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Why amplitudes ?

® Because they are simple

» calculation with Feynman diagrams cumbersome, however
final results often strikingly simple

® Gluon scattering is an important background for LHC

» at tree level, gluon scattering can be equivalently calculated in
any supersymmetric theory

» one loop supersymmetric decomposition (8ern, Dixon, Dunbar, Kosower)

(A = (A, 445 134 — 4(A; + A) + A, )

/ N

one-loop amplitude in gluon
pure YM with a gluon 4 Weyl fermions the most difficult piece
running in the loop 6 real scalar fields but simpler than A,




Calculate Feynman diagrams !




A typical Feynman diagram contains:
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Gauge-dependent, off-shell internal states




® symmetries of the problem not preserved
by our calculational approach

» Feynman diagrams are not separately gauge invariant

» Unphysical, off-shell internal states (vertices & propagators)

® vast redundancy from field redefinitions

o 0\° 0+ m?)
» S-matrix equivalence theorem ¢—=|—= | ¢+ 5( T ) ¢
m m

» in a sense, Lagrangian is not unique !

® |ocality & unitarity as derived concepts

» non manifestly local/unitarity descriptions (Arkani-Hamed, Cachazo et al)




Unwanted complexity (l)

Number of Feynman diagrams for gg — n g scattering: (tree level)

n
Gluon

scattering

# of diagrams 559405 | 10525900
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Unwanted complexity (ll)

® Three-loop correction to electron g—2

72 diagrams  /oN O\ Cvitanovic & Kinoshita *74
> A (1.181241456...) (vgpn. /)3 (onevie & Kinostia 79
IKE (Laporta & Remiddi ’96)

» wild oscillations between the values of each diagram/integral

» final result is O(1)

» another example of unexplained simplicity...




Form factors

® Partially off-shell quantities

F = /d4a; e 1% (state|O(x)|0) = 6 (¢ — pstaze) (state|@(0)]0)

® g-): electromagnetic form factor /
q=p—p
off shell

(e~ ()] T (0) e~ (p)) = ’\

J, = ﬁmﬂﬁ on shell on shell




® Form factors appear in several interesting contexts:

» deep inelastic scattering (¢ + p = e + hadrons)

+
» ¢ e — hadrons:

€+(p2)\ \ ¥
L= T (—e)(X|Jm(0) J0)

/ v . - e@(pQ)’YMu(pl) (p1+p2)2 (

co : /

+ —_—
e e — hadrons (X) hadronic electromagnetic current
all orders in Kstrong, first order in Gem.




at low My :
gluon-gluon fusion

coupling to gluons through

- proportional to the quark mass = top quark dominates

for My < 2 my,), integrate out the top quark

Log ~ HTrFp

coupling is independent of )

efficient MHYV rules (Dixon, Glover & Khoze; Badger, Glover & Risager; Boels & Schwinn)




® Higgs + multi-gluon scattering is a form factor!

» form factor of Tr (Fsp)? (= amplitude of a different theory!)

gz (1,0000n) = /d4x e ' (state| Tr F3p () ]0)

» in N=4 SYM, this is related to the form factor of Tr (¢12)?

Prigg, (1) = [t %% (state| Tr (o) [0

- Tr ¢?12 and Tr Fsp? part of the same /2 BPS supermultiplet

- supersymmetric form factor of the chiral part of the
stress tensor muItipIet (Brandhuber, Gurdogan, Mooney, Yang, GT)




® Recent QCD calculation of Gehrmann, Glover,
Jacquier & Koukoutsakis:

» Hgt g g MHV
» Hgt gt ¢t maximally non-MHV

» Hqg ¢ g  fundamental quarks

® We will compare our result in N=4 super Yang-Mills
to theirs later

» surprising result: maximally transcendental parts in perfect agreement!




162

corrections. For the Yang-Mills field it takes the form
Viayypr = —iCapy’"= —1Cars(p°+p""). (2.3)

The propagators for the normal and fictitious quanta
are, respectively,

G— v*fn./p?,
G—y8/p2,

with p* being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

(2.4)
(2.5)

83S
—————
3(0‘",5(/2,: 7'6¢p”)‘”

QUANTUM THEORY OF GRAVITY.

I11 1241
field are much more complicated. In this case we shall
employ the momentum-index combinations puv, p'e’7/,
PN, p""k"". The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
tum-index triplets. At least 171 separate terms are
required in the complete expression for S; in order to
exhibit this full symmetry, and for Sy the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms?
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S; is
reduced to 11 terms and Si to 28 terms, as follows:

Sym[—1Ps(p- p'n*n" PN — 1Ps(p°p 1" n*N)+1Ps(p- p'n o PN +5Ps(p- o1 n"on ™)+ Pa(p7p 00 ")
—3Ps(pp ) +5Ps(pop M0t )+ Ps(pep 0 ™)+ Po(pp Mnmen?e)+ Py (pop k0 en™)

o*S

—
8QusdPar 0@ N8 yrrsgrss

—Pu(p-p'wenmn™)], (2.6)

Sym[—3Ps(p- p'n*n" 0" ) = Pra(pp 00 0*) — 4 Po(p7p "0 0 )+ Po (- p'n o0’ 0" 1)
+1Po(p: o' 0" 0P ) +1P1a(pp 0P 0o )+ 3 Ps (pp ey 0P n ) — 1 Po(p+ p 0w’ P 0
+1Pau(p- ' n# o 0 )+ 1P (p7p e )+ 1 P12 (pp M0t 0 )+ 5 Pos(p7p P 0 )
—3Pu(p-p'ron o) =5 Pu(pop 00+ 5 Pr(p prn ™y ) — 5 Peu(p- £ 00" 0 ™)
—Pua(popmnen ) — Pra(prp M n ™) — Paa(pop”Pymn*en’) — Pra(pop’ n>on ™9™
+Po(p-p'wen* ™) = Pra(poprntnmn™) =5 Pra(p- p'n#on n7n™) — Pra(ppPn ™ n*n™)

—Py(pep’ n ntonT)— Paa(pp'onmn g ™) — Pra(pop#n7on ) +2Po(p- p'n* 0 o0 0 1.

The “Sym” standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair p», o7, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.

Expressions (2.6) and (2.7) can be obtained in a
straightforward manner by repeated functional differ-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more efficient (but
still lengthy) method is to make use of the hierarchy
of identities (I, 17.31). It is a remarkable fact that
once Sy is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

@7

him best we shall not shackle him by describing one
here. We also make no attempt to display Ss or any
higher vertices.

The vertex V(s has the following form for the
gravitational field :

V"™ —
$Sym[2p”,p'%8,"— p"up i1
+ (" =20V p /00,71, (28)
where the momentum-index combinations are pu, p'v/,
#""¢’'7"’, and the symmetrization is to be performed on

the index pair o7. The propagators for the normal and
fictitious quanta are given by

G— (ﬂuﬂ’)w""ﬂur'ﬂn_ 77#7"1")/?2 ) (2.9)
G—n»/p2. (2.10)

2 The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved) to be the
expressions containing the smallest number of terms.

Unwanted complexity (lll)

+ 3-point vertex: | 7] terms

+ 4-point vertex: 2850 terms




,QIGR(1+2+3_) — 'ﬂlYM(1+2+3_)'
» ....however: ' '

Acr(172737) = [Aym(172737)

-  KLT relations

- hint at further secret similarities between GR andYM
amplitudes...

» three-point amplitudes are the smallest amplitudes

- entirely determined by helicities + Lorentz invariance

- appear only in complexified Minkowski

» EH Lagrangian (and Feynman rules) not needed !




Unexplained simplicity hints at...

...hidden structures in perturbative quantum field
theory...

...which are not captured by Feynman diagrams

Need new framework to calculate S-matrix
directly




The Analytic
S-Matrix

(Cambridge, 1960)

“Strings, gauge fields and duality”,

a conference to mark the retirement of David Olive
Swansea 24-27 March 2004




Key ideas in

® On-shellness

The Analytic
S-Matrix

“The fields themselves are of little interest. They are
merely used to calculate transition amplitudes for interactions.
These amplitudes are the elements of the S-matrix”

“One should try to calculate S-matrix elements directly,
without the use of field quantities, by requiring them to have
some general properties that ought to be valid, whether or not

some underlying Lagrangian theory exists”

® Complexify

>

“One of the most remarkable discoveries in elementary particle

physics has been that of the complex plane”




What was “missing” in 1966

® Massless particles

» most of the beautiful structure uncovered so far is in
theories of massless particles

® New symmetries/concepts
» large-N limit
» supersymmetry
» string theory, AdS/CFT correspondence
conformal symmetry, new hidden symmetries

simplest S-matrix: N=4 SYM & N=8 supergravity

(maximal supersymmetry)




Plan

® | ook at some incarnations of these ideas

® Hidden structures in scattering amplitudes & form
factors

» MHV amplitude and recursion relations
» amplitude/ Wilson loop duality at strong and weak coupling
dual conformal symmetry

maximal transcendentality & symbols of “finite remainder
functions”




MHY amplitude

® First non-vanishing amplitude: Maximally Helicity Violating

<ij>4 helicities are a
permutation

Aqay(17 .0 jnt) = (12)(23)--- (1)~ Pemuasen

(Parke & Taylor, 1986; Berends, Giele 1987; Mangano, Parke, Xu 1988)

® Simple geometry in Penrose’s twistor space

(Witten, 2003)

localised on a line in twistor space

holomorphic (only < > spinor products)

generic amplitudes (with more negative helicities) localise on

unions of lines

first example of hidden structure




On-shell (BCF) recursion relations

(Britto, Cachazo, Feng; BCF + Witten, 2005)

The Analytic
S-Matrix

® Exploit analytic structure of amplitudes

» Singularities of tree amplitudes-

- Factorisation on multi-particle poles simple h = internal

(simple poles, tree level) pole particles
helicities

» idea: physical singularities — poles in a single complex variable z




» Shift momenta: pi(2) = p1 + 21, pa(z) = p2 — 27
with pi=p53=0 forallz and #»*=0

shifted momenta are complex!

= A(p1,P2,P3,...,Pn) A(0)is the amplitude

Z :
only simple poles
Z Zp Y PIe P

- assume A(z) -0 asz—0 (depends on theory)

VAN
- residues cp from factorisation b b,

Final result:




amplitudes the recursion, everything on shell

General Relativity (Bedford, Brandhuber, Spence, GT ‘05; Cachazo, Svrcek’05;
Benincasa, Boucher-Veronneau, Cachazo ‘07; Arkani-Hamed, Kaplan ‘08)

rational part of QCD (Bern, Dixon, Kosower;“BLACKHAT” collaboration) and

gravity amplitudes (Brandhuber, McNamara, Spence, GT; Alston, Dunbar, Perkins)

massive particles (Badger, Glover, Khoze, Svrcek)

N=4/N=8 manifestly supersymmetric recursion relations
(Brandhuber, Heslop, GT;Arkani-Hamed, Cachazo, Kaplan; Drummond, Henn)

ABJM theory (Gang, Huang, Koh, Lee, Lipstein)




Hidden structures in

planar N=4 SYM




Iterative structure at weak coupling

(Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

t
o A,mvuav=A, yav/Ma M, is “helicity-blind”

® All-loop MHV amplitude:

My =143 MM~ BPS+R

L=1

BDS ~ div 4+ vxFinite™ (p1,..., pn) BDS ansatz
div = universal infrared-divergent part
YK = cusp anomalous dimension

Finite (p1,...,p,) = finite part of one-loop amplitude

‘R is the Remainder Function, R=0forn=4,5 R#0 for n=6



e BDS:

contains infrared divergences, which are known to exponentiate
(Giele, Glover; Kunszt, Signer, Trocsany; Sterman, Teyeda-Yeomans; Catani; Magnea, Sterman)

exponentiation of finite parts: new and unexpected

modern explanation: hidden dual conformal symmetry

® Remainder:

» R=0for n=4,5 and any loop; R #0 for n=6 starting at 2 loops

» hard to calculate, even numerically (one data point takes one week)

» will approach from the Wilson loop side




ii. Wilson loop/amplitude duality

(Alday, Maldacena; Drummond, Korchemsky, Sokatchev + Henn; Brandhuber, Heslop, GT)

® MHV amplitudes in planar N=4 super Yang-Mills
calculated by a Wilson loop

(W[C)) = TxPexpig ]f dr (i (r) A% (2(7)) )|

C

= Str'ong COUPIing (Alday & Maldacena)
- Weak COUPling (Drummond, Henn, Korchemsky, Sokatchev; Brandhuber, Heslop, GT)

» ( determined by the momenta of the scattered particles




® The contour of the Wilson loop:

» A particular polygonal contour, made of lightlike segments:

- colour ordering  Tr(7°t-..T%")

n
> Zpi =0 momentum conservation

—
! closed contour

- Pi = Xy — X1, lightlike

- X are I-dual (region) momenta




All-loop conjecture

(Drummond, Henn, Korchemsky, Sokatchev; Brandhuber, Heslop, GT)

® MHV Amplitude “=" Wilson loop

» more precisely:  Wilson loop calculates /M

L r
- M is the helicity-blind function in -/41(\/[1){\/ — 113\/Ie§\/ M(L)

- Subtlety in the infrared-divergent part

® Conjecture: (Log) < W[C]> = (Log) M toallloops

In terms of the remainders: | R wi = R




Why is this interesting/useful ?

® New duality

® Remainder function is easier to compute

<W[C]> =Exp( BDS+ R )

» Wilson loop: one hour. Amplitude: one week

- (dimensionally regularised) Wilson loop integral functions much simpler
to evaluate than corresponding amplitude integral functions

» Functional dependence of X constrained by dual conformal symmetry




iii. Dual conformal symmetry

(Drummond, Henn, Korchemsky, Sokatchev)

® Natural symmetry from Wilson loop perspective:

» it is the standard conformal group acting on dual momenta x’s

» symmetry is anomalous

- UV divergences from cusps in the contour
(UV for the Wilson loop = IR for the amplitude)




® BDS Ansatz explained by dual conformal symmetry

» a solution to the associated anomalous Ward identity

» remainder K is a function of cross-ratios

2 9
L Lkl

2 .2
LikLii

invariant under

» solution is unique at four and five points (modulo constants)

- lightlike condition forbids nontrivial cross ratios for n < 6

® For n =6 points, cross ratios open up and R # 0

2 9 2 9 2 9
L13T46 L15L24 L26L35
- e.g.at n:6 Uir = —5 5, U2= 5 5, UI= "5 5

T36L 41 L1495 Lo5L36

R = Re(uy,us,u3) non-vanishing starting at 2 loops




Remarkable series of recent strong-coupling calculations
(Alday, Maldacena; Alday, Gaiotto Maldacena;Alday, Maldacena, Sever,Vieira)

- integrability of worldsheet theory,Y-systems...
Weak-coupling side:

- n-point remainder integrals (Anastasiou, Brandhuber, Heslop, Khoze, Spence, GT)

6-point integrals calculated by Del Duca, Duhr, Smirnov.

| 7-pages result, contains Goncharov polylogs

1 %
Z]_ ...zk

Li(sl,...,sk)(zla"'7zk) — Z

ns o o .n
ni>ne>->np>1 1 k

Goncharoy, Spradlin,Vergu and Volovich introduced the

concept of “symbol of a transcendental function™ and rewrote
this as 2 lines of classical polylogs ri,(z) = S 2
nS

n=1




Comments:

. Conjecture: dual (super)conformal symmetry lifted
from Wilson loops to amplitudes

(Drummond, Henn, Korchemsky, Sokatchev)

» new hidden symmetry of planar N=4 amplitudes!
- on-shellness, large-N limit, N=4 symmetry

» tree-level S-matrix of N=4 SYM is dual superconformal covariant
(Brandhuber, Heslop, GT)




2. Weak coupling: Yangian symmetry of tree-level
scatte I‘ing ampl|tUdeS (Drummond, Henn, Plefka)

» commute the generators of the two superconformal algebras

» it is still a matter of debate whether the predictive power of the
Yangian symmetry exceeds that of the two superconformal
symmetries




The form factor

remainder function




One loop

(Brandhuber, Spence, GT, Yang; + Gurdogan & Mooney)

» Form factors from unitarity

» Simplest application: Sudakov form factor (= two points) of a
half-BPS operator

F(g*) = {d12(p1)d12(p2)| Tr(d12¢12)(0) |0) q := p1+Dp2

ly ! D1

D=4—-2¢ <=

regulates infrared divergences

» each term has fixed degree of “transcendentality”




Transcendentality

constants have transcendentality O

7, log transcendentality |

n?,log? ,Li; transcendentality 2

... Cn,Lin, log % Liy.; ... transcendentality n

At L loops, term in €P has transcendentality 2 L + p

Principle of maximal transcendentality
- observed by Gracey in supersymmetric non-linear sigma models

- Kotikov, Lipatov + Onischchenko, Velizhanin introduced it in N=4 SYM
for anomalous dimensions of twist-2 operators

connections to number theory!




London Mathematical Society - EPSRC Durham Symposium

Polylogarithms as a Bridge between Number Theory and Particle Physics

School: 3 July (from 9:30) - 6 July 2013 (finishing 13:30)
Workshop: 8 July (from 9:30) - 12 July 2013 (finishing 17:30)

The LMS Durham Research Symposia began in 1974, and form an established series of international research meetings,

.. with over 90 symposia to date. They provide an excellent opportunity to explore an area of research in depth, to learn of

ParthlpantS new developments, and to instigate links between different branches. The format is designed to allow substantial time for

| LM interaction and research. The meetings are held in July and August, usually lasting for 10 days, with up to 70 participants,

SChedUle | 152 roughly half of whom will come from the UK. Lectures and seminars take place in the Department of Mathematical
Talks = Sciences, Durham University. The school and conference are supported in part by the EU network GATIS.

Participants include:
School lecturers:

Jacob Bourjaily: The On-Shell Analytic S-Matrix

Johannes Henn: Introductory lectures on amplitudes, Wilson loops and symmetries
Gregory Korchemsky: Correlators and integrability

Cristian Vergu: Multiple polylogarithms/symbols and physical applications

Jiangiang Zhao: Multiple Polylogarithms. Multiple Harmonic Sums and Multiple Zeta Values

Workshop speakers:

Nima Arkani-Hamed
Christian Bogner
Andreas Brandhuber
David Broadhurst
Ozgur Ceyhan
Lance Dixon
Dzmitry Doryn
James Drummond
Claude Duhr
Burkhard Eden
Michael Green

Matt Kerr

Dirk Kreimer
Kasper Larsen

Lionel Mason

Jan Plefka

Radu Roiban
Oliver Schnetz
Emery Sokatchev
Mark Spradlin
Stephan Stieberger
Congkao Wen

Outline

Over the last decade, there have been numerous interactions between Number Theory and Particle Physics, often involving
polylogarithms and associated structures. The first week of the symposium will consist of a four-day school covering the
following topics: Introductory lectures on amplitudes, Wilson loops and symmetries; Symbols/mixed Hodge structures;
multiple polylogarithms/symbols and physical applications; Grassmannian approach to amplitudes; correlators and
integrability. In the second week there will be a workshop with leading researchers on both the Physics and Number Theory
side. The scientific goals of the workshop include: to review recent progress, highlight the remarkable connections between
Number Theory and Particle Physics, stimulate interaction and collaboration among participants, and inspire further
outstanding developments in the field.

Travel Information

Useful information about travelling to Durham can be found on the Department of Mathematical Sciences webpages and on
the Durham University's pages.

Accommodation

Accommodation for most participants will be in Holgate House, Grey College. This is conveniently located near to the
lecture rooms in the Department of Mathematical Sciences. Guest rooms offer en-suite and internet-connection facilities.
Attendance is by invitation only and fees for self-supporting participants are payable by cash, credit card, sterling cheques
or sterling travellers cheques at registration.

Organising Committee:
Herbert Gangl (Durham), Paul Heslop (Durham), Gabriele Travaglini (QMUL).




Two loops

» Result derived from various cuts:

ai I ai

q ‘ q

a b ar

- F proportional to §%1%2

- non-planar one-loop amplitude are also relevant in the cuts!




» Sudakov at two loops:

F (2)(q2) —

first obtained by van Neerven in a pioneering paper in 1986!

two-loop result exponentiates as expected:

[P = 2(-) [~ 5+ 2 +000)

€ 2

] 2 loop

()28 4 o)

2

[Log F(q) 5
€ €

result is transcendental (non-planar integral topology)

recent nice three-loop calculation confirms principle of
maximal transcendentality (Gehrmann, Henn, Huber)




(Brandhuber, Gurdogan, Korres, Mooney, GT; Young)

note particular
numerator

x q¢° | — Tr(p1p2lsh) + ¢°15]

1 272
—— + 6log* 2 + = +O(e)}
€ 3

W? = 8me VE?

- agreement with the IR divergences of the/iknown two-loop amplitudes,
result has




3-point form factor at 2 loops

(Brandhuber, GT,Yang)

e MHV F3(17273) — <¢12(p1)¢12(p2)9+(p3)‘Tl"(¢12¢12)(0) |O>

» Tree: F3™° =

23

L L
» Loops: F( ) = Firee Q( )( 1,2,3)
QéL) helicity-blind function
- totally symmetric under legs exchange

- one loop: IR divergences + sum of finite 2me box

- two loops: nontrivial remainder function?




The traditional way

® Do a 2-loop calculation, use generalised unitarity

|. detect all possible integrals and coefficients with iterated two-
particle cuts

2. next, fix all remaining ambiguities using three-particle cuts, such as

'L P1

q
p3 @%@

Ty b2




® Final result:

2

=Y (DTri; + DBox;) + TriPent + NBox + NTri + cyclic
1=1

DT’I”’il = q2(823 —+ 831) X 1 DTT’iQ = q2(812 —+ 831) X

< ) — 1
q —< q ‘<
5 3 ? 2
3
DBoxy = 593 (531€ “p3 — S12l - pz) X DBoxy = 513 (5310 - p1 — 5230 - p2) X

1 - q < > |
l

> )

TriPent = ¢*s12593 % NBox = s93 (%812531 — s12la - pa — s31l ~p3) X
> )
q

NTri = %q2(823 + S31)X

result expressed in terms of two-loop planar and non-planar integrals




® Several analytic results (cehrmann & Remiddi

_ ' 812 . S23 531 :
variables: u := r Vo= r w o= q—2,WIth q =p1+ p2+ p3

u+v+w=1

all known integrals appearing in our answer are transcendental

unknown integrals can be re-expressed in terms of master integrals
which are transcendental (Gehrmann & Remiddi)

® Evaluate integrals with sophisticated technologies:

»  AMBRE (Gluza, Kajda, Riemann,Yundin)  (only for planar or non-planar with | scale)

»  MEB.m (Czakon)

» MBresolve.m (Smirnov & Smirnov)




® Some features of the final result:

has fixed degree of transcendentality (at each loop order and power of
the dimensional regularisation parameter €)

can be expressed in terms of Goncharov multiple polylogarithms...
...which disappear in our final expression for the remainder

cancellations impossible to find without resorting the symbols




The fast way: go straight to the answer!

® Compute directly the finite remainder using
symbols, then lift the symbol to a function

» define an appropriate remainder function:
- finite
- trivial/understood collinear limits
» determine its symbol (Goncharov, Spradiin, Vergu,Volovich)
- remainder is a transcendentality-four function (two loops)
- impose symmetries and physical constraints

» fix “beyond-the-symbol” terms

» lift symbols to functions




Examples of this strategy so far:

Six-point MHV remainder (Goncharov, Spradiin,Vergu,Volovich)
MHYV remainder in (1+1)-dim kinematics (Heslop & khoze)

2 loops, all n

3 loops, all n (7 undetermined constants)

MHV remainder, any 7 (Caron-Huor)

SiX-POint NMHYV remainder at 2 IOOPS (Dixon, Drummond, Henn)

Six-point, MHV remainder at 3 and 4 loops

(Dixon, Drummond, Henn; Caron-Huot, He; Dixon, Drummond, Duhr, Pennington)

Our example: three-point (I leg off shell, 3 on shell) form factor
remainder at 2 loops




Step l: define form factor remainder

® Define ABDK/BDS remainder, ‘R

R® — g® _ppg®

» Ingredients:
(2)
- two-loop form factor G,
- BDS part, contains all infrared divergences

- first nontrivial remainder appears for n=3

» Properties of the remainder:
- finite

. . . 2 2
- trivial collinear limits R — 737(1_)1

(2)
3

- in particular: R37 — 0  (there is no Sudakov remainder RS N




Crash review of symbols

® The symbol of a transcendentality-k function is an

element of the k-fold tensor product of rationals
(Goncharoy, Spradlin, Vergu,Volovich)

“fingerprints” of the function
(a linear combination of
elementary tensors)

fB) 5 SfRP] = Ri®---® Ry,

® Recursive definition:

v df® = fFVa1er, = SFW) = SV @ R,

® Two key properties:

- Q R, Ry ® - - QR Q-+ QR ® -

o QCcR,® - - Q@ Ry ®---  where ¢ = constant




® Examples:

» Sllogx]=x, S[LaM(x)]=-{(1-x)®x), S[Lzx)]=-((1-x) ® x ® x)

» Sllogxlogyl=x® y+ y ® x (note: x ® yis not the symbol of a function)

® The symbol transforms complicated polylogarithmic

identities into algebraic ones, e.g.

7'('2

» Lis(z) + Lia(1 — 2) + log(z) log(1 — z) — 5 = 0 (Euler) translated into

—((1-2)®2) —ze(1l—-2)+(1—-2)z+2z0(1—2) =0

» loss of information on 7’s (beyond-the-symbol terms) and branch cuts
where the function has to be evaluated




Step ll: constructing the symbol of R

® Entries: (u,v,w, l-u, 1-v, 1-w) u=snlqg?>, v=sslqg*>, w=s3/qg>

» from inspecting the relevant integrals in Gehrmann & Remiddi (GR)

® First entry: (u,v,w) for correct branch cuts

(Gaiotto, Maldacena, Sever, Vieira)

» S[R?] Z P?. @ S[disc; ;R*]  with Pj:=pi+

» also satisfied at the GR integral function level

® Further constraints on entries

(Gaiotto, Maldacena, Sever, Vieira; Caron-Huot; Dixon, Drummond, Henn)

» second & last entries




2u®(1—u)®(1l—u)& -

v
—u®(1l—u)RvE - —u® (

1 —w
—u®v®(1—u)®7—u®v®(l—v)®

1—u 1—v
+u®v®w®T+u®v®w®

1 —w 1 —w
FURUVRAUWR —— —URWR (1 —u) ® ——
w w
1—w

1 —u
—|—u®w®v®T+U®w®v®

1 —w 1l —u
—|—u®w®v®7—u®w®(1—w)®

+ cyclic permutations .

overall coefficient fixed from numerics for
(from )

coefficients =1, £2 (well... -2)

can we determine uniquely the function with this symbol?




® Yes!
» S satisfies a particular relation of Goncharov, Spradlin,Vergu & Volovich:
Sured ~ Shava ~ Supte + Shase — (a3 €. berd) = 0
» —> can re-express as a linear combination of classical polylogarithms only
log 1 log x2 log x3log xy , Lis(x1)logxologxs , Lig(xy)Lis(x2) , Liz(x1)log o and Liy(x;)

» we find the following arguments:

1 1 1 VW
U v w w U v

(u,v,w,l—u,l—v,l—w,l——,1——,1——,——,——,——

. Fi n a.I an Swe r ﬁts O n O n e I i n e (for appropriately chosen fonts):




® Final answer: (randhuber, GT, Yang)

-

3

~
RO — _2¢(—%§+44Qf%)+h<_%g]_Szjbua_uf»+bim

=1

4! 2

-3 2 3 2 4
. N 1 log™(uvw) 23
1 2
;Zl Lio(1 —u; )| + 3 ;:1 log uZ] — ——(

UL=u, =V , U3=W

log®(—2)
!

log”(—2)
Y

~log*(—2)
18

Ja(z) := Liy(2) — log(—2)Lis(z) + Lis(2) Liy(2)
Block-Wigner-Ramakrishnan(-Zagier) polylogarithmic function

no Goncharov polylogarithms!

o Next: QCD




Higgs amplitudes in QCD

® nggs + 3 pal"tonS (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 201 1)

4 Hg+ g £ MHV Ftree(Hagl_792_ag§_)

» Hg* gt g+ maximally non-MHV Ftee(H, gt gf g1 =

» Hqg ¢ g fundamental quarks

® [nh N=4S5YM:

» (Hgt g g7) and (Hg* g+ g*) both derived from super form factor

> from supersymmetric VWard identities: (Brandhuber, GT,Yang)

F®9y.95,95) _ FM9lh95.95) o
Ftree(gl_,gg_,g;) Ftree(gi’g;’gg‘)

(u,v,w) <« what we computed




® QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis .

» expressed in terms of a few pages of Goncharov polylogarithms
» entirely expected because of expansion as ) (coefficient x integral) !

- e.g.scalar non-planar double box does not satisfy the
Goncharov et al criterion

® Next, relate N=4 form factors to Higgs amplitudes:

» take maximally transcendental piece of (Hg* g~ ¢7) and (Hg* g+ g%)




® We find a surprising relation...

el _ R®

- R — R
H97979% |\[AX TRANS H g%t 9%9% |\ AX TRANS =45YM

from symbols and numerics

all Goncharov polylogarithms in QCD results can be eliminated in
favour of classical polylogarithms

we don’t know why!

® Nothing similar seems to hold for the (#,4,4.9)
form factor

» maximally transcendental part does not satisfy Goncharov et al criterion




® Final surprise: amplitude vs form factor remainders

the six-point MHV amplitude remainder is built out of six variables
(U, v, W3 Y, Y, Yw):

- Cross ratios: . T3 Y r34275 w353

2 2 = T3 9 = T2 9
L14236 Lo5L14 L36L25

-y variables: u— g v — 24 w— 2y

Yu = y Yv = y Y =
u — z2_ vV — Z_ w — zZ_

1

Z4 = 5[—1+u+v+w:|:\/Z}, A=(1-u—v—w)? — duwvw

three-point form factor variables:

2 2

L3 o T3y
« = - 2

L4 L4




® Symbol of 6-pt MHV amplitude remainder has
two parts:

2 5(2 (2
Sé,;mpl - Sé,;mm(uavaw) + Sé,;mpl(uavaw;yuayv;yw)

(u,v,w) and S

6, ampl

» both S'%

6, ampl
collinear limits (independently)

(U, U, W; Yau s Yo, Yoo ) have trivial

® We ﬁnd: [Sig?zorm factor (u7 U, w) - ‘§f(3,2;mpl(u7 ?}, ’LU)]

» identify the (independent) cross ratios (i, v, w) with the (dependent)
form factor ratios (u,v,w)

In general, form factor remainder depends on 37 - 7 ratios, amplitude
remainder depends on 3n - 15 cross ratios

» Furthermore (unpublished observation, Dixon & Duhr)

(w, v, W; Yu, Yo, Yu)
ut+v+w=1




Summary

» Hidden structures in (amplitudes &) form factors

» Form factors in N=4 super Yang-Mills

» Three-point form factor in N=4 super Yang-Mills & QCD
- remainder function from symbols and explicit calculations
- relation to Higgs + multi-gluon QCD remainder...

- ...and to the N=4 six-point MHV remainder




Open questions

Further relations between amplitude and form factor
remainders ! is this just an accident !

More loops, more legs
Further applications of symbol to QCD?
Connection to correlation functions

Recursion relations for form factors integrands!?
Grassmannians!

Symmetries of form factors!?
Go beyond symboils...
arguments of polylog functions!?

applications to other superconformal theories, e.g. AB|M




