AF ordering temperature TN vs. Au

concentration x for CeCu6−xAux (Ref.7), showing a doping induced QCP. b: Suppression of the

magnetic ordering in YbRh2Si2 by a magnetic field. Also shown is the evolution of the exponent α in

∆ρ ≡ [ρ(T )−ρ0] ∝ Tα, within the temperature-field phase diagram of YbRh2Si2 (Ref.9). Blue and

orange regions mark α = 2 and 1, respectively. c: Linear temperature dependence of the electrical

resistivity for Ge-doped YbRh2Si2 over three decades of temperature (Ref.9), demonstrating the

robustness of the non-Fermi liquid behavior in the quantum critical regime. d: Temperature

vs. pressure phase diagram for CePd2Si2, illustrating the emergence of a superconducting phase

centered around the QCP. The Néel- (TN ) and superconducting ordering temperatures (Tc) are

indicated by closed and open symbols, respectively.10

sitions. At the melting point, ice abruptly turns into water, absorbing latent heat. In other

words, the transition is of first order. A piece of magnet, on the other hand, typically “melts”

into a paramagnet through a continuous transition: The magnetization vanishes smoothly,

and no latent heat is involved. In the case of zero temperature, the point of such a second-
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vs. pressure phase diagram for CePd2Si2, illustrating the emergence of a superconducting phase

centered around the QCP. The Néel- (TN ) and superconducting ordering temperatures (Tc) are
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sitions. At the melting point, ice abruptly turns into water, absorbing latent heat. In other

words, the transition is of first order. A piece of magnet, on the other hand, typically “melts”

into a paramagnet through a continuous transition: The magnetization vanishes smoothly,

and no latent heat is involved. In the case of zero temperature, the point of such a second-
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Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability
(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)
(Affleck and Ludwig 1990s)

Large-N expansion
(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo
(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)



The Kondo Lattice...

“... remains one of the
biggest unsolved problems

in condensed matter physics.”
Alexei Tsvelik

QFT in Condensed Matter Physics
(Cambridge Univ. Press, 2003) 



“... remains one of the
biggest unsolved problems

in condensed matter physics.”
Alexei Tsvelik

QFT in Condensed Matter Physics
(Cambridge Univ. Press, 2003) 

Let’s try AdS/CFT!

The Kondo Lattice...



GOAL

Find a holographic description
of the

Kondo Effect



Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability
(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)
(Affleck and Ludwig 1990s)

Large-N expansion
(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo
(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)



Outline:

• The Kondo Effect

• The CFT Approach

•A Top-Down Holographic Model

•A Bottom-Up Holographic Model

• Summary and Outlook



Kondo interaction preserves spherical symmetry

gK �3(�x) �S · c†(�x)
1
2
�� c(�x)

Reduction to one dimension

restrict to momenta near

restrict to s-wave

kF

CFT Approach to the Kondo Effect
Affleck and Ludwig 1990s

c(�x) � 1
r

�
e�ikF r�L (r)� e+ikF r�R (r)

�
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FIG. 4. Reflecting the left-movers to the negative axis.

D. Fermi Liquid Approach at Low T

What is the T → 0 behavior of the antiferromagetic Kondo model? The simplest assumption is
λeff → ∞. But what does that really mean? Consider the strong coupling limit of a lattice model,2

for convenience, in spatial dimension D = 1. (D doesn’t really matter since we can always reduce
the model to D = 1.)

H = t
∑

i

(ψ†
iψi+1 + ψ†

i+1ψi) + λ#S · ψ†
0

#σ
2
ψ0 (1.20)

Consider the limit λ >> |t|. The groundstate of the interaction term will be the following con-
figuration: one electron at the site 0 forms a singlet with the impurity: | ⇑↓〉 − | ⇓↑〉. (We as-
sume SIMP = 1/2). Now we do perturbation theory in t. We have the following low energy states:
an arbitary electron configuration occurs on all other sites-but other electrons or holes are forbidden
to enter the site-0, since that would destroy the singlet state, costing an energy, ∆E ∼ λ >> t.
Thus we simply form free electron Bloch states with the boundary condition φ(0) = 0, where φ(i) is
the single-electron wave-function. Note that at zero Kondo coupling, the parity even single particle
wave-functions are of the form φ(i) = cos ki and the parity odd ones are of the form φ(i) = sin ki.
On the other hand, at λ → ∞ the parity even wave-functions become φ(i) = | sin ki|, while the
parity odd ones are unaffected.

The behaviour of the parity even channel corresponds to a π/2 phase shift in the s-wave channel.

φj ∼ e−ik|j| + e+2iδeik|j|, δ = π/2. (1.21)

In terms of left and right movers on r > 0 we have changed the boundary condition,

ψL(0) = ψR(0), λ = 0,

ψL(0) = −ψR(0), λ = ∞. (1.22)

The strong coupling fixed point is the same as the weak coupling fixed point except for a change
in boundary conditions (and the removal of the impurity). In terms of the left-moving description
of the P -even sector, the phase of the left-mover is shifted by π as it passes the origin. Imposing
another boundary condition a distance l away quantizes k:

ψ(l) = ψL(l) + ψR(l) = ψL(l) + ψL(−l) = 0,

λ = 0 : k =
π
l
(n + 1/2)

λ = ∞ : k =
πn
l

(1.23)
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D. Fermi Liquid Approach at Low T

What is the T → 0 behavior of the antiferromagetic Kondo model? The simplest assumption is
λeff → ∞. But what does that really mean? Consider the strong coupling limit of a lattice model,2

for convenience, in spatial dimension D = 1. (D doesn’t really matter since we can always reduce
the model to D = 1.)

H = t
∑

i

(ψ†
iψi+1 + ψ†

i+1ψi) + λ#S · ψ†
0

#σ
2
ψ0 (1.20)

Consider the limit λ >> |t|. The groundstate of the interaction term will be the following con-
figuration: one electron at the site 0 forms a singlet with the impurity: | ⇑↓〉 − | ⇓↑〉. (We as-
sume SIMP = 1/2). Now we do perturbation theory in t. We have the following low energy states:
an arbitary electron configuration occurs on all other sites-but other electrons or holes are forbidden
to enter the site-0, since that would destroy the singlet state, costing an energy, ∆E ∼ λ >> t.
Thus we simply form free electron Bloch states with the boundary condition φ(0) = 0, where φ(i) is
the single-electron wave-function. Note that at zero Kondo coupling, the parity even single particle
wave-functions are of the form φ(i) = cos ki and the parity odd ones are of the form φ(i) = sin ki.
On the other hand, at λ → ∞ the parity even wave-functions become φ(i) = | sin ki|, while the
parity odd ones are unaffected.

The behaviour of the parity even channel corresponds to a π/2 phase shift in the s-wave channel.

φj ∼ e−ik|j| + e+2iδeik|j|, δ = π/2. (1.21)

In terms of left and right movers on r > 0 we have changed the boundary condition,

ψL(0) = ψR(0), λ = 0,

ψL(0) = −ψR(0), λ = ∞. (1.22)

The strong coupling fixed point is the same as the weak coupling fixed point except for a change
in boundary conditions (and the removal of the impurity). In terms of the left-moving description
of the P -even sector, the phase of the left-mover is shifted by π as it passes the origin. Imposing
another boundary condition a distance l away quantizes k:

ψ(l) = ψL(l) + ψR(l) = ψL(l) + ψL(−l) = 0,

λ = 0 : k =
π
l
(n + 1/2)

λ = ∞ : k =
πn
l

(1.23)
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RELATIVISTIC chiral fermions

“speed of light”vF

CFT Approach to the Kondo Effect

g̃K �
k2

F

2�2vF
� gK

HK =
vF

2�

� +�

��
dr ��†

Li�r�
�
L + vF g̃K

�S · ��
L(0)†

1
2
�� ��

L(0)

CFT!

=



k � 1

JA = ��†
L tA��� ���

L

J = ��†
L��

L

�J = ��†
L

��

2
��

L

Spin SU(N) Rimp

U(1)

SU(k)

SU(N)



Kac-Moody Current Algebra

z � � + ir

JA(z) =
�

n�Z
z�n�1JA

n

[JA
n , JB

m] = ifABCJC
n+m + N

n

2
�AB�n,�m

SU(k)N

N counts net number of chiral fermions



CFT Approach to the Kondo Effect

HK =
vF

2�

� +�

��
dr ��†

Li�r�
�
L + vF g̃K

�S · ��
L(0)†

1
2
�� ��

L(0)

Full symmetry:

(1 + 1)d conformal symmetry

SU(N)k � SU(k)N � U(1)kN



Sugawara Hamiltonian

k � 1

JA = ��†
L tA��� ���

L

J = ��†
L��

L

�J = ��†
L

��

2
��

L

Spin SU(N)

HK =
�

dr

�
1

4�Nk
J2 +

1
2�(k + N)

�J2 +
1

2�(k + N)
JAJA

�
+ g̃K

�S · �J(0)

Rimp

U(1)

SU(k)

SU(N)



UV

IR SU(N)k � SU(k)N � U(1)Nk

SU(N)k � SU(k)N � U(1)Nk

Eigenstates are representations 
of the Kac-Moody algebra



UV

IR SU(N)k � SU(k)N � U(1)Nk

SU(N)k � SU(k)N � U(1)Nk

|c, s, f�

|c, s�, f�

Fusion Rules

s� simp = s�



UV

IR SU(N)k � SU(k)N � U(1)Nk

SU(N)k � SU(k)N � U(1)Nk

Fusion Rules

s� simp = s�
Example:

|s� simp| � s� � min{s + simp, k � (s + simp)}

(for k � (s + simp) > 0)

SU(2)k
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D. Fermi Liquid Approach at Low T

What is the T → 0 behavior of the antiferromagetic Kondo model? The simplest assumption is
λeff → ∞. But what does that really mean? Consider the strong coupling limit of a lattice model,2

for convenience, in spatial dimension D = 1. (D doesn’t really matter since we can always reduce
the model to D = 1.)

H = t
∑

i

(ψ†
iψi+1 + ψ†

i+1ψi) + λ#S · ψ†
0

#σ
2
ψ0 (1.20)

Consider the limit λ >> |t|. The groundstate of the interaction term will be the following con-
figuration: one electron at the site 0 forms a singlet with the impurity: | ⇑↓〉 − | ⇓↑〉. (We as-
sume SIMP = 1/2). Now we do perturbation theory in t. We have the following low energy states:
an arbitary electron configuration occurs on all other sites-but other electrons or holes are forbidden
to enter the site-0, since that would destroy the singlet state, costing an energy, ∆E ∼ λ >> t.
Thus we simply form free electron Bloch states with the boundary condition φ(0) = 0, where φ(i) is
the single-electron wave-function. Note that at zero Kondo coupling, the parity even single particle
wave-functions are of the form φ(i) = cos ki and the parity odd ones are of the form φ(i) = sin ki.
On the other hand, at λ → ∞ the parity even wave-functions become φ(i) = | sin ki|, while the
parity odd ones are unaffected.

The behaviour of the parity even channel corresponds to a π/2 phase shift in the s-wave channel.

φj ∼ e−ik|j| + e+2iδeik|j|, δ = π/2. (1.21)

In terms of left and right movers on r > 0 we have changed the boundary condition,

ψL(0) = ψR(0), λ = 0,

ψL(0) = −ψR(0), λ = ∞. (1.22)

The strong coupling fixed point is the same as the weak coupling fixed point except for a change
in boundary conditions (and the removal of the impurity). In terms of the left-moving description
of the P -even sector, the phase of the left-mover is shifted by π as it passes the origin. Imposing
another boundary condition a distance l away quantizes k:

ψ(l) = ψL(l) + ψR(l) = ψL(l) + ψL(−l) = 0,

λ = 0 : k =
π
l
(n + 1/2)

λ = ∞ : k =
πn
l

(1.23)
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D. Fermi Liquid Approach at Low T

What is the T → 0 behavior of the antiferromagetic Kondo model? The simplest assumption is
λeff → ∞. But what does that really mean? Consider the strong coupling limit of a lattice model,2

for convenience, in spatial dimension D = 1. (D doesn’t really matter since we can always reduce
the model to D = 1.)

H = t
∑

i

(ψ†
iψi+1 + ψ†

i+1ψi) + λ#S · ψ†
0

#σ
2
ψ0 (1.20)

Consider the limit λ >> |t|. The groundstate of the interaction term will be the following con-
figuration: one electron at the site 0 forms a singlet with the impurity: | ⇑↓〉 − | ⇓↑〉. (We as-
sume SIMP = 1/2). Now we do perturbation theory in t. We have the following low energy states:
an arbitary electron configuration occurs on all other sites-but other electrons or holes are forbidden
to enter the site-0, since that would destroy the singlet state, costing an energy, ∆E ∼ λ >> t.
Thus we simply form free electron Bloch states with the boundary condition φ(0) = 0, where φ(i) is
the single-electron wave-function. Note that at zero Kondo coupling, the parity even single particle
wave-functions are of the form φ(i) = cos ki and the parity odd ones are of the form φ(i) = sin ki.
On the other hand, at λ → ∞ the parity even wave-functions become φ(i) = | sin ki|, while the
parity odd ones are unaffected.

The behaviour of the parity even channel corresponds to a π/2 phase shift in the s-wave channel.

φj ∼ e−ik|j| + e+2iδeik|j|, δ = π/2. (1.21)

In terms of left and right movers on r > 0 we have changed the boundary condition,

ψL(0) = ψR(0), λ = 0,

ψL(0) = −ψR(0), λ = ∞. (1.22)

The strong coupling fixed point is the same as the weak coupling fixed point except for a change
in boundary conditions (and the removal of the impurity). In terms of the left-moving description
of the P -even sector, the phase of the left-mover is shifted by π as it passes the origin. Imposing
another boundary condition a distance l away quantizes k:

ψ(l) = ψL(l) + ψR(l) = ψL(l) + ψL(−l) = 0,

λ = 0 : k =
π
l
(n + 1/2)

λ = ∞ : k =
πn
l

(1.23)

6

r

� (r) = A cos kr + B sin kr

� (r) = A�| sin kr| + B� sin kr

decoupled spin at r = 0

�/2 phase shift



CFT Approach to the Kondo Effect

Take-Away Messages

Central role of the
Kac-Moody Algebra

PHASE SHIFT

Kondo coupling: �S · �J
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GOAL

Find a holographic description
of the

Kondo Effect



What classical action do we write
on the gravity side of the correspondence?



How do we describe holographically...

1

2

3

The chiral fermions?

The impurity?

The Kondo coupling?



Top-down:

AdS solution to a string or supergravity theory

Bottom-up:

AdS solution of some ad hoc Lagrangian

Holography



Open strings

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7
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5-3

Top-Down Model
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N5 D5 X X X X X X
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7-5 5-7

and and
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and
CFT with holographic dual

5-3

Top-Down Model
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3-5
7-5 5-7

and and
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and

Decouple5-3

Top-Down Model
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N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3

5-33-5
7-5 5-7
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(1+1)-dimensional
chiral fermions

Top-Down Model
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Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and
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and

the impurity

5-3

Top-Down Model



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and
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and

Kondo interaction

5-3

Top-Down Model



Previous work

Mück 1012.1973

Kachru, Karch, Yaida 0909.2639, 1009.3268

Faraggi and Pando-Zayas 1101.5145

Jensen, Kachru, Karch, Polchinski, Silverstein 1105.1772
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0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and
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and

and

Absent in previous 
constructions5-3

Top-Down Model



The D3-branes

N = 4 SU(Nc) YMSUSY

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

� � g2
Y MNc

3-3 strings

�� = 0

(3 + 1)- dimensional

CFT!



The D3-branes

N = 4 SU(Nc) YMSUSY

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

� � g2
Y MNc

3-3 strings

(3 + 1)- dimensional

g2
Y M � 0Nc ��

� fixed



The D3-branes

N = 4 SU(Nc) YMSUSY

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

� � g2
Y MNc

3-3 strings

(3 + 1)- dimensional

g2
Y M � 0Nc ��

���



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

N = 4 SYM
Type IIB Supergravity

Nc �⇥ =

The D3-branes

��� AdS5 � S5

g2
Y MNc � L4

AdS/��2

g2
Y M � gs

LAdS � 1



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X

The D3-branes

�

S5
F5 � Nc F5 = dC4

N = 4 SYM
Type IIB Supergravity

Nc �⇥ =
��� AdS5 � S5



Anti-de Sitter Space

r =�

r = 0

boundary

Figure 1: The two slicings of AdS5. The horizontal axis is the direction x transverse to the
brane and the vertical axis is the radial direction of AdS interpolating from the boundary
(solid line) to the horizon (dashed line). The figure on the left shows lines of constant ρ
while the figure on the right shows lines of constant r.

Every AdSd+1 bulk field φd+1(#y, w, r) of mass M , transforming in some representation
of SO(d, 2), decomposes into a tower of AdSd modes φd,n(#y, w) inhabiting representations
of the preserved isometry group SO(d − 1, 2). Each mode is multiplied by an appropriate
wavefunction of the r-direction:

φd+1(#y, w, r) =
∑

n

ψn(r) φd,n(#y, w) . (15)

Among the data of the SO(d − 1, 2) representation is an AdSd-mass mn for each φd,n,

∂2
dφd,n = m2

nφd,n , (16)

where ∂2
d is the AdSd-Laplacian. The mass mn and the wavefunction ψn(r) may be deter-

mined by solving the wave equation for φd+1(#y, x, r). In general the backreaction of the
brane may produce a more general warp factor A(r), ds2 = dr2 + e2A(r)ds2

AdSd
, although (13)

will continue to hold at large |r|; this more general metric still preserves AdSd isometries
associated with dual dCFT. To linear order the wave equation then reduces to an ordinary
differential equation for the wavefunction ψn(r),

∂2
rψn(r) + dA′(r)∂rψn(r) + e−2A(r)m2

nψn(r) − M2ψn(r) = 0 . (17)

This will receive corrections from various interactions in the brane worldvolume theory,7 all
of which affect the calculation of the masses mn.

The field φd+1 of mass M is dual to an ambient operator Od(#y, x) of dimension ∆d (with
∆d(∆d − d) = M2) in the dCFT. Analogously, since the φd,n inhabit an effective AdSd the-
ory (they are representations of SO(d − 1, 2)), they are related to dual “defect operators”

7The brane interactions will generally cause a mixing between the modes corresponding to different bulk
fields φd+1, though we neglect this here. However, precisely the same phenomenon occurs also in the BOPE,
and it is easy to generalize our discussion to incorporate it.

11

x

ds2 =
dr2

r2
+ r2

�
�dt2 + dx2 + dy2 + dz2

�

Poincaré horizon
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Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and

and

and

and

Decouple5-3

Top-Down Model



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

5-57-7
SYMU(N5)(5 + 1)-dim.SYM(7 + 1)-dim. U(N7)

g2
Dp � gs �� p�3

2

g2
Y M � gs

g2
Y MNc � 1/��2



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

g2
D5N5 � gYM

N5�
Nc

g2
D7N7 �

N7

Nc

5-57-7
SYMU(N5)(5 + 1)-dim.SYM(7 + 1)-dim. U(N7)

g2
Dp � gs �� p�3

2



Probe Limit

Nc �⇥ g2
Y M � 0

g2
D5N5 � gY M

N5�
Nc
� 0

g2
D7N7 �

N7

Nc
� 0

N7 ,N5 fixed

N7/Nc � 0 and N5/Nc � 0



Probe Limit

becomes a global symmetryU(N7)� U(N5)

Total symmetry:

(plus R-symmetry)

SU(Nc)� �� ��U(N7)� U(N5)� �� �
gauged global

SYM theories on D7- and D5-branes decouple



3-3 5-5 7-7
3-7 7-3

5-33-5
7-5 5-7

and and

and

and

and

(1+1)-dimensional
chiral fermions

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

Top-Down Model



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

8 Neumann-Dirichlet (ND) intersection

The D7-branes

Harvey and Royston 0709.1482, 0804.2854
Buchbinder, Gomis, Passerini 0710.5170

Neumann

Dirichlet    



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

Harvey and Royston 0709.1482, 0804.2854
Buchbinder, Gomis, Passerini 0710.5170

1/4 SUSY

(1+1)-dimensional chiral fermionsN7 �L

NEUTRAL under SUSY:�L

8 Neumann-Dirichlet (ND) intersection

N = (0, 8)



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

(1+1)-dimensional chiral fermionsN7

L

�L



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

S3-7 =
�

dx+dx��†
L (i�� �A�) �L

(1+1)-dimensional chiral fermionsN7 �L

SU(Nc)� U(N7)� U(N5)

Nc N7 singlet



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

SU(Nc)N7 � SU(N7)Nc � U(1)NcN7

Kac-Moody algebra

S3-7 =
�

dx+dx��†
L (i�� �A�) �L

(1+1)-dimensional chiral fermionsN7 �L



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

Do not come from reduction from (3+1) dimensions

Genuinely relativistic

Differences from Kondo

(1+1)-dimensional chiral fermionsN7 �L



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X

The D7-branes

SU(Nc) is gauged!

�J = �†
L

�T �L

(1+1)-dimensional chiral fermionsN7 �L

Differences from Kondo



 Gauge Anomaly! 

The D7-branes
0 1 2 3 4 5 6 7 8 9

Nc D3 X X X X
N7 D7 X X X X X X X X

SU(Nc) is gauged!

Harvey and Royston 0709.1482, 0804.2854
Buchbinder, Gomis, Passerini 0710.5170



 Gauge Anomaly! 

The D7-branes
0 1 2 3 4 5 6 7 8 9

Nc D3 X X X X
N7 D7 X X X X X X X X

SU(Nc) is gauged!

Probe Limit!



SU(Nc) SU(Nc)

gY M gY M

In the probe limit, the gauge anomaly is suppressed...

N7

� g2
Y MN7

Nc

gD7gD7
� g2

D7Nc

... but the global anomalies are not.

g2
D7 � 1/Nc

U(N7)U(N7)



In the probe limit, the gauge anomaly is suppressed...

... but the global anomalies are not.

SU(Nc)N7 � SU(Nc)

SU(N7)Nc � U(1)NcN7 � SU(N7)Nc � U(1)NcN7



AdS3 � S5
Probe D7-branes 

N = 4 SYM

Nc �⇥ =
���

Probe �L =

Type IIB Supergravity

AdS5 � S5



AdS3 � S5
Probe D7-branes 

N = 4 SYM

Nc �⇥ =
���

Probe �L =

Type IIB Supergravity

AdS5 � S5

ds2 =
dr2

r2
+ r2

�
�dt2 + dx2 + dy2 + dz2

�
+ ds2

S5



Kac-Moody Algebra Chern-Simons Gauge Field

Gukov, Martinec, Moore, Strominger
hep-th/0403225

Kraus and Larsen
hep-th/0607138

=
rank and level

of
algebra

= rank and level
of

gauge field

J = ACurrent Gauge field



J = ACurrent Gauge field

Gauge field on D7-brane

Decouples on field theory side...

...but not on the gravity side!

U(N7)Nc



AdS3 � S5Probe D7-branes along

= �1
2
TD7(2���)2

�
P [F5] � tr

�
A � dA +

2
3
A �A �A

�
+ . . .

SD7 = +
1
2
TD7(2���)2

�
P [C4] � trF � F + . . .

= �Nc

4�

�

AdS3

tr
�

A � dA +
2
3
A �A �A

�
+ . . .

U(N7)Nc
Chern-Simons gauge field



Answer #1

Chern-Simons Gauge Field in AdS3

The chiral fermions:



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and

and

and

and

the impurity

5-3

Top-Down Model



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N5 D5 X X X X X X

The D5-branes

8 ND intersection

Gomis and Passerini hep-th/0604007

1/4 SUSY

NEUTRAL under SUSY�

(0+1)-dimensional fermionsN5 �



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N5 D5 X X X X X X

The D5-branes

8 ND intersection

Gomis and Passerini hep-th/0604007

(0+1)-dimensional fermionsN5 �



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N5 D5 X X X X X X

The D5-branes

S3-5 =
�

dt �†(i�t �At � �9)�

SU(Nc)� U(N7)� U(N5)

Nc singlet N5



0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N5 D5 X X X X X X

The D5-branes

SU(Nc) is “spin”

�S = �† �T �

“Abrikosov pseudo-fermions”

Abrikosov, Physics 2, p.5 (1965) 

“slave fermions”



Integrate out 

N5 = 1
Gomis and Passerini hep-th/0604007

�

WR = TrRP exp
�
i

�
dt(At + �9)

�

...R = } Q =
Nc�

�=1

�†
���

U(N5) charge “density”



Probe D5-branes 

N = 4 SYM

Nc �⇥ =
���

Probe =

Type IIB Supergravity

AdS5 � S5

AdS2 � S4
�



ds2 =
dr2

r2
+ r2

�
�dt2 + dx2 + dy2 + dz2

�
+ ds2

S5

Probe D5-branes 

N = 4 SYM

Nc �⇥ =
���

Probe =

Type IIB Supergravity

AdS5 � S5

AdS2 � S4
�



Probe D5-branes 

N = 4 SYM

Nc �⇥ =
���

Probe =

Type IIB Supergravity

AdS5 � S5

AdS2 � S4
�

Q = Electric flux

J =Current Gauge field aU(N5) U(N5)



Probe D5-brane along AdS2 � S4

Camino, Paredes, Ramallo hep-th/0104082

electric field AdS2 frt

SD5 = �TD5 (2���)2
1
2

�
trf � �f

�
�g f tr

��
�AdS2

= Q =
Nc�

�=1

�†
���

+TD5 (2���)
�

P [C4] � trf + . . .



Answer #2

Yang-Mills Gauge Field in AdS2

electric flux=Rimp

The impurity:



3-3 5-5 7-7
3-7 7-3
3-5
7-5 5-7

and and

and

and

and

Kondo interaction

5-3

0 1 2 3 4 5 6 7 8 9
Nc D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

Top-Down Model



0 1 2 3 4 5 6 7 8 9
N5 D5 X X X X X X
N7 D7 X X X X X X X X

The Kondo Interaction

2 ND intersection

Complex scalar!

SU(Nc)� U(N7)� U(N5)
singlet

O � �†
L�

N5N7



TACHYON

The Kondo Interaction
0 1 2 3 4 5 6 7 8 9

N5 D5 X X X X X X
N7 D7 X X X X X X X X

m2
tachyon = � 1

4��

D5 becomes magnetic flux in the D7

SUSY completely broken



The Kondo Interaction
SU(Nc) is “spin”

�J = �†
L

�T �L
�S = �† �T �

�Tij · �Tkl = �il�jk �
1

Nc
�ij�kl

�S · �J = |�†
L�|2 + O(1/Nc)

�S · �J = �† �T� · �†
L

�T�L

“double trace”



AdS3 � S5
Probe D7-branes 

N = 4 SYM

Nc �⇥ =
���

Probe �L =

Type IIB Supergravity

AdS5 � S5

Probe D5-branes 
Probe = AdS2 � S4�

�†
L� = Bi-fundamental scalar

AdS2 � S4



Answer #3

Bi-fundamental scalar in

The Kondo interaction:

AdS2



r =�

r = 0

x

tr f2
�

AdS2

�

AdS2

|D�|2+V (�†�)

Nc

�

AdS3

A � F

D� = �� + iA�� ia�

Top-Down Model



r =�

r = 0

x

tr f2
�

AdS2

�

AdS2

|D�|2+V (�†�)

Nc

�

AdS3

A � F

What is V (�†�) ?

Top-Down Model



What is V (�†�) ?

Calculation in

Gava, Narain, Samadi hep-th/9704006

Aganagic, Gopakumar, Minwalla, Strominger hep-th/0009142

Difficult to calculate in AdS5 � S5

R9,1

Top-Down Model



What is V (�†�) ?

Calculation in

Gava, Narain, Samadi hep-th/9704006

Aganagic, Gopakumar, Minwalla, Strominger hep-th/0009142

Switch to bottom-up model!

R9,1

Top-Down Model



Outline:

• The Kondo Effect

• The CFT Approach

•A Top-Down Holographic Model

•A Bottom-Up Holographic Model

• Summary and Outlook



r =�

r = 0

x

tr f2
�

AdS2

�

AdS2

|D�|2+V (�†�)

Bottom-Up Model

Nc

�

AdS3

A � F

D� = �� + iA�� ia�



r =�

r = 0

x

tr f2
�

AdS2

�

AdS2

|D�|2+V (�†�)

Nc

�

AdS3

A � F

We pick V (�†�)

Bottom-Up Model



r =�

r = 0

x

tr f2
�

AdS2

�

AdS2

|D�|2+V (�†�)

Nc

�

AdS3

A � F

V (�†�) = m2�†�

Bottom-Up Model



S = SCS + SAdS2

SCS = �N

4�

�
tr

�
A � dA +

2
3
A �A �A

�

SAdS2 = �
�

d3x �(x)
�
�g

�
1
4
trf2 + |D�|2 + V (�†�)

�

D� = �� + iA�� ia�
V (�†�) = m2�†�

Bottom-Up Model



S = SCS + SAdS2

SCS = �N

4�

�
tr

�
A � dA +

2
3
A �A �A

�

SAdS2 = �
�

d3x �(x)
�
�g

�
1
4
trf2 + |D�|2 + V (�†�)

�

Bottom-Up Model

Kondo model specified by 

N, Rimp, k



SCS = �N

4�

�
tr

�
A � dA +

2
3
A �A �A

�

SAdS2 = �
�

d3x �(x)
�
�g

�
1
4
trf2 + |D�|2 + V (�†�)

�

Bottom-Up Model

Kondo model specified by 

N, Rimp, k

U(k)N



F = dA f = da

Single channel ...Rimp =

U(1) gauge fields

Probe limit

Chern-Simons AdS2

U(1)Nc



Equations of Motion

µ, � = r, t, x m,n = r, t
� = ei��

�mµ�Fµ� = �4�

N
�(x)Jm

�n

��
�g gnqgmpfqp

�
= �Jm

�mJm = 0

�m

��
�g gmn�n�

�
=
�
�g gmn(Am � am + �m�)(An � an + �n�)� +

1
2
�
�g

�V

��

Jm � 2
�
�g gmn (An � an + �n�) �2



Ansatz:

Equations of Motion

at(r)�(r) Ax(r)

Static solution

After gauge fixing, only non-zero fields:

frt = a�
t(r) Frx = A�

x(r)

J t(r) = �2
�
�g gttat�

2



Equations of Motion

�r

��
�g grr �r�

�
�
�
�g gtt a2

t ��
�
�g m2 � = 0

�trxFrx = �4�

N
�(x)J t(r)

�r

��
�g grrgttfrt

�
= �J t(r)

J t(r) = �2
�
�g gttat�

2



Boundary Conditions

c = g̃K c̃
Witten hep-th/0112258

� (r) = c r�1/2 log r + c̃ r�1/2 + . . .

We choose Breitenlohner-Freedman boundm2 =

�
�gfrt

��
�AdS2

= Q

Our double-trace (Kondo) coupling:



� (r) = 0T > Tc

��†
L�� = 0

��†
L�� �= 0

A holographic superconductor in

Hawking temperature T=

AdS2

T < Tc

AdS-Schwarzschild black hole

�
�gf tr

��
�AdS2

�= 0

�
�gf tr

��
�AdS2

�= 0 �(r) �= 0



Hawking temperature T=
AdS-Schwarzschild black hole

Superconductivity???

� (r) = 0T > Tc

��†
L�� = 0

��†
L�� �= 0

T < Tc

�
�gf tr

��
�AdS2

�= 0

�
�gf tr

��
�AdS2

�= 0 �(r) �= 0



Hawking temperature T=
AdS-Schwarzschild black hole

The large-N Kondo effect!
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Solutions of the Kondo Problem

Numerical RG (Wilson 1975)

Fermi liquid description (Nozières 1975) 

Bethe Ansatz/Integrability
(Andrei, Wiegmann, Tsvelick, Destri, ... 1980s)

Conformal Field Theory (CFT)
(Affleck and Ludwig 1990s)

Large-N expansion
(Anderson, Read, Newns, Doniach, Coleman, ...1970-80s)

Quantum Monte Carlo
(Hirsch, Fye, Gubernatis, Scalapino,... 1980s)



Large-N Approach to the Kondo Effect
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singlet bi-fundamental



Large-N Approach to the Kondo Effect
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Large-N Approach to the Kondo Effect

�O� �= 0

�O� = 0
Coleman PRB 35, 5072 (1987) Senthil, Sachdev, Vojta PRL 90, 216403 (2003)

Spin SU(N) Rimp = anti-symm. k = 1

N �� fixedwith NgK

T > Tc

T < Tc

The phase transition is an ARTIFACT of the large-N limit!

The actual Kondo effect is a crossover



Hawking temperature T=
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The large-N Kondo effect!
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Screening of the Impurity

(a.) (b.)

Figure 6: Plots of our numerical results for the electric flux at the horizon,
√
−gf tz|z=1

=
z2a′t(z)

∣

∣

z=1
= a′t(z = 1), as a function of T/Tc, for Q = −1/2. (a.) Between T/Tc = 1 and

T/Tc = 0.012, a′t(z = 1) decreases by only about 40%, from −Q = 1/2 to about 0.30. (b.) The same
as (a.) but a log-linear plot, revealing that a′t(z = 1) decreases only logarithmically for T/Tc ! 0.20:
the solid red line is the curve 0.522 + 0.048 ln (T/Tc), obtained from a fit to the data.

from critical or over-screening. Roughly speaking, the impurity’s representation in the UV is

dual to at(z)’s electric flux at the boundary, limz→0
√
−gf tz = −Q, as discussed in subsec-

tion 4.1. When T > Tc and φ(z) = 0, the electric flux is constant from the boundary to the

horizon. When T ≤ Tc, the non-trivial φ(z) draws electric charge away from at(z), reducing

the electric flux at the horizon. At T/Tc = 0, if φ(z) does not draw all the charge away from

at(z), then we may interpret the remaining non-zero flux of at(z) at z → ∞ as an impurity

in the IR in a representation smaller than in the UV. This is under-screening. If φ(z) does

draw all the charge away from at(z), so that at(z) has zero electric flux at z → ∞, then no

impurity survives in the IR, as occurs in critical and over-screening.

Fig. 6 shows our numerical results for the electric flux at the horizon, which after the

re-scaling in eq. (4.19) is simply
√
−gf tz

∣

∣

z=1
= z2a′t(z)

∣

∣

z=1
= a′t(z = 1), as a function of T/Tc

for Q = −1/2. Fig. 6 (a.) shows that a′t(z = 1) indeed decreases as T/Tc decreases, although

between T/Tc = 1 and T/Tc = 0.012 the decrease is only ≈ 40%, from −Q = 1/2 to about

0.30. Fig. 6 (b.) shows that the decrease in a′t(z = 1) is only logarithmic for T/Tc ! 0.20.

Our numerical results for a′t(z = 1) are insufficient to extrapolate reliably to T/Tc = 0, so we

will leave the fate of a′t(z = 1) at low T as an open question for the future.

How does a phase shift at the IR fixed point appear in the bulk? Here the CS gauge field

Ax(z) plays a starring role [64,65]. From eq. (4.8a) we have

Ax(z) =
4π

N
δ(x)

∫ z

0
dẑ

√
−g gtt at φ

2 =
4π

N
δ(x)

∫ z

0
dẑ J t(ẑ) ≡ 4π

N
δ(x) q(z), (4.33)

where ẑ is a dummy variable, J t(z) is the electric charge density defined from eq. (4.6), and in

the final equality we defined q(z) as the net electric charge between the boundary and z. As

discussed in subsection 4.1, Ax(z) → 0 as z → 0. As z → zH (not performing the re-scaling
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magnetic flux electric charge density

T > TcT < Tc �(r) �= 0 J t(r) �= 0



Integrate up to some r

Compactify  , integrate overx x

The Phase Shift

�trxFrx = 2 �rAx(r) = �4�

N
�(x)J t(r)

Ax|r �=0 � Ax|r=0 = �2�

N
�(x)

�
drJ t(r)

�
dx Ax|r �=0 �

�
dx Ax|r=0 = �2�

N

�
drJ t(r)



�
dxAx = 0

�
dxAx �= 0 IR

UV

ei
R

dxAx

T > TcT < Tc �(r) �= 0 J t(r) �= 0

The Phase Shift

Kraus and Larsen hep-th/0607138



T > TcT < Tc �(r) �= 0 J t(r) �= 0

The Phase Shift
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• Entropy?

•Heat capacity?

• Susceptibility?

• Resistivity?
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• The Kondo Effect

• The CFT Approach

•A Top-Down Holographic Model

•A Bottom-Up Holographic Model

• Summary and Outlook



Summary
What is the holographic dual of the Kondo effect?

Holographic superconductor in

coupled as a defect

with a special boundary condition on the scalar

AdS2

AdS3to a Chern-Simons gauge field in



Outlook
• Multi-channel?

• Other impurity representations?

• Spin as global symmetry?

• Entanglement entropy?

• Quantum Quenches?

• Multiple impurities, RKKY?

• Suggestions welcome!



Thank You.


