Making Up for Lost Time:
 Emergent Time and the M5-Brane

Neil Lambert
Strong Fields, Strings and Holography
Swansea $16^{\text {th }}$ July 2013

C. Hull and NL., to appear

Outline

\diamond Introduction
\diamond A Little Review:

- A non-Abelian $(2,0)$ algebra
- Spacelike Case
- Null Case
\diamond Timelike Reduction
\diamond Matching BPS States and a Hidden $S O(5,1)$
\diamond Comments

Introduction

Our beloved M5-brane remains very mysterious. Low-energy, decoupled, dynamics governed by a 6D theory with:
$\diamond(2,0)$ supersymmetry
\diamond conformal invariance
\diamond SO(5) R-symmetry

Multiplet contains 5 scalars and a selfdual antisymmetric 3-form field strength + fermions

Very rich and novel 6D CFT dual to $A d S_{7} \times S^{4}$

Strong Coupling, UV completion of 5D SYM

Various related conjectures based on lower dimensions:

- DLCQ of QM on instanton moduli space [Aharony, Berkooz, Kachru, Seiberg, Silverstein]
- Deconstruction from D=4 SCFT
[Arkani-Hamed,Cohen,Karch,Motl]
- Strong coupling limit of 5D SYM
[Douglas],[NL,Papageorgakis,Schmidt-Sommerfeld]
-5D SYM on $\mathbb{R} \times \mathbb{C} P^{2}$ [Kim,Lee]

Also 6D approaches

- [Chu],[Ho, Huang, Matsuo],[Saemann, Wolf],[Samtleben, Sezgin, Wulf][Bonetti, Grimm, Hohenegger],[Bandos, Samtleben, Sorokin].

Here we will continue looking at the M5 from lower-dimensional field theories. This time using 5D Euclidean SYM

Can be obtained from dimensional reduction of 5+5D MSYM

- 16 supersymmetries
- $S O(5)$ rotational symmetry (and translations)
- $S O(5)$ R-symmetry

Conjectured by [Hull],[Hull,Khuri] to arise as the theory of E5-branes arising from timelike reduction of M-theory.

We will also construct it from an explicit relalization of the $(2,0)$ system given by [NL, Papageogakis]

We will show that it has a hidden $S O(5,1)$ symmetry acting on it string soliton states.

So this Euclidean theory knows about time and dynamics.

- Sees entire worldline/worldsheet
- can define energy and momentum which respect $S O(5,1)$.
- Analogous to time-independent Schrödinger equation

We should view it like one views bubble chamber tracks.

A Little Review

At linearized level the free susy variations of the $(2,0)$ theory are

$$
\begin{aligned}
\delta X^{I} & =i \bar{\epsilon} \Gamma^{I} \Psi \\
\delta \Psi & =\Gamma^{\mu} \Gamma^{I} \partial_{\mu} X^{I} \epsilon+\frac{1}{3!} \frac{1}{2} \Gamma^{\mu \nu \lambda} H_{\mu \nu \lambda} \epsilon \\
\delta H_{\mu \nu \lambda} & =3 i \bar{\epsilon} \Gamma_{[\mu \nu} \partial_{\lambda]} \Psi,
\end{aligned}
$$

and the equations of motion are those of free fields with $d H=0$ (and hence $d H=d \star H=0$).

Reduction to the D4-brane theory sets $\partial_{5}=0$ and

$$
F_{\mu \nu}=H_{\mu \nu 5}
$$

We wish to generalise this algebra to nonabelian fields with

$$
D_{\mu} X_{a}^{I}=\partial_{\mu} X_{a}^{I}-A_{\mu a}^{b} X_{b}^{I}
$$

Thus we need a term in $\delta \Psi$ that is quadratic in X^{I} and which has a single Γ_{μ} :

- need to invent a field C^{μ}
N.B. In the original formulation $C^{\mu} \rightarrow C_{a}^{\mu}$
- Lie algebra structure constants $f^{a b}{ }_{c} \rightarrow f^{a b c}{ }_{d}$ - 3-algebra structure constants.

After starting with a suitably general anstaz we find closure of the susy algebra implies [NL, Papageorgakis]

$$
\begin{aligned}
\delta X_{a}^{I} & =i \bar{\epsilon} \Gamma^{I} \psi_{a} \\
\delta \psi_{a} & =\Gamma^{\mu} \Gamma^{I} \epsilon D_{\mu} X_{a}^{I}+\frac{1}{3!} \frac{1}{2} \Gamma_{\mu \nu \lambda} \epsilon H_{a}^{\mu \nu \lambda}-\frac{1}{2} \Gamma_{\lambda} \Gamma^{I J} \epsilon C^{\lambda} X_{c}^{I} X_{d}^{J} f^{c d_{a}} \\
\delta H_{\mu \nu \lambda a} & =3 i \bar{\epsilon} \Gamma_{[\mu \nu} D_{\lambda]} \psi_{a}+i \epsilon \Gamma^{I} \Gamma_{\mu \nu \lambda \kappa} C^{\kappa} X_{c}^{I} \psi_{d} f^{c d}{ }_{a} \\
\delta A_{\mu}{ }_{a}{ }_{a} & =i \bar{\epsilon} \Gamma_{\mu \lambda} C^{\lambda} \psi_{d} f^{d b}{ }_{a} \\
\delta C^{\mu} & =0,
\end{aligned}
$$

N.B. 3-algebra version can be rephrased in terms of

- Loop Groups [Papageorgakis, Saemann]
- Lie-Crossed-Modules of Gerbes [Palmer, Saemann]

The algebra closes with the on-shell conditions [NL,

Papageorgakis]

$0=\Gamma^{\mu} D_{\mu} \psi_{a}+X_{c}^{I} C^{\nu} \Gamma_{\nu} \Gamma^{I} \psi_{d} f^{c d}{ }_{a}$
$0=D^{2} X_{a}^{I}-\frac{i}{2} \bar{\psi}_{c} C^{\nu} \Gamma_{\nu} \Gamma^{I} \psi_{d} f^{c d}{ }_{a}+C^{\nu} C_{\nu} X_{c}^{J} X_{e}^{J} X_{f}^{I} f^{e f}{ }_{d} f^{c d}{ }_{a}$
$0=D_{[\mu} H_{\nu \lambda \rho] a}+\frac{1}{4} \epsilon_{\mu \nu \lambda \rho \sigma \tau} C^{\sigma} X_{c}^{I} D^{\tau} X_{d}^{I} f^{c d}{ }_{a}+\frac{i}{8} \epsilon_{\mu \nu \lambda \rho \sigma \tau} C^{\sigma} \bar{\psi}_{c} \Gamma^{\tau} \psi_{d} f^{c d}{ }_{a}$
$0=F_{\mu \nu}{ }^{b}{ }_{a}-C^{\lambda} H_{\mu \nu \lambda d} f^{d b}{ }_{a}$
$0=\partial_{\mu} C^{\nu}$
$0=C^{\rho} D_{\rho} X_{d}^{I}=C^{\rho} D_{\rho} \psi_{d}=C^{\rho} D_{\rho} H_{\mu \nu \lambda a}$.
Thus C^{μ} picks out a fixed direction in space and in the 3 -algebra and $C^{\mu} D_{\mu}=0$.

So apparently we are simply pushed back to 5D. But not so e.g. [NL, Richmond]

$$
\begin{aligned}
T_{\mu \nu}= & D_{\mu} X_{a}^{I} D_{\nu} X^{I a}-\frac{1}{2} \eta_{\mu \nu} D_{\lambda} X_{a}^{I} D^{\lambda} X^{I a} \\
& +\frac{1}{4} \eta_{\mu \nu} C^{\lambda} X_{a}^{I} X_{c}^{J} C_{\lambda} X_{f}^{I} X_{e}^{J} f^{c d a} f_{d}^{e f}+\frac{1}{4} H_{\mu \lambda \rho a} H_{\nu} \lambda^{\lambda a} \\
& -\frac{i}{2} \bar{\psi}_{a} \Gamma_{\mu} D_{\nu} \psi^{a}+\frac{i}{2} \eta_{\mu \nu} \bar{\psi}_{a} \Gamma^{\lambda} D_{\lambda} \psi^{a}+\frac{i}{2} \eta_{\mu \nu} \bar{\psi}_{a} C^{\lambda} X_{c}^{I} \Gamma_{\lambda} \Gamma^{I} \psi_{d} f^{a c d}
\end{aligned}
$$

And we also obtain 6D expressions for the central charges:

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=-2 P_{\mu}\left(\Gamma^{\mu} C^{-1}\right)_{\alpha \beta}+\ldots
$$

Thus the system is 6D, with a compact direction:

$$
C^{\mu} P_{\mu}=\int C^{\mu} T_{0 \mu} \sim \operatorname{Tr} \int F \wedge F \in 8 \pi^{2} \mathbb{Z}
$$

There are three cases for C^{μ} of interest:

1) Spacelike: $C^{\mu}=g^{2} \delta_{5}^{\mu}$ and the previous system reduces to 4+1D SYM [NL, Papageorgakis]

$$
P_{5}=-\frac{1}{2 g_{Y M}^{2}} \int \operatorname{tr}(F \wedge F)=\frac{k}{R_{5}}
$$

So 5D MSYM knows about an extra spatial dimension through a KK-like tower of solitonic states carrying instanton number [Rozali].

Analogous to how the extra transverse momentum of M2-branes arises from magnetic flux in BLG/ABJM:

$$
P_{11}=\frac{k}{2 \pi} \int F
$$

2) Null: $C^{\mu}=g^{2} \delta_{+}^{\mu}$. Here $F_{i j}=g^{2} H_{+i j}$ is anti-self-dual ($H_{-i j}$ is self-dual). The previous system reduces to 1D motion on instanton moduli space with x^{-}acting as time [NL, Richmond]:

$$
P_{+}=-\frac{1}{2 g_{Y M}^{2}} \int \operatorname{tr}(F \wedge F)=\frac{k}{R_{+}}
$$

One can then construct the Hamiltonian from T_{--}and quantize to obtain the DLCQ prescription of [Aharony, Berkooz, Kachru, Seiberg, Silverstein]

All 6D quantities $\left(P_{\mu}, Z_{\mu}^{I}, \ldots\right)$ have expressions in term of the ADHM data of instanton moduli space.

Timelike reduction

3) Timelike: $C^{\mu}=g^{2} \delta_{0}^{\mu}$ which we now consider

The constraint $C^{\mu} D_{\mu}=0$ means that there is no explicit time dependence. The equations of motion all follow from the euclidean action

$$
\begin{aligned}
S=- & \operatorname{tr} \int d^{5} x-\frac{1}{4 g^{4}} F_{i j} F^{i j}+\frac{1}{2} D_{i} X^{I} D^{i} X^{I}+\frac{g^{4}}{4}\left[X^{I}, X^{J}\right]^{2} \\
& -\frac{i}{2} \psi^{T} \Gamma_{0} \Gamma^{i} D_{i} \psi+\frac{1}{2} g^{2} \psi^{T} \Gamma^{I}\left[X^{I}, \psi\right] .
\end{aligned}
$$

where

$$
F_{i j}=g^{2} H_{0 i j}
$$

This has $I S O(5)$ euclidean and $S O(5)$ R symmetries

This action is invariant under the supersymmetry

$$
\begin{aligned}
\delta X^{I} & =i \epsilon \Gamma^{I} \psi \\
\delta \psi & =\Gamma^{\mu} \Gamma^{I} \epsilon D_{\mu} X^{I}+\frac{1}{2 g^{2}} \Gamma^{i j} \Gamma^{0} \epsilon F_{i j}+\frac{i}{2} g^{2} \Gamma_{0} \Gamma^{I J}\left[X^{I}, X^{J}\right] \\
\delta A_{i} & =-i g^{2} \epsilon^{T} \Gamma_{i} \psi .
\end{aligned}
$$

Conserved currents associated with the symmetries

$$
\begin{aligned}
T_{i j}= & \operatorname{tr}\left(D_{i} X^{I} D_{j} X^{I}-\frac{1}{2} \delta_{i j} D_{k} X^{I} D^{k} X^{I}-\frac{1}{4} \delta_{i j} g^{4}\left[X^{I}, X^{J}\right]^{2}\right. \\
& \left.-\frac{1}{g^{4}} F_{i k} F_{j}{ }^{k}+\frac{1}{4 g^{4}} \delta_{i j} F_{k l} F^{k l}+\text { fermions }\right), \\
J^{i}= & \operatorname{tr}\left(-\frac{1}{2 g^{2}} F_{j k} \Gamma^{j k} \Gamma_{0} \Gamma^{i} \psi-D_{j} X^{I} \Gamma^{j} \Gamma^{I} \Gamma^{i} \psi+\frac{i}{2} g^{2}\left[X^{I}, X^{J}\right] \Gamma_{0} \Gamma^{I J} \Gamma^{i} \psi\right)
\end{aligned}
$$

In addition there is a topologically conserved current

$$
K_{i}=\frac{1}{8 g^{4}} \varepsilon_{i j k l m} \operatorname{tr}\left(F^{j k} F^{l m}\right) .
$$

Note that the action is Hermitian but not positive definite

However we can rotate $X^{I} \rightarrow i X^{I}$ to make the real part of the action positive definite.

- Rotating back produces real correlation functions
- Physically this corresponds to rotating to $10+0$ SYM

So the theory we consider is just a different analytic continuation of the usual euclidean YM theory used to define 4+1 YM

In a theory with time conserved currents lead to dynamically conserved quantities

$$
q=\int d^{5} x j_{0} \quad \partial_{0} q=0
$$

In a euclidean theory we still find Ward identities that impose the symmetry on correlation functions. But no 'conserved charges' such as energy and momentum.

Consider an alternative evolution where one picks a direction, say $\tau=x^{5}$, and thinks of τ as a 'time'

$$
\hat{q}=\int d^{4} x j_{\tau} \quad \partial_{\tau} \hat{q}=0
$$

subject to certain boundary conditions.

These hatted charges can be physical in certain circumstances:

1) Consider an extended string-like state along $\tau=x^{5}$

$$
\frac{P_{\tau}}{l_{5}}=\int d^{4} x \Theta_{\tau 0}=\hat{P}_{0}
$$

2) Consider a state has been boosted along x^{4} and only depends on $x^{4}+v t$:

$$
P_{\tau}=\int d^{3} x d x^{4} d x^{5} \Theta_{\tau 0}=|v| \int d^{3} x d t d \tau \Theta_{\tau 0}=|v| \int d t \hat{P}_{\tau}
$$

We could examine the superalgebra of the associated \hat{Q} 's

$$
\begin{aligned}
\left\{\hat{Q}_{\alpha}, \hat{Q}_{\beta}\right\} & =-\int d^{5} x\left(\delta_{\epsilon} S_{\tau} C^{-1}\right)_{\alpha \beta} \\
& =2\left(\Gamma^{\mu} C^{-1}\right)_{\alpha \beta} \hat{P}_{\mu}+\left(\Gamma^{\mu} \Gamma^{I} C^{-1}\right)_{\alpha \beta} \hat{Z}_{\mu}^{I}+\left(\Gamma^{\mu \nu \lambda} \Gamma^{I J} C^{-1}\right)_{\alpha \beta} \hat{Z}_{\mu \nu \lambda}^{I J}
\end{aligned}
$$

If so one finds

$$
\begin{aligned}
& \hat{P}_{\tau}=\int d^{4} x T_{\tau \tau} \\
& \hat{P}_{0}=\int d^{4} x K_{\tau} \\
& \hat{P}_{i}=\int d^{4} x T_{i \tau} .
\end{aligned}
$$

this suggests that we identify $T_{0 \tau}=K_{\tau}$ and more generally

$$
T_{0 i}=K_{i}
$$

Alternatively, from the results of the superalgebra for generic C^{μ} one finds

$$
\begin{aligned}
\left\{Q_{\alpha}, Q_{\beta}\right\} & =-\int d^{5} x\left(\delta_{\epsilon} J^{0} C^{-1}\right)_{\alpha \beta} \\
& =2\left(\Gamma^{\mu} C^{-1}\right)_{\alpha \beta} P_{\mu}+\left(\Gamma^{\mu} \Gamma^{I} C^{-1}\right)_{\alpha \beta} Z_{\mu}^{I}+\left(\Gamma^{\mu \nu \lambda} \Gamma^{I J} C^{-1}\right)_{\alpha \beta} Z_{\mu \nu \lambda}^{I J}
\end{aligned}
$$

where

$$
\begin{aligned}
& E=\operatorname{tr} \int d^{5} x \frac{1}{4 g^{4}} F_{i j} F^{i j}+\frac{1}{2} D_{i} X^{I} D^{i} X^{I}-\frac{g^{4}}{4}\left[X^{I}, X^{J}\right]^{2} \\
& P_{i}=\operatorname{tr} \int d^{5} x \frac{1}{8 g^{4}} \varepsilon_{0 i j k l m} F_{j k} F^{l m} .
\end{aligned}
$$

and, for example,

$$
Z_{i}^{I}=\frac{2}{g^{2}} \operatorname{tr} \int d^{5} x D^{j}\left(F_{i j} X^{I}\right)
$$

This defines dynamical 'charges' even in the euclidean case. But only formally - there is no dynamical Poisson Bracket.

In particular we will want to consider a compact time (whatever that means) with period $t \cong t+2 \pi R$ and identify the above 5D energy-momentum tensor with the Fourier zero-mode of the 5+1D one:

$$
T_{\mu \nu}=\frac{1}{2 \pi R} \int d t \Theta_{\mu \nu}
$$

Note that by conservation the higher Fourier modes are total spatial derivatives and hence do not contribute to conserved quantities.

We can understand the role of 5+5D MSYM as follows [Hull,Khuri]:

Consider the abelian M5-brane and use

$$
S=-\int d^{6} x \frac{1}{4 \cdot 3!} H_{\mu \nu \lambda} H^{\mu \nu \lambda}+\frac{1}{2} \partial_{\mu} X^{I} \partial^{\mu} X^{I}
$$

thus

$$
\Theta_{\mu \nu}=\frac{1}{4} H_{\mu \lambda \rho} H_{\nu}^{\lambda \rho}+\partial_{\mu} X^{I} \partial_{\nu} X^{I}-\frac{1}{2!} \eta_{\mu \nu} \partial_{\lambda} X^{I} \partial^{\lambda} X^{I}
$$

Where we do the usual trick of only imposing self-duality on the equations of motion.

Reduction on time, using $F_{i j}=g^{2} H_{0 i j}$, gives

$$
S=-\int d^{5} x-\frac{1}{4 g^{4}} F_{i j} F^{i j}+\frac{1}{2} \partial_{i} X^{I} \partial^{i} X^{I}
$$

which is the same as the reduction of the $5+5 \mathrm{D}$ theory.
$\Theta_{00}=\frac{1}{4 g^{4}} F_{i j} F^{i j}+\frac{1}{2} \partial_{i} X^{I} \partial^{i} X^{I}$
$\Theta_{0 i}=\frac{1}{8 g^{4}} \varepsilon_{0 i j k l m} F^{j k} F^{l m}$
$\Theta_{i j}=\frac{1}{g^{4}} F_{i k} F_{j}^{k}-\frac{1}{4 g^{4}} \delta_{i j} F_{k l} F^{k l}+\frac{1}{2} \partial_{i} X^{I} \partial_{j} X^{I}-\frac{1}{2} \delta_{i j} \partial_{k} X^{I} \partial^{k} X^{I}$

These are the abelian limits of what we have obtained above.

Matching BPS states and a Hidden $S O(5,1)$

Let us look for simple solutions with energy and momentum. In the symmetric phase the simplest thing is a pure $1 / 2 \mathrm{BPS}$ pp -wave along x^{5}

$$
F_{i j}= \pm \frac{1}{2} \varepsilon_{i j k l} F^{k l} \quad i, j \neq 5
$$

This has

$$
\frac{P_{5}}{l_{5}}=\frac{4 \pi^{2} n}{g^{4}} \quad \frac{E}{l_{5}}=\frac{4 \pi^{2}|n|}{g^{4}} .
$$

Since this is a time-averaged image of the process we see the whole world line extended along x^{5}. As if one took a long exposure photograph of the particle as it traverses along x^{5}.

Next we look at the Coulomb phase with say $\left\langle X^{6}\right\rangle \neq 0$. Here we expect string states, extended along say x^{5} with $Z_{5}^{6} \neq 0$.

Without momentum we just have non-solitonic states:

$$
F_{i 5}=\partial_{i} X^{6} \quad X^{6}=\left\langle X^{6}\right\rangle-\frac{Q_{E}}{4 \pi^{2} r^{2}}
$$

and extended along x^{5}

If we are looking at a genuine 5+1D theory we should see boosted versions of these, say along x^{4}. What should these look like?

- still 1/2 BPS
- extended along x^{5} and x^{4}

These are BPS Monopoles:

- $F_{i j}=\varepsilon_{i j k} D^{k} \Phi \quad A_{5}=\frac{1}{v} \Phi \quad X^{6}=\frac{1}{v \gamma g^{2}} \Phi$
- $1 / 2 \mathrm{BPS}$ if $\gamma^{2}=1 /\left(1-v^{2}\right)$
- Φ is the usual BPS scalar field:

$$
\Phi=v g^{2} \gamma\left\langle X^{6}\right\rangle-\frac{Q_{M}}{2 r}+\mathcal{O}\left(1 / r^{2}\right), \quad e^{i \oint F}=e^{2 \pi i Q_{M}}=1
$$

The 'charges' are

$$
\begin{aligned}
\frac{Z_{5}^{6}}{l_{4} l_{5}} & =-\frac{4 \pi}{v g^{2}} \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right) \quad \frac{P_{4}}{l_{4} l_{5}}=\frac{2 \pi \gamma}{g^{2}} \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right) \\
\frac{E}{l_{4} l_{5}} & =\frac{2 \pi \alpha^{2} \gamma}{g^{2} v} \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right)
\end{aligned}
$$

and satisfy

$$
E^{2}=P_{4}^{2}+\frac{1}{4}\left(Z_{5}^{6}\right)^{2}
$$

This looks like a boosted string whose rest tension is

$$
T=\frac{1}{2}\left|\frac{Z_{5}^{6}}{l_{5}}\right|=\frac{2 \pi l_{4}}{g^{2}|v|}\left|\operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right)\right|
$$

But what is the factor of v doing in the denominator?

To see this note that the 'charges' have been evaluated as densities over x^{4} and x^{5}

- x^{5} is the length along the string
- but x^{4} is the distance traveled in unit time
- so $l_{4}=|v| t$, where t is time
- If time is periodic with period $2 \pi R$ then $l_{4}=2 \pi R|v|$ and the tension is

$$
T=\frac{4 \pi^{2} R}{g^{2}}\left|\operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right)\right|
$$

Next we should look at 1/4 BPS excited states of strings extended along x^{5} with momentum along x^{5}

In the rest frame these are 'dyonic instantons' [NL, Tong]

$$
F_{i j}= \pm \frac{1}{2} \varepsilon_{i j k l} F^{k l} \quad F_{i 5}=D_{i} X^{6} \quad i, j \neq 5
$$

with $D^{2} X^{6}=0$

These have

$$
\frac{P_{5}}{l_{5}}=\frac{4 \pi^{2} n}{g^{4}} \quad \frac{Z_{5}^{6}}{l_{5}}=-\frac{4 \pi^{2}}{g^{2}} \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{E}\right) \quad E=\left|\mathcal{P}_{5}\right|+\frac{1}{2}\left|Z_{5}^{6}\right|
$$

So now we look for boosted versions of these:

- still 1/4 BPS
- extended along x^{5} and x^{4}
- 1/4 BPS monopoles (for example see [Bergman],[Lee,Yi])

One finds the generic $1 / 4$ BPS state has

$$
F_{i j}=\varepsilon_{i j k} D^{k} \Phi \quad X^{6}=\frac{v}{g^{2}} A_{4}+\frac{1}{\gamma g^{2}} A_{5}, \quad \Phi=\frac{1}{\gamma} A_{4}-v A_{5}
$$

with

$$
D^{2} \Phi=0 \quad D^{2} X^{6}=\left[\Phi,\left[\Phi, X^{6}\right]\right]
$$

Solutions have the form

$$
\begin{aligned}
\Phi & =\frac{\gamma}{v} Y_{0}-g^{2} v \gamma\left\langle X^{6}\right\rangle-\frac{Q_{M}}{2 r}+\mathcal{O}\left(\frac{1}{r^{2}}\right) \\
X^{6} & =\left\langle X^{6}\right\rangle-\frac{Q_{E}}{2 r}+\mathcal{O}\left(\frac{1}{r^{2}}\right)
\end{aligned}
$$

Requiring that $Z_{4}^{6}=0$ gives

$$
0=\operatorname{tr}\left(Y_{0} Q_{E}\right)
$$

and we find

$$
\frac{Z_{5}^{6}}{l_{4} l_{5}}=-\frac{4 \pi}{g^{2}} \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right)
$$

as before.

The momentum and energy are

$$
\begin{aligned}
P_{4} & =-\frac{v}{\sqrt{1-v^{2}}}\left(\left|P_{5}\right|+\frac{1}{2}\left|Z_{5}^{6}\right|\right) \\
\frac{P_{5}}{l_{5}} & =\frac{2 \pi}{g^{2}} \operatorname{tr}\left(Y_{0} Q_{M}\right) \\
E & =\frac{1}{\sqrt{1-v^{2}}}\left(\left|P_{5}\right|+\frac{1}{2}\left|Z_{5}^{6}\right|\right)
\end{aligned}
$$

which are just the boosted versions of the dyonic instanton expressions $E=\left|P_{5}\right|+\frac{1}{2}\left|Z_{5}^{6}\right|$

Thus the spectrum of $1 / 2$ and $1 / 4$ BPS string states is consistent with a lorentzian 5+1 D theory

- Strings have tension

$$
T=\frac{4 \pi^{2} R}{g^{2}}\left|\operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{M}\right)\right| \quad T=\mid \operatorname{tr}\left(\left\langle X^{6}\right\rangle Q_{E} \mid\right.
$$

- Excited states carry quantized momentum along the string (at least in the rest frame)

$$
\frac{P_{5}}{l_{5}}=\frac{4 \pi^{2} n}{g^{4}} \quad n \in \mathbb{Z}
$$

Consistent with an emergent time and emergent $S O(5,1)$ symmetry as $g^{2} \rightarrow \infty$ with $R=g^{2} / 4 \pi^{2}$

Comments

We have shown how 5D euclidean super-Yang-Mills arises as the worldvolume theory of the M5.

Used supersymmetry algebra to define dynamical conserved quantities such as energy and momentum

- leads to a dynamical interpretation

Shown that it possess a hidden $S O(5,1)$ symmetry that acts on string states:

- spectrum is consistent with a 5+1D dynamical theory

We have presented a picture whereby a euclidean field theory knows about time from its topological sectors. As if one were looking at the time-independent Schrödinger equation, i.e. in a basis where E and P_{i} have been diagonalized.

- Euclidean Correlation functions are at fixed values of E, P_{i}.

Tried to give a new perspective on the emergence of role of lower-dimensional field theories to describe higher-dimensional ones.

Can be viewed as an emergent time or $S O(5,1)$ Lorentz symmetry at the strong coupling (UV) fixed point c.f. [Horava].

But there are also still various conceptual problems associated

Altogether the $(2,0)$ system of [NL, Papageorgakis] paints a consistent, interconnected picture of the M5-brane in terms of lower dimensional theories

Some important technical points remain

- In DLCQ picture instanton moduli space has singularities (but these are mild orbifold singularities)
- Is 5D SYM well-defined non-perturbatively? We have ignored this here. One approach is the conjecture of [Douglas],[NL, Papageorgakis, Schmidt-Sommerfeld]. But even without this we hope these results will stand

