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The return of the analytic S-matrix



• Because they are simple

‣ calculation with Feynman diagrams cumbersome, however 
final results often strikingly simple

• Gluon scattering is an important background for LHC

‣ at tree level, gluon scattering can be equivalently calculated in 
any supersymmetric theory

‣ one loop supersymmetric decomposition (Bern, Dixon, Dunbar, Kosower)

         Why  amplitudes ? 

N = 1

one-loop amplitude in 
pure YM with a gluon 
running in the loop 

N = 0

the most difficult piece, 
but simpler than   Ag

gluon
4 Weyl fermions 

6 real scalar fields

N = 4

Ag = (Ag + 4Af + 3As) − 4(Af +As) + As



Textbook approach to amplitudes:

Calculate Feynman diagrams !



Gauge-dependent, off-shell internal states

A typical Feynman diagram contains: 

Vertices

Propagators



• symmetries of the problem not preserved 
by our calculational approach
‣ Feynman diagrams are not separately gauge invariant

‣ Unphysical, off-shell internal states (vertices & propagators)

• vast redundancy from field redefinitions
‣ S-matrix equivalence theorem              

‣ in a sense, Lagrangian is not unique !

• locality & unitarity as derived concepts
‣ non manifestly local/unitarity descriptions (Arkani-Hamed, Cachazo et al)
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Number of Feynman diagrams for  gg       n g scattering: (tree level)

systematic analysis of their phenomenological implications. In addition to the development of these
tools for the calculation of exact matrix elements, effort has therefore also been put into finding
proper approximations which reliably simulate the exact solutions in the relevant regions of the
multi-particle phase-space and which are sufficiently simple to be handled analytically and fast to
evaluate numerically.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1: The number of Feynman diagrams contributing to the scattering process gg → n g .

In this Report we collect and review these recent developments for the calculation of multi-parton
matrix elements in non-abelian gauge theories. For examples of how these matrix elements can be
used to obtain cross sections for processes in high energy colliders see EHLQ [29] and references
contained within.

In Section 2 we describe the helicity-amplitude technique and introduce explicit parametrizations
of the polarization vectors in terms of massless spinors. To reach a wide an audience as possible we
have chosen not to use the Weyl - van der Waarden formalism preferred by some researchers, see
for example Ref.[10].

In Section 3 we introduce an alternative to the standard Feynman diagram expansion, based
on the equivalence between the massless sector of a string theory and a Yang-Mills theory. This
expansion groups together subsets of Feynman diagrams for a given process in a gauge invariant
way. These subsets are easier to evaluate than the complete set and different gauges can be used for
each subset so as to maximize the simplifications induced by a proper choice of gauge. Furthermore,
different subsets of diagrams are related to one another through symmetry properties or algebraic
relations and can be obtained without further effort from the knowledge of a small number of building
blocks. This expansion can be extended to arbitrary processes involving particles in representations
other than the adjoint, and in this Section we construct this generalization.

Section 4 describes the use of Supersymmetry Ward identities to relate amplitudes with parti-
cles of different statistics. These relations are useful even when dealing with non-supersymmetric
theories because in many cases the additional supersymmetric degrees of freedom decouple from
the processes of interest. In addition, if the energy of the scattering process is large with respect to
the mass splittings within supersymmetry multiplets, these relations can be used to easily calculate
the matrix elements for the production of supersymmetric particles.

In Section 5 we illustrate the use of these tools with the explicit calculation of matrix elements
for processes with four and five partons, and give results for the scattering of six gluons and four
gluons plus a quark-antiquark pair. We hope this Section is useful for the reader who wants to
familiarize himself with the details of how these calculations are performed.

In Section 6 we prove various factorization properties using a string-theoretic approach, which
provides a compact way to represent multi-parton amplitudes. The results contained in this Section
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☞

Unwanted complexity (I)

Gluon 
scattering

Result is: ☞ A(1±, 2+, . . . , n+) = 0

Result of a brute force calculation:

k1 · k4 ε2 · k1 ε1 · ε3 ε4 · ε5

4

With momenta & polarisation vectors...



Result of a brute force calculation:

k1 · k4 ε2 · k1 ε1 · ε3 ε4 · ε5

4

+ many more pages like this... 

= 0 !!

     Why so simple?          Why zero?  

FullSimplify[ 

]



•  Three-loop correction to electron g!2

‣ wild oscillations between the values of each diagram/integral                                                    

‣ final result is O(1)

‣ another example of unexplained simplicity...

(Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

72 diagrams 
like = (1.181241456...) (αe.m./π)

3

Unwanted complexity (II) 



• Partially off-shell quantities

•   g!2 : electromagnetic form factor  

                 Form factors                       

on shell on shellJe.m.
µ = ψ̄γµψ
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d4x e−iqx

�state|O(x)|0� = δ(4)(q − pstate) �state|O(0)|0�



• Form factors appear in several interesting contexts: 

‣ deep inelastic scattering  (e! + p → e! + hadrons) 

‣ e+ e!   → hadrons :                                                     

hadronic electromagnetic currente+ e! → hadrons (X)
all orders in αstrong,  first order in αe.m.

= e v̄(p2)γµu(p1)
ηµν

(p1 + p2)2
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ν (0) |0�
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• Higgs + multi-gluon amplitudes in QCD

‣ at low MH : dominant Higgs production                                            
at the LHC through gluon-gluon fusion 

‣ coupling to gluons through a fermion loop   

- proportional to the quark mass  ⇒ top quark dominates

‣ for MH  < 2 mtop   integrate out the top quark

• Effective Lagrangian description

‣ coupling is independent of mtop

‣ efficient MHV rules (Dixon, Glover & Khoze;  Badger, Glover & Risager; Boels & Schwinn) 

Leff ∼ H TrF 2
SD



• Higgs + multi-gluon scattering is a form factor!

‣ form factor of  Tr (FSD)2  (= amplitude of a different theory!)

‣ in N=4 SYM, this is related to the form factor of  Tr (!12)2

- Tr !212   and Tr FSD2  part of the same 1/2 BPS supermultiplet       

- supersymmetric form factor of the chiral part of the                        
stress tensor multiplet (Brandhuber, Gurdogan, Mooney, Yang, GT)

FTrφ2
12
(1, . . . , n) =

�
d4x e−iqx �state�|Trφ2

12(x) |0�

FTrF 2
SD
(1, . . . , n) =

�
d4x e−iqx �state|TrF 2

SD(x) |0�



• Recent QCD calculation of Gehrmann, Glover, 
Jacquier & Koukoutsakis:   

‣ H g+ g! g!    MHV

‣ H g+ g+ g+   maximally non-MHV 

‣ H         g      fundamental quarks

• We will compare our result in N=4 super Yang-Mills 
to theirs later

‣ surprising result: maximally transcendental parts in perfect agreement!

q q̄



← 3-point vertex: 171 terms

← 4-point vertex: 2850 terms

☜

Bryce S. DeWitt , Phys. Rev. 162:1239-1256,1967.

Unwanted complexity (III) 
 General Relativity

Einstein-Hilbert Lagrangian 
and Yang-Mills Lagrangian give 
rise to very different-looking 

Feynman rules...



‣ ....however: 

- KLT relations

- hint at further secret similarities between GR and YM 
amplitudes...

‣ three-point amplitudes are the smallest amplitudes

- entirely determined by helicities + Lorentz invariance

- appear only in complexified Minkowski

‣ EH Lagrangian (and Feynman rules) not needed !

AGR(1+2+3−) = [AYM(1+2+3−)]2

AGR(1−2−3+) = [AYM(1−2−3+)]2



...hidden structures in perturbative quantum field 
theory...

...which are not captured by Feynman diagrams

Need new framework to calculate S-matrix 
directly

Unexplained simplicity hints at...



(Cambridge, 1966)

“Strings, gauge fields and duality”,                                        
a conference to mark the retirement of David Olive 

Swansea 24-27 March 2004



• On-shellness

‣ “The fields themselves are of little interest.  They are                               
merely used to calculate transition amplitudes for interactions.                                     
These amplitudes are the elements of the S-matrix”

‣ “One should try to calculate S-matrix elements directly,                            
without the use of field quantities, by requiring them to have             
some general properties that ought to be valid, whether or not        
some underlying Lagrangian theory exists” 

• Complexify

‣ “One of the most remarkable discoveries in elementary particle      
physics has been that of the complex plane”

            Key ideas in  



• Massless particles

‣ most of the beautiful structure uncovered so far is in 
theories of massless particles 

• New symmetries/concepts

‣ large-N limit

‣ supersymmetry

‣ string theory,  AdS/CFT correspondence

‣ conformal symmetry, new hidden symmetries

‣ simplest S-matrix: N=4 SYM & N=8 supergravity                
(maximal supersymmetry) 

         What was “missing” in 1966 



• Look at some incarnations of these ideas 

• Hidden structures in scattering amplitudes & form 
factors

‣ MHV amplitude and recursion relations 

‣ amplitude/ Wilson loop duality at strong and weak coupling

‣ dual conformal symmetry 

‣ maximal transcendentality & symbols of  “finite remainder 
functions”

Plan



MHV amplitude  
• First non-vanishing amplitude:                          

• Simple geometry in Penrose’s twistor space 
(Witten, 2003)

- localised on a line in twistor space 

- holomorphic (only < > spinor products) 

- generic amplitudes (with more negative helicities) localise on 
unions of lines  

- first example of hidden structure 

 helicities are a 
permutation 
of  !!++....+

AMHV(1+ . . . i− . . . j− . . .n+) =
�i j�4

�12��23� · · ·�n1�

Maximally Helicity Violating 

(Parke & Taylor, 1986; Berends, Giele 1987; Mangano, Parke, Xu 1988)



• Exploit analytic structure of amplitudes

‣ Singularities of tree amplitudes: 

- Factorisation on multi-particle poles                                                  
(simple poles, tree level)  

On-shell (BCF) recursion relations
   (Britto, Cachazo, Feng; BCF + Witten, 2005)

 h = internal 
particles 
helicities 
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simple 
pole

‣ idea: physical singularities → poles in a single complex variable z



‣ Shift momenta:                           ,                                                                              
with                    for all z      and                                                                                                                             

- shifted momenta are complex!

‣  

‣                                                                                                                       

- assume                                          (depends on theory)

- residues cP from factorisation 

as z ! ! 

p̂1(z) = p1 + z η p̂2(z) = p2 − z η

η2 = 0

A(z) =
�

P

cP
z − zP

A(z) := A(p̂1, p̂2, p3, . . . , pn)

A(z) → 0

only simple poles
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Final result:

p̂21 = p̂22 = 0

is the amplitudeA(0)



• Results very simple! 

‣ 3-pt amplitudes “seed” the recursion, everything on shell

• Wide applicability: 

‣ General Relativity (Bedford, Brandhuber, Spence, GT ‘05;  Cachazo, Svrcek’05;   
Benincasa, Boucher-Veronneau, Cachazo ‘07; Arkani-Hamed, Kaplan ‘08)

‣ rational part of QCD (Bern, Dixon, Kosower; “BLACKHAT” collaboration)  and 
gravity amplitudes (Brandhuber, McNamara, Spence, GT;  Alston, Dunbar, Perkins)

‣ massive particles (Badger, Glover, Khoze, Svrcek)

‣ N=4/N=8 manifestly supersymmetric recursion relations                     
(Brandhuber, Heslop, GT; Arkani-Hamed, Cachazo, Kaplan; Drummond, Henn)

‣ ABJM theory (Gang, Huang, Koh, Lee, Lipstein)



Hidden structures in

planar N=4 SYM



•                                                is “helicity-blind” 

• All-loop MHV amplitude: 

‣                                                              BDS ansatz 

‣ div = universal infrared-divergent part                                        

‣       = cusp anomalous dimension     

‣                                 =  finite part of one-loop amplitude

‣ R  is the Remainder Function,        R = 0 for n = 4, 5      R ! 0  for n⩾6         

i.   Iterative structure at weak coupling
(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

γK

Finite(1)(p1, . . . , pn)

BDS ∼ div + γKFinite(1)(p1, . . . , pn)

Mn := 1 +
∞�

L=1

λLM(L)
n ∼ eBDS+R

λ ∼ g2N/(8π2)

MnAn,MHV = Atree

n,MHV
Mn



• BDS: 

‣ contains infrared divergences, which are known to exponentiate                                                             
(Giele, Glover; Kunszt, Signer, Trocsany;  Sterman, Teyeda-Yeomans;  Catani;  Magnea, Sterman)

‣ exponentiation of finite parts: new and unexpected  

‣ modern explanation: hidden dual conformal symmetry  

• Remainder:  

‣ R = 0 for n = 4, 5  and any loop; R ! 0  for n⩾6  starting at 2 loops   

‣ hard to calculate, even numerically  (one data point takes one week)

‣ will approach from the Wilson loop side......



• MHV amplitudes in planar N=4 super Yang-Mills 
calculated by a Wilson loop 

- Strong coupling (Alday & Maldacena)

- Weak coupling (Drummond, Henn, Korchemsky, Sokatchev; Brandhuber, Heslop, GT)                   

‣ C determined by the momenta of the scattered particles              

ii.   Wilson loop/amplitude duality             
(Alday, Maldacena; Drummond, Korchemsky, Sokatchev + Henn;  Brandhuber, Heslop, GT)                   

�W [C]� := TrP exp
�
ig

�

C
dτ

�
ẋµ(τ)A

µ
�
x(τ)

� ��



• The contour of the Wilson loop:  

‣ A particular polygonal contour, made of lightlike segments:    

- colour ordering   

‣               momentum conservation                                                                                                                        

-                                    ,    lightlike

- x  are T-dual (region) momenta

n�

i=1

pi = 0

x1

x2

x3

x4

x5

x6

x7

closed contour

pi = xi −xi+1

Tr(T a1 · · ·T an)



• MHV Amplitude  “=”  Wilson loop                                  

‣ more precisely:     Wilson loop calculates M

- M is the helicity-blind function in 

- Subtlety in the infrared-divergent part

• Conjecture:     (Log) < W[C] > = (Log) M   to all loops

     

A(L)

MHV
= Atree

MHV
M(L)

All-loop conjecture                                    
(Drummond, Henn, Korchemsky, Sokatchev;  Brandhuber, Heslop, GT)

In terms of the remainders: Rn,WL = Rn



• New duality

• Remainder function is easier to compute 

                  

‣ Wilson loop: one hour.   Amplitude: one week

- (dimensionally regularised) Wilson loop integral functions much simpler 
to evaluate than corresponding amplitude integral functions 

‣ Functional dependence of R  constrained by dual conformal symmetry

Why is this interesting/useful ? 

 < W[C] >  = Exp (   BDS + R  )
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• Natural symmetry from Wilson loop perspective:

‣ it is the standard conformal group acting on dual momenta  x’s

‣ symmetry is anomalous 

- UV divergences from cusps in the contour                                  
(UV for the Wilson loop = IR for the amplitude)

iii.  Dual conformal symmetry              
(Drummond, Henn, Korchemsky, Sokatchev)

pi = xi − xi+1

xn+1 = x1



• BDS Ansatz explained by dual conformal symmetry  

‣ a solution to the associated anomalous Ward identity 

‣ remainder R is a function of cross-ratios

-                  invariant under 

‣ solution is unique at four and  five points (modulo constants)

- lightlike condition forbids nontrivial cross ratios for n < 6

• For n ⩾ 6 points, cross ratios open up and R " 0  

- e.g. at  n = 6: 

-                                         non-vanishing starting at 2 loops   

u1 =
x2
13x

2
46

x2
36x

2
41

, u2 =
x2
15x

2
24

x2
14x

2
25

, u3 =
x2
26x

2
35

x2
25x

2
36

R6 = R6(u1, u2, u3)

x2
ijx

2
kl

x2
ikx

2
jl

xi →
xi

x2
i



‣ Remarkable series of recent strong-coupling calculations                                        
(Alday, Maldacena; Alday, Gaiotto Maldacena; Alday, Maldacena, Sever, Vieira)

- integrability of worldsheet theory, Y-systems...

‣ Weak-coupling side:  

- n-point remainder integrals (Anastasiou, Brandhuber, Heslop, Khoze, Spence, GT)

- 6-point integrals calculated by Del Duca, Duhr, Smirnov.      
17-pages result, contains Goncharov polylogs

- Goncharov, Spradlin, Vergu and Volovich introduced the 
concept of “symbol of a transcendental function” and rewrote 
this as 2 lines of classical polylogs Lis(z) =

∞�

n=1

zn

ns

Li(s1,...,sk)(z1, . . . , zk) =
�

n1>n2>···>nk≥1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k



1. Conjecture:  dual (super)conformal symmetry lifted 
from Wilson loops to amplitudes                         
(Drummond, Henn, Korchemsky, Sokatchev) 

‣ new hidden symmetry of planar N=4 amplitudes! 

- on-shellness, large-N limit, N=4 symmetry 

‣ tree-level S-matrix of N=4 SYM is dual superconformal covariant 
(Brandhuber, Heslop, GT) 

Comments: 



2. Weak coupling:    Yangian symmetry of tree-level 
scattering amplitudes  (Drummond, Henn, Plefka)

‣ commute the generators of the two superconformal algebras

‣ it is still a matter of debate whether the predictive power of the 
Yangian symmetry exceeds that of the two superconformal 
symmetries



The form factor 
remainder function



‣ Form factors from unitarity

‣ Simplest application: Sudakov form factor (= two points) of a 
half-BPS operator

‣ each term has fixed degree of  “transcendentality”

  One loop                                        
(Brandhuber, Spence, GT,  Yang; + Gurdogan & Mooney)                                                                         

q := p1 + p2

q

l2

l1

p1

p2

(a) (b)

p1

p2

q

Figure 1: In Figure (a) we show the diagram calculating the cut in the q2-channel of
the Sudakov form factor (2.3). The cross denotes a form factor insertion. A second
diagram with legs 1 and 2 swapped has to be added and doubles up the result of the first
diagram. The result of this cut is given by (twice) a cut one-mass triangle function,
depicted in Figure (b).

The q2-cut of the form factor (i.e. its discontinuity in the q2-channel) is obtained
from the diagram on the left-hand side of Figure 1, whose expression is3

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q) F
(0)(l1, l2; q)A

(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

,

(2.5)
where the Lorentz invariant phase space measure is

dLIPS(l1, l2; q) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + q) , (2.6)

and q is given in (2.4). The tree-level component amplitude appearing in (2.5),
A(0)

(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

, can be extracted from Nair’s superamplitude
[18]

AMHV := gn−2 (2π)4δ(4)
(

n
∑

i=1

λiλ̃i

)

δ(8)
(

n
∑

i=1

λiηi
)

n
∏

i=1

1

〈ii+ 1〉 , (2.7)

where λn+1 ≡ λ1. The result is

A(0)
(

φ12(p1),φ12(p2),φ34(l1),φ34(l2)
)

=
〈l1l2〉〈12〉
〈l21〉〈2l1〉

. (2.8)

The other quantity appearing in (2.5), F (0) is the tree-level expression for the form
factor (2.3), which is trivially equal to 1. Thus, we get

F (1)(q2)
∣

∣

q2−cut
= 2

∫

dLIPS(l1, l2; q)
〈12〉〈l1l2〉
〈2l1〉〈l21〉

= −2 q2
∫

dLIPS(l1, l2; q)
1

(l2 + p1)2
.

(2.9)

3In this and the following formulae we omit a power of the ’t Hooft coupling, defined as a :=
(g2N)/(16π2)(4πe−γ)ε. Note that this is 1/2 the ’t Hooft coupling defined in [12].
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AF

�
F (q2)

�1 loop
= 2 (−q2)−�

�
− 1

�2
+

ζ2
2

+O(�)
�

D = 4− 2�

regulates infrared divergences 

F (q2) := �φ12(p1)φ12(p2)|Tr(φ12φ12)(0) |0�



‣ constants have transcendentality 0

‣ #, log transcendentality 1

‣ #2 , log2   , Li2    transcendentality 2

‣ ...  $n , Lin ,   log % Lin-1 ... transcendentality n

‣ At L loops, term in &p  has transcendentality 2 L + p 

‣ Principle of maximal transcendentality

- observed by Gracey in supersymmetric non-linear sigma models

- Kotikov, Lipatov + Onischchenko, Velizhanin introduced it in N=4 SYM 
for anomalous dimensions of twist-2 operators

‣ connections to number theory!

Transcendentality
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Cristian Vergu: Multiple polylogarithms/symbols and physical applications
Jianqiang Zhao: Multiple Polylogarithms, Multiple Harmonic Sums and Multiple Zeta Values

Workshop speakers:
 
Nima Arkani-Hamed
Christian Bogner
Andreas Brandhuber
David Broadhurst
Ozgur Ceyhan
Lance Dixon
Dzmitry Doryn
James Drummond
Claude Duhr
Burkhard Eden
Michael Green
Matt Kerr
Dirk Kreimer
Kasper Larsen
Lionel Mason
Jan Plefka
Radu Roiban 
Oliver Schnetz
Emery Sokatchev
Mark Spradlin
Stephan Stieberger
Congkao Wen

Outline
Over the last decade, there have been numerous interactions between Number Theory and Particle Physics, often involving
polylogarithms and associated structures. The first week of the symposium will consist of a four-day school covering the
following topics: Introductory lectures on amplitudes, Wilson loops and symmetries; Symbols/mixed Hodge structures;
multiple polylogarithms/symbols and physical applications; Grassmannian approach to amplitudes; correlators and
integrability. In the second week there will be a workshop with leading researchers on both the Physics and Number Theory
side. The scientific goals of the workshop include: to review recent progress, highlight the remarkable connections between
Number Theory and Particle Physics, stimulate interaction and collaboration among participants, and inspire further
outstanding developments in the field.

Travel Information

Useful information about travelling to Durham can be found on the Department of Mathematical Sciences webpages and on
the Durham University's pages. 

Accommodation

Accommodation for most participants will be in Holgate House, Grey College. This is conveniently located near to the
lecture rooms in the Department of Mathematical Sciences. Guest rooms offer en-suite and internet-connection facilities.
Attendance is by invitation only and fees for self-supporting participants are payable by cash, credit card, sterling cheques
or sterling travellers cheques at registration. 

Organising Committee:
Herbert Gangl (Durham), Paul Heslop (Durham), Gabriele Travaglini (QMUL). 



‣ Result derived from various cuts:  

- F proportional to

- non-planar one-loop amplitude are also relevant in the cuts!  

   Two loops
                                                                           

(a) (b)

q

p1

p2

F
(1)
2 A

(0)
4F

(0)
2 A

(1)
4

q

p1

p2

l1

l2

l1

l2

Figure 1: The two two-particle cuts contributing to the Sudakov form factor.

2.1 Calculation with fundamental generators

The first quantity entering the cut is the four-point one-loop amplitude, whose expression
in terms of fundamental colour generators is given in (A.1) with n = 4. This expression
has to be convoluted with a tree-level two-point form factor, simply given by δal1al2 , see
Figure 1a. We focus first on the contribution from the planar amplitude, i.e. the first
line in (A.1). There are six possible permutations to consider, which give rise to the
single-trace structures2

Tr(1, 2, l1, l2), Tr(1, 2, l2, l1), Tr(1, l1, l2, 2), Tr(1, l2, l1, 2),

Tr(1, l1, 2, l2), Tr(1, l2, 2, l1). (2.1)

When contracting with the tree form factor 〈φal1
12 (l1)φ

al2
12 (p2)|Tr

(
φ12φ12

)
(0)|0〉 = δal1al2 ,

and using δabT a
ijT

b
lm = δimδjl and δabT a

ijT
b
jm = Nδim we see that only the first line of (2.1)

is leading in colour. The four traces give an identical result, namely NTr(a1a2) = N2δa1a2 .
The contribution to the cut from the planar one-loop amplitude is then

N2δa1a2
[
A(1)

4;1(1, 2, l1, l2) + A(1)
4;1(1, 2, l2, l1) + A(1)

4;1(2, 1, l1, l2) + A(1)
4;1(2, 1, l2, l1)

]
. (2.2)

We now consider the contribution from the non-planar part of the one-loop amplitude
(see section A for details). The COP for {α} = {2, 1} and {β} = {3, 4} (corresponding
to c = 3 in (A.2)) are

(2, 1, 3, 4), (2, 3, 1, 4), (3, 2, 1, 4), (1, 2, 3, 4), (1, 3, 2, 4), (3, 1, 2, 4), (2.3)

and the non-planar one-loop piece (second line of (A.1)) is

A(1)
NP(1, . . . 4) = Tr(1, 2)Tr(l1, l2)A

(1)
4;3(1, 2, l1, l2) + Tr(1, l1)Tr(2, l2)A

(1)
4;3(1, l1, 2, l2)

+ Tr(1, l2)Tr(2, l1)A
(1)
4;3(1, l2, 2, l1) , (2.4)

with

A(1)
4;3(1, 2, l1, l2) = A(1)

4;1(2, 1, l1, l2) + A(1)
4;1(2, l1, 1, l2) + A(1)

4;1(l1, 2, 1, l2)

+ A(1)
4;1(1, 2, l1, l2) + A(1)

4;1(1, l1, 2, l2) + A(1)
4;1(l1, 1, 2, l2) . (2.5)

Contracting with the tree-level form factor, we see that the leading structures in colour
are of the form δal1al2Tr(l1l2)Tr(12) = N2δa1a2 . Collecting terms, we obtain a two-loop

2To keep the notation simple we define Tr(1, 2, l1, · · · ) := Tr(T a1T a2T al1 · · · ) etc.
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‣ Sudakov at two loops:

- first obtained by van Neerven in a pioneering paper in 1986!

- two-loop result exponentiates as expected:  

- result is transcendental (non-planar integral topology)

- recent nice three-loop calculation confirms principle of 
maximal transcendentality (Gehrmann, Henn, Huber)

�
Log F (q2)

�2 loop
= (−q2)−2�

�ζ2
�2

+
ζ3
�

+ O(�)
�

�
F (q2)

�1 loop
= 2 (−q2)−�

�
− 1

�2
+

ζ2
2

+O(�)
�

!!

! "

# #$ $

! !

F (2)(q2) = 



‣ Two-loop Sudakov in ABJM (Brandhuber, Gurdogan, Korres, Mooney, GT;  Young)

‣  

- agreement with the IR divergences of the known two-loop amplitudes, 
result has maximal degree of transcendentality...same as N=4 SYM!

F (2)(q2) =

�
N

k

�2

XT(q2)

XT(q2) =

µ�2 := 8πe−γEµ2

F (2)(q2) =
1

64π2

�
N

k

�2 �
−

q2

µ�2

�−2� �
−

1

�2
+ 6 log2 2 +

2π2

3
+O(�)

�

× q2
�
− Tr(p1p2l3l1) + q2l23

�

note particular 
numerator

!, log 2



• MHV 

‣ Tree: 

‣ Loops: 

-          helicity-blind function

- totally symmetric under legs exchange

- one loop:  IR divergences + sum of finite 2me box

- two loops:  nontrivial remainder function?

  3-point form factor at 2 loops                 
(Brandhuber, GT, Yang)                                                                            

F3(1, 2, 3) = �φ12(p1)φ12(p2)g
+(p3)|Tr(φ12φ12)(0) |0�

F tree
3 =

�1 2�
�2 3��3 1�

F (L)
3 = F tree

3 G(L)
3 (1, 2, 3)

G(L)
3



• Do a 2-loop calculation, use generalised unitarity

1. detect all possible integrals and coefficients with iterated two-
particle cuts

2. next, fix all remaining ambiguities using three-particle cuts, such as 

Figure 2: Double two-particle cuts and three-particle cuts of three-point form factor.

and tree-level form factor times one-loop amplitudes which provided important additional
cross checks, but did not lead to new integral functions.

We now provide some more details on the procedure we followed. Starting from the
two-particle cut expression (3.5), one can apply a further two-particle cut to the one-loop
five-point amplitudes. The cut integrand is then given by the product of a two-point tree-
level form factor and two tree amplitudes. We also consider the cuts which are given by
a three-point tree form factor and two tree amplitudes. These types of cuts are depicted
in the first two lines of Figure 2. The cut integrands are simple enough to perform the
necessary tensor reduction directly. In this way, we find a set of simple integral functions
with simple coefficients containing all integrals that appear in the final answer, given in
Figure 6 6.

However, we are left with certain ambiguities due to l21,2 terms in the numerator of
integrals such as DBox and NBox in Figure 6, where l1,2 correspond to cut propagators.
Such terms are not detected in the double two-particle cuts considered. Besides, there are
also integrals which are not detected by these double two-particle cuts. Both problems
can be fixed by considering three-particle cuts.

The three-particle cuts on their own involve several integral topologies.7 The cuts we
have considered are shown in the third line of Figure 2, and involve up to six-point NMHV
amplitudes and five-point NMHV form factors. The cut integrands are therefore much
more complicated compared to double two-particle cuts, which makes it much harder to
perform the tensor reduction directly in order to obtain a set of simple integral functions.
That is why we chose to use first double two-particle cuts to write down an ansatz, which
we then verify and refine using three-particle cuts.

For these checks we do not need the reduction of the triple-cut expressions as we can
make analytic comparisons of the integrands arising from the triple cut and those coming

6There are also additional non-planar integrals arising from the reduction of the double trace term
in (3.5), some of which are not allowed by the colour structure. However, these are all canceled after
performing cyclic summation, and do not appear in the final result.

7Integrals which are simple products of one-loop integrals are not detected by three-particle cut, but
they are ruled out by the double two-particle cuts.
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Figure 3: A particular three-particle cut of the three-point form factor.

Such terms are not detected in the double two-particle cuts considered. Besides, there are
also integrals which are not detected by these double two-particle cuts. Both problems
can be fixed by considering three-particle cuts.

The three-particle cuts on their own involve several integral topologies.7 The cuts we
have considered are shown in the third line of Figure 2, and involve up to six-point NMHV
amplitudes and five-point NMHV form factors. The cut integrands are therefore much
more complicated compared to double two-particle cuts, which makes it much harder to
perform the tensor reduction directly in order to obtain a set of simple integral functions.
That is why we chose to use first double two-particle cuts to write down an ansatz, which
we then verify and refine using three-particle cuts.

For these checks we do not need the reduction of the triple-cut expressions as we can
make analytic comparisons of the integrands arising from the triple cut and those coming
from the ansatz directly, by choosing a basis for spinors and expressing both integrands
in this basis.

To be more explicit, let us consider the particular three-particle cut shown in Figure 3.
The cut integrand is given as a product of a four-point tree form factor, and a five-point
tree amplitude. There are two kinds of contributions to the cut integrand, depending on
which one is next-to-MHV:

∫
d4ηl1d

4ηl2d
4ηl3

[
FMHV,(0)

4 (−l1,−l2,−l3, 3)ANMHV,(0)
5 (1, 2, l3, l2, l1)

+FNMHV,(0)
4 (−l1,−l2,−l3, 3)AMHV,(0)

5 (1, 2, l3, l2, l1)
]
, (3.6)

where in the last equation we have used supersymmetric amplitudes and form factors [7]
in order to perform the sum over internal helicities efficiently. The fermionic integration
can now be performed easily, and after switching back to component amplitudes and form
factors the result is

FMHV,(0)
3 (1, 2, 3)

[
〈12〉〈23〉〈31〉

〈l1l2〉〈l2l3〉〈l33〉〈3l1〉
ANMHV,(0)

5 (1+, 2+, l−3 , l
−
2 , l

−
1 )

+
〈23〉〈31〉

〈2l3〉〈l3l2〉〈l2l1〉〈l11〉
FNMHV,(0)
4,SD (−l−1 ,−l−2 ,−l−3 , 3

+)

]
. (3.7)

Note that the amplitudes and form factor in the bracket are the bosonic components with
fixed helicities. FNMHV,(0)

4,SD is the form factor with an insertion of the operator Tr(F 2
SD)+. . .

7Integrals which are simple products of one-loop integrals are not detected by three-particle cut, but
they are ruled out by the double two-particle cuts.
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The traditional way



q

1

2

3

q
1

2

3

1 2

3q

q 1

23

q
1

2

3

1

2

3

q

DTri1 = q2(s23 + s31)× DTri2 = q2(s12 + s31)×

DBox1 = s23 (s31! · p3 − s12! · p2)× DBox2 = s12 (s31! · p1 − s23! · p2)×

TriPent = q2s12s23× NBox = s23
(
1
2s12s31 − s12!a · p2 − s31!b · p3

)
×

!
!

!a
!b

1

2

3
NTri = 1

2q
2(s23 + s31)×

q

Figure 6: The integral expansion of our final result for the three-point form factor G(2)
3 .

we constructed an MB representation of NBox directly from its Feynman parameter form.
The result is an eight-fold MB representation of the form

(−q2)−2ε

2(2πi)8Γ(−1− 3ε)

∫ 8∏

i=1

(dziΓ(−zi))u
z5+1vz678+1w−3−2ε−z12345678 ×

Γ(−ε− z34)Γ(−ε+ z4)Γ(1 + z13456)Γ(1 + z157)Γ(−1− ε+ z3 − z8)×
Γ(−2− 2ε− z1 − z568)Γ(−2 − 2ε− z134578)Γ(−2 − 2ε− z1234678)× (3.12)

Γ(−2ε− z3 + z8)Γ(1 + z168)Γ(1 + z278)Γ(3 + 2ε+ z12345678)

Γ(−2ε− z3)Γ(−1− 2ε− z3 − z48)Γ(−1− 2ε+ z34 − z8)Γ(−2ε− z34 + z8)
,

where we have introduced the shorthand notation zij...k = zi + zj + . . .+ zk, and

u =:
s12
q2

, v :=
s23
q2

, w :=
s31
q2

. (3.13)

Note that for sake of brevity we have dropped here the terms of the numerator which
are linear in loop momentum !; they lead to a number of similar eight-fold MB integrals.
Furthermore, due to the Γ(−1 − 3ε) denominator the integral effectively becomes seven-
dimensional [21]. In this sense this integral is the most complicated and numerically the

14

F (2)
3

F tree
3

=
2�

i=1

(DTrii + DBoxi) + TriPent + NBox + NTri + cyclic

• Final result: 

-   result expressed in terms of two-loop planar and non-planar integrals



• Several analytic results (Gehrmann & Remiddi)

‣ variables:                                                                 with    q  = p1 + p2 +  p3 

‣ u + v + w = 1

‣ all known integrals appearing in our answer are transcendental 

‣ unknown integrals can be re-expressed in terms of master integrals 
which are transcendental (Gehrmann & Remiddi)

• Evaluate integrals with sophisticated technologies:

‣ AMBRE (Gluza, Kajda, Riemann, Yundin)    (only for planar or non-planar with 1 scale)

‣ MB.m (Czakon)  

‣ MBresolve.m  (Smirnov & Smirnov)

u :=
s12
q2

, v :=
s23
q2

, w :=
s31
q2

,



• Some features of the final result: 

- has fixed degree of transcendentality (at each loop order and power of 
the dimensional regularisation parameter !)

- can be expressed in terms of Goncharov multiple polylogarithms... 

- ...which disappear in our final expression for the remainder   

- cancellations impossible to find without resorting the symbols                                                             



• Compute directly the finite remainder using 
symbols, then lift the symbol to a function

‣ define an appropriate remainder function:     

- finite

- trivial/understood collinear limits

‣ determine its symbol  (Goncharov, Spradlin, Vergu, Volovich)

- remainder is a transcendentality-four function (two loops)

- impose symmetries and physical constraints

‣ fix “beyond-the-symbol” terms

‣ lift symbols to functions

The fast way: go straight to the answer!



‣ Six-point MHV remainder  (Goncharov, Spradlin, Vergu, Volovich) 

‣ MHV remainder in (1+1)-dim kinematics (Heslop & Khoze)

- 2 loops, all n

- 3 loops, all n  (7 undetermined constants)                                                    

‣ MHV remainder, any n (Caron-Huot)

‣ Six-point NMHV remainder at 2 loops (Dixon, Drummond, Henn)

‣ Six-point, MHV remainder at 3 and 4 loops                                               
(Dixon, Drummond, Henn; Caron-Huot, He; Dixon, Drummond, Duhr, Pennington)

‣ Our example: three-point (1 leg off shell, 3 on shell) form factor 
remainder at 2 loops

Examples of this strategy so far: 



• Define  ABDK/BDS remainder,  R                                 

‣ Ingredients:    

- two-loop form factor

- BDS part, contains all infrared divergences

- first nontrivial remainder appears for n=3

‣ Properties of the remainder: 

- finite

- trivial collinear limits 

- in particular:                     (there is no Sudakov remainder         !) 

Step I: define form factor remainder

R(2)
n → R(2)

n−1

R(2)
3 → 0 R(2)

2

G(2)
n

R(2)
n := G(2)

n − BDS(2)n



• The symbol of a transcendentality-k function is an 
element of the k-fold tensor product of rationals 
(Goncharov, Spradlin, Vergu, Volovich)

‣     

• Recursive definition: 

‣     

• Two key properties:

‣     

‣                                                             where c = constant  

Crash review of symbols

f (k) −→ S[f (k)] = R1 ⊗ · · ·⊗Rk

df (k) =
�

a f
(k−1)
a d logRa S[f (k)] =

�
a S[f

(k−1)
a ] ⊗ Ra⇒

· · ·⊗Ra Rb ⊗ · · · = · · ·⊗Ra ⊗ · · · + · · ·⊗Rb ⊗ · · ·

· · ·⊗ cRa ⊗ · · · = · · ·⊗Ra ⊗ · · ·

“fingerprints” of the function
(a linear combination of 

elementary tensors)



• Examples:  

‣  S [log x] = x ,    S [Li2 (x)] = - ((1- x) " x ),   S [Li3 (x)] = - ((1- x) " x " x)

‣ S [log x log y] = x " y + y " x  (note:   x " y is not the symbol of a function)

• The symbol transforms complicated polylogarithmic 
identities into algebraic ones, e.g.  

‣                                                                          (Euler) translated into            

‣ loss of information on !’s (beyond-the-symbol terms)  and branch cuts 
where the function has to be evaluated                            

Li2(z) + Li2(1− z) + log(z) log(1− z)− π2

6
= 0

−((1− z)⊗ z) − (z ⊗ (1− z)) + (1− z)⊗ z + z ⊗ (1− z) = 0



• Entries:  (u, v, w, 1-u, 1-v, 1-w)       u = s12 / q2 ,  v = s23 / q2 , w = s31 / q2

‣ from inspecting the relevant integrals in Gehrmann & Remiddi  (GR) 

• First entry:  (u, v, w)   for correct branch cuts                                           
(Gaiotto, Maldacena, Sever, Vieira)

‣                                                                                      with  Pij := pi +  ... + pj  

‣ also satisfied at the GR integral function level

• Further constraints on entries                                             
(Gaiotto, Maldacena, Sever, Vieira; Caron-Huot; Dixon, Drummond, Henn)

‣ second & last entries 

Step II:  constructing the symbol of R

S[R(2)] =
�

i,j

P 2
i,j ⊗ S[disci,jR(2)]



• The unique symbol satisfying these requirements: 

‣ overall coefficient fixed from numerics for n = 3                                                  
(from collinear limits for n > 3)

‣ coefficients ±1, ±2 (well... -2)

‣ can we determine uniquely the function with this symbol?

following compact expression:

S(2) = −2u⊗ (1− u)⊗ (1− u)⊗ 1− u

u
+ u⊗ (1− u)⊗ u⊗ 1− u

u

−u⊗ (1− u)⊗ v ⊗ 1− v

v
− u⊗ (1− u)⊗ w ⊗ 1− w

w

−u⊗ v ⊗ (1− u)⊗ 1− v

v
− u⊗ v ⊗ (1− v)⊗ 1− u

u

+u⊗ v ⊗ w ⊗ 1− u

u
+ u⊗ v ⊗ w ⊗ 1− v

v

+u⊗ v ⊗ w ⊗ 1− w

w
− u⊗ w ⊗ (1− u)⊗ 1− w

w

+u⊗ w ⊗ v ⊗ 1− u

u
+ u⊗ w ⊗ v ⊗ 1− v

v

+u⊗ w ⊗ v ⊗ 1− w

w
− u⊗ w ⊗ (1− w)⊗ 1− u

u
+ cyclic permutations . (4.28)

The next challenge is twofold: firstly, we wish to determine the function whose symbol
is given by (4.28); and secondly, we wish to determine terms missed by the symbol,
e.g. terms of the form π2 × F2 where F2 is a sum of transcendentality-two functions with
rational coefficients.

In this respect, there is an additional piece of information about (4.28) that we would
like to mention. Our symbol S(2) defined in (4.28) satisfies an important symmetry
constraint [61] discussed in [23], namely

S(2)
abcd − S(2)

bacd − S(2)
abdc + S(2)

badc − (a ↔ c , b ↔ d) = 0 . (4.29)

According to a conjecture of Goncharov, symbols with this peculiar property can always
be obtained from a function involving logarithms and classical polylogarithms Lik’s with
k ≤ 4 only [61, 23]. The explicit solution we will present in the next section will confirm
this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the

23
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• Yes! 

‣       satisfies a particular relation of Goncharov, Spradlin, Vergu & Volovich:

‣ " can re-express as a linear combination of classical polylogarithms only

‣ we find the following arguments:

• Final answer fits on one line (for appropriately chosen fonts): 

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi)

S(2)
abcd − S(2)

bacd − S(2)
abdc + S(2)

badc − (a ↔ c , b ↔ d) = 0

S(2)

�
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

�



• Final answer:  (Brandhuber, GT,  Yang)

‣ u1 = u ,   u2 = v  ,  u3 = w 

‣  

‣ Block-Wigner-Ramakrishnan(-Zagier) polylogarithmic function

‣ no Goncharov polylogarithms!

• Next: QCD

following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4 ,

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.

24

this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
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• Higgs + 3 partons  (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)

‣ H g+ g! g!   MHV

‣ H g+ g+ g+   maximally non-MHV 

‣ H         g      fundamental quarks

• In N=4 SYM: 

‣ (H g+ g! g!)      and  (H g+ g+ g+)  both derived from super form factor

‣ from supersymmetric Ward identities:  (Brandhuber, GT, Yang)

q q̄

F (L)(g−1 , g
−
2 , g

+
3 )

F tree(g−1 , g
−
2 , g

+
3 )

=
F (L)(g+1 , g

+
2 , g

+
3 )

F tree(g+1 , g
+
2 , g

+
3 )

= G(L)(u, v, w)

q2 = M2
H

! what we computed

F
tree(H, g

+
1 , g

+
2 , g

+
3 ) =

q
4

[1 2] [2 3] [3 1]

F
tree(H, g

−
1 , g

−
2 , g

+
3 ) =

�1 2�2

�2 3� �3 1�

Higgs amplitudes in QCD



• QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis :

‣ expressed in terms of a few pages of Goncharov polylogarithms

‣ entirely expected because of expansion as ! (coefficient x integral) !

- e.g. scalar non-planar double box does not satisfy the    
Goncharov et al criterion 

• Next, relate N=4 form factors to Higgs amplitudes: 

‣ take maximally transcendental piece of (H g+ g! g!)   and   (H g+ g+ g+) 



• We find a surprising relation...

‣ from symbols and numerics 

‣ all Goncharov polylogarithms in QCD results can be eliminated in 
favour of classical polylogarithms

‣ we don’t know why!

• Nothing similar seems to hold for the                      
form factor

‣ maximally transcendental part does not satisfy Goncharov et al criterion  

!R(2)
H g−g−g+

���
MAXTRANS

= R(2)
H g+g+g+

���
MAXTRANS

= R(2)
N=4SYM

(H, q, q̄, g)



• Final surprise: amplitude vs form factor remainders 

‣ the six-point MHV amplitude remainder is built out of six variables                                 
(u, v, w; yu, yv, yw):   

- cross ratios: 

- y variables: 

‣ three-point form factor variables: 

u :=
x2
13x

2
46

x2
14x

2
36

, v :=
x2
24x

2
15

x2
25x

2
14

, w :=
x2
35x

2
26

x2
36x

2
25

yu :=
u− z+
u− z−

, yv :=
v − z+
v − z−

, yw :=
w − z+
w − z−

z± :=
1

2

�
− 1 + u+ v + w ±

√
∆
�
, ∆ := (1− u− v − w)2 − 4uvw

u + v + w = 1

u :=
x2
13

x2
14

, v :=
x2
24

x2
14

, w :=
x2
34

x2
14



• Symbol of 6-pt MHV amplitude remainder has     
two parts:

‣ both                             and                                            have trivial 
collinear limits (independently)

• We find: 

‣ identify the (independent) cross ratios (u, v, w) with the (dependent) 
form factor ratios  (u, v, w)

‣ In general, form factor remainder depends on 3n - 7 ratios,  amplitude 
remainder depends on 3n - 15 cross ratios

‣  Furthermore (unpublished observation, Dixon & Duhr)

S(2)
6, ampl = Ŝ(2)

6, ampl(u, v, w) + S̃(2)
6, ampl(u, v, w; yu, yv, yw)

S̃(2)
6, ampl(u, v, w; yu, yv, yw)Ŝ(2)

6, ampl(u, v, w)

S(2)
3, form factor(u, v, w) = Ŝ(2)

6, ampl(u, v, w)

S̃(2)
6, ampl(u, v, w; yu, yv, yw)

���
u+v+w=1

= 0 !



‣ Hidden structures in (amplitudes &) form factors

‣ Form factors in N=4 super Yang-Mills 

‣ Three-point form factor in N=4 super Yang-Mills & QCD

- remainder function from symbols and explicit calculations  

- relation to Higgs + multi-gluon QCD remainder...

- ...and to the N=4 six-point MHV remainder

Summary



‣ Further relations between amplitude and form factor 
remainders ?  is this just an accident ?

‣ More loops, more legs

‣ Further applications of symbol to QCD?

‣ Connection to correlation functions

‣ Recursion relations for form factors integrands? 
Grassmannians?

‣ Symmetries of form factors?

‣ Go beyond symbols...

‣ arguments of polylog functions? 

‣ applications to other superconformal theories, e.g.  ABJM

Open questions


