Supersymmetric gauge theories on curved manifolds and their gravity duals

Dario Martelli

King's College London

Based on work with: Davide Cassani [4d]; Achilleas Passias; James Sparks [3d].

Strong Fields, Strings and Holography

Swansea University, Swansea 16 - 19 July 2013

Outline

- Introduction
- 2 Part I: 3d field theories
 - 3d supersymmetric gauge theories on curved manifolds
 - Ø Bi-axially squashed three-sphere with Taub-NUT-AdS dual
 - Two-parameter deformed three-sphere with gravity dual
- 3 Part II: 4d field theories
 - 4 supersymmetric gauge theories on curved manifolds
 - Output Supersymmetry and superconformal anomalies [To appear]
 - A new supersymmetric deformation of AdS₅ [To appear]

(日) (周) (三) (三)

Gauge/Gravity duality

Conjectured equivalence between (quantum) gravity in "bulk" space-times and quantum field theories on their boundaries

Supersymmetry

- When bulk and boundary are supersymmetric we can perform detailed computations on both sides and (in certain limits) compare them
- supersymmetric solutions of supergravity equations • Supersymmetry in the bulk \Rightarrow
- There exist Killing spinors obeying first order equations (KSE)

3d supersymmetric field theories from M2-branes [BL/G], [ABJM]

- Worldvolume theory on N M2-branes in flat $\mathbb{R}^{1,2}$ space-time
- N M2-branes on $\mathbb{R}^{1,2} \times \mathbb{R}^8 / \mathbb{Z}_k$, where the \mathbb{Z}_k quotient leaves $\mathcal{N} = \mathbf{6} \subset \mathcal{N} = \mathbf{8}$ supersymmetry unbroken
- Low-energy theory is an $\mathcal{N} = 6$ superconformal $U(N)_k \times U(N)_{-k}$ Chern-Simons theory coupled to bi-fundamental matter, with $k \in \mathbb{N}$ a Chern-Simons coupling:

$$S = S_{CS} + S_{\rm matter} + S_{\rm potential}$$

$$S_{CS} = \frac{k}{4\pi} \int \mathrm{Tr}\left(\mathcal{A} \wedge \mathrm{d}\mathcal{A} + \frac{2}{3}\mathcal{A}^3\right) + \mathrm{supersymmetry\ completion}$$

M-theory dual of ABJM

• The supergravity dual is the ${\sf AdS}_4\times S^7/\mathbb{Z}_k$ solution to d=11 supergravity with quantized flux of G:

$$N = \frac{1}{(2\pi \ell_p)^6} \int_{S^7/\mathbb{Z}_k} *G$$

- 3/4 unbroken supersymmetry
- N is the number of M2 branes = N in U(N)
- k is the Chern-Simons level

Generalisations with less supersymmetry

- M2-branes at other isolated singularities in 8 dimensions: $\mathbb{R}^{1,2}\times X_8$ with X_8 Calabi-Yau
- Conical metric $ds^2_{X_8}=dr^2+r^2ds^2_{Y_7}$: in the near-horizon leads to supergravity solution ${\rm AdS}_4\times Y_7$, with Y_7 a Sasaki-Einstein manifold
- Field theories are $\mathcal{N}=2$ quiver gauge theories with Chern-Simons terms

The boundary of Euclidean AdS₄

- \bullet Conformal boundary of Euclidean-AdS4 is ${\boldsymbol{S}}^3$ with "round" (Einstein) metric
- One can put an arbitrary d = 3, $\mathcal{N} = 2$ gauge theory on the round S^3 , preserving supersymmetry [Kapustin-Willet-Yaakov, Jafferis, Hama-Hosomichi-Lee]
- Key ingredient: on the round \mathbf{S}^3 there exist Killing spinors ϵ

flat space
$$\partial_{\mu}\epsilon = 0 \longrightarrow$$
 sphere $\nabla_{\mu}\epsilon = \frac{1}{2}\gamma_{\mu}\epsilon$

• Supersymmetric Lagrangian can be obtained taking $m_{pl} \rightarrow \infty$ limit of a suitable supergravity (in the same dimension) to obtain a rigid supersymmetric theory [Festuccia-Seiberg]

・ロン ・四 ・ ・ ヨン ・ ヨン

Exact free energy

• Using localisation, the exact path integral Z of an $\mathcal{N} = 2$ gauge theory on the three-sphere is reduced to a matrix integral, containing the "double sine" function

$$s_{\beta}(x) = \prod_{m,n\geq 0} \frac{m\beta + n\beta^{-1} + (\beta + \beta^{-1})/2 - ix}{m\beta + n\beta^{-1} + (\beta + \beta^{-1})/2 + ix}, \qquad \beta = 1$$

• For the ABJM model [Drukker-Marino-Putrov]:

$$-\log Z_{\text{field theory}} = \frac{\pi\sqrt{2}}{3} k^{1/2} N^{3/2} + O(N^{1/2})$$

• This agrees (including numerical factors!) with the holographic free energy of AdS₄ (holographically renormalized action of AdS₄), reproducing the famous $N^{3/2}$ scaling

Large **N** free energy

• For more general $\mathcal{N} = 2$ SCFTs, similar results have been obtained by extracting the large **N** limit of the corresponding matrix integrals:

$$-\log Z_{\text{field theory}} = \sqrt{\frac{2\pi^6}{27 \text{Vol}(Y_7)}} N^{3/2} + O(N^{1/2})$$

(at least when the matter representation of the gauge group is real)

• This agrees with the holographic free energy computed from the (Euclidean) M-theory solutions $AdS_4 \times Y_7$, with generic Sasaki-Einstein manifold Y_7 [DM-Sparks,Cheon-Kim-Kim,Jafferis-Klebanov-Pufu-Safdi]

(日) (周) (三) (三)

More general three-manifolds

One can put $\mathcal{N} = 2$ theories on 3-manifolds more general than the round S^3 , still preserving supersymmetry. General rigid KSE for 3-manifolds:

$$\left[\nabla_{\alpha} - \mathsf{i}\mathsf{A}_{\alpha}^{(3)} - \mathsf{i}\mathsf{V}_{\alpha}^{(3)} + \frac{\mathsf{H}}{2}\gamma_{\alpha} + \epsilon_{\alpha\beta\rho}\mathsf{V}^{(3)\beta}\gamma^{\rho}\right]\chi = 0$$

 χ is the supersymmetry parameter. $A_{\alpha}^{(3)}, V_{\alpha}^{(3)}, H$ are fixed background fields [Klare-Tomasiello-Zaffaroni,Closset-Dumitrescu-Festuccia-Komardgodski]

Results about supersymmetry, localization, and reduction to matrix integrals go through if we replace the round S^3 by the bi-axially squashed S^3 , with metric

$$ds_3^2 = d\theta^2 + \sin^2\theta d\phi^2 + 4s^2 (d\psi + \cos\theta d\phi)^2$$

and specific background fields $A^{(3)}, V^{(3)}, H$

flat space $\partial_{\alpha} - \mathrm{i} q \mathcal{A}_{\alpha} \longrightarrow \text{curved space } \nabla_{\alpha} - \mathrm{i} q \mathcal{A}_{\alpha} - \mathrm{i} \mathbf{R} \cdot \mathbf{A}^{(3)}{}_{\alpha}$

The two supersymmetric biaxially squashed three-spheres

Supersymmetry can be preserved in two cases, adding slightly different background gauge fields:

1/4 BPS:
$$A^{(3)} = -\frac{1}{2}(4s^2 - 1)(d\psi + \cos\theta d\phi)$$
 [Hama-Hosomichi-Lee]
1/2 BPS: $A^{(3)} = -s\sqrt{4s^2 - 1}(d\psi + \cos\theta d\phi)$ [Imamura-Yokoyama]

Here 0 < s = squashing parameter, with the round metric on S^3 being $s = \frac{1}{2}$

In the 1/2 BPS case the partition function involves $s_b(x)$, where $4s = b + \frac{1}{b}$

The large N limit of the partition function for d = 3, $\mathcal{N} = 2$ theories can be computed from the matrix models and to leading order in N is:

$$\log Z_{\text{field theory}}[s] = \log Z_{\text{round } S^3} \times \begin{cases} 1 & 1/4 \text{ BPS} \\ 4s^2 & 1/2 \text{ BPS} \end{cases}$$

イロト 不得下 イヨト イヨト 二日

Gravity duals

ldea: find a supersymmetric filling M_4 of the squashed S^3 in d = 4, $\mathcal{N} = 2$ gauged supergravity (Einstein-Maxwell theory), and use the fact that any¹ such solution uplifts to a supersymmetric solution $M_4 \times Y_7$ of d = 11 supergravity

Action:
$$\mathbf{S} = -\frac{1}{16\pi G_4} \int d^4x \sqrt{g} \left(\mathbf{R} + \mathbf{6} - \mathbf{F}^2\right)$$

Killing Spinor Equation: $\left(\nabla_{\mu} - iA_{\mu} + \frac{1}{2}\Gamma_{\mu} + \frac{i}{4}F_{\nu\rho}\Gamma^{\nu\rho}\Gamma_{\mu} \right)\epsilon = 0$

Where $\Gamma_{\mu} \in \mathrm{Cliff}(4,0)$, so $\{\Gamma_{\mu},\Gamma_{
u}\}=2g_{\mu
u}$

Dirichlet problem: find an $(M_4, g_{\mu\nu})$ and gauge field A such that

- The conformal boundary of M_4 is the squashed S^3
- The d = 4 gauge field A restricts to $A^{(3)}$ on the conformal boundary
- The $\mathbf{d} = \mathbf{4}$ Killing spinor ϵ restricts to the $\mathbf{d} = \mathbf{3}$ Killing spinor χ

¹Locally.

Gravity duals

 $M_4 = Taub-NUT-AdS$

$$A =$$
 self-dual gauge field (*F=F)

The gauge fields and Killing spinors are different for the $1/4\ \text{BPS}$ and $1/2\ \text{BPS}$ solutions

Taub-NUT-AdS is an asymptotically locally AdS Einstein metric (with self-dual Weyl tensor) on \mathbb{R}^4 :

$$\mathrm{d} \mathsf{s}_4^2 = \frac{\mathsf{r}^2 - \mathsf{s}^2}{\varOmega(\mathsf{r})} \mathrm{d} \mathsf{r}^2 + (\mathsf{r}^2 - \mathsf{s}^2) (\mathrm{d} \theta^2 + \sin^2 \theta \mathrm{d} \phi^2) + \frac{4\mathsf{s}^2 \varOmega(\mathsf{r})}{(\mathsf{r}^2 - \mathsf{s}^2)} (\mathrm{d} \psi + \cos \theta \mathrm{d} \phi)^2$$

where $\Omega(\mathbf{r}) = (\mathbf{r} - \mathbf{s})^2 [1 + (\mathbf{r} - \mathbf{s})(\mathbf{r} + 3\mathbf{s})]$

 $\mathsf{A} = \mathsf{f}(\mathsf{r},\mathsf{s})(\mathrm{d}\psi + \cos\theta \mathrm{d}\phi)$

A = A = A

Holographic free energy

The holographic free energy is

 $-\log Z_{\text{gravity}} = S_{\text{Einstein-Maxwell}} + S_{\text{Gibbons-Hawking}} + S_{\text{counterterm}}$

Remarkably, we find

$$\log Z_{\text{gravity}}[s] = \log Z_{\text{AdS}_4} \times \begin{cases} 1 & 1/4 \text{ BPS} \\ 4s^2 & 1/2 \text{ BPS} \end{cases}$$

agreeing exactly with the leading large N matrix model results!

For the 1/4 BPS case the independence of ${\bf s}$ is non-trivial: each term in the action has a complicated ${\bf s}$ -dependence, which cancels only when all are summed

The other one-parameter deformation of the three-sphere

• There is another known one-parameter deformation of S^3 , preserving $U(1) \times U(1)$ symmetry – the "ellipsoid" [Hama-Hosomichi-Lee] (this was in fact the first non-trivial example)

$$\begin{split} \mathrm{d} s_3^2 &= f^2(\vartheta) \mathrm{d} \vartheta^2 + \cos^2 \vartheta \mathrm{d} \varphi_1^2 + \frac{1}{b^4} \sin^2 \vartheta \mathrm{d} \varphi_2^2 \\ \mathsf{A}^{(3)} &= \frac{1}{2 \mathsf{f}(\vartheta)} \left(\mathrm{d} \varphi_1 - \frac{1}{b^2} \mathrm{d} \varphi_2 \right) \;, \qquad \mathsf{V}^{(3)} = \mathsf{0} \;, \quad \mathsf{H} = -\frac{\mathrm{i}}{\mathsf{f}(\vartheta)} \end{split}$$

where

$$f^{-2}(\vartheta) = \sin^2 \vartheta + b^4 \cos^2 \vartheta$$

 The original f(v) in HHL is slightly different, but we [DM-Passias-Sparks] showed that it can be an arbitrary function, provided it gives a smooth metric with the topology of the three-sphere

A two-parameter squashed three-sphere

[DM-Passias]

- New family of metrics on a deformed three-sphere, depending on two non-trivial parameters
- A possible way of writing the metric:

$$\mathrm{d}s_3^2 = \frac{\mathrm{d}\theta^2}{\mathsf{f}(\theta)} + \mathsf{f}(\theta)\sin^2\theta\,\mathrm{d}\hat{\phi}^2 + (\mathrm{d}\hat{\psi} + (\cos\theta + a\sin^2\theta)\mathrm{d}\hat{\phi})^2$$

where

$$f(\theta) = v^2 - a^2 \sin^2 \theta - 2a \cos \theta$$

- $\bullet\,$ The parameters are $a\in\mathbb{R}$ and $v\in\mathbb{R}$
- This looks like a deformation of the Hopf fibration over (a deformed) S². However, these coordinates are only local (cf. *irregular* Sasaki-Einstein manifolds looking like a "fibration" over a Kähler-Einstein "manifold")

Two-parameter deformations

 Global regularity of the metric can be checked introducing two different angular coordinates as

$$\hat{\psi} = \frac{1}{\mathbf{v}^2 - 2\mathbf{a}}\varphi_1 + \frac{1}{\mathbf{v}^2 + 2\mathbf{a}}\varphi_2$$
$$\hat{\phi} = -\frac{1}{\mathbf{v}^2 - 2\mathbf{a}}\varphi_1 + \frac{1}{\mathbf{v}^2 + 2\mathbf{a}}\varphi_2$$

- φ₁, φ₂ ∈ [0, 2π] parameterise a torus and S³ is realized as a T² fibration over an interval (parameterized by θ ∈ [0, π])
- The other background fields are all non-trivial

$$\mathsf{A}^{(3)} = \mathsf{Q}\mathsf{A}_{\mathsf{i}}(\theta)\mathrm{d}\varphi_{\mathsf{i}} \,, \quad \mathsf{V}^{(3)} = \frac{\mathsf{v}^2 - 1}{\mathsf{Q}}\sum_{\mathsf{i}}\mathsf{V}_{\mathsf{i}}(\theta)\mathrm{d}\varphi_{\mathsf{i}} \,, \quad \mathsf{H} = \mathrm{i}(\tfrac{1}{2} - \mathsf{a}\cos\theta)$$

• $A^{(3)}$ and $V^{(3)}$ can be real, imaginary, or complex, depending on Q = Q(v, a)

Parameter space

Plot of the moduli space of solutions in the (a, v^2) plane

The special one-parameter families

$$\mathbf{Q} = \begin{cases} \pm \frac{1}{2} (\mathbf{a} + \sqrt{1 - \mathbf{v}^2 + \mathbf{a}^2}) \\ \pm \frac{1}{2} (\mathbf{a} - \sqrt{1 - \mathbf{v}^2 + \mathbf{a}^2}) \\ \pm \frac{\mathbf{v}^2 - 1}{2} \end{cases}$$

- When $1 v^2 + a^2 < 0$ there are two complex conjugate configurations. NB: the metric is always real, H is always pure imaginary
- $\bullet\,$ The two known cases are recovered from the one-parameter sub-families defined by a=0 or $v^2=1$
- Setting a = 0, and defining $s = \frac{1}{2v}$ gives the biaxially squashed metric, with the two distinct background fields
- Setting $v^2 = 1$, and defining $a = \frac{1}{2} \frac{b^2 1}{b^2 + 1}$ gives the ellipsoid metric, with the unique background field

Gravity duals

- Four-dimensional supersymmetric gravity dual solution constructed (as before) in minimal gauged supergravity
- Originates from the class of Plebanski-Demianski solutions of Maxwell-Einstein supergravity
- Solution comprises an ALEAdS self-dual metric on the ball (with topology of $\mathbb{R}^4 \Rightarrow$ upliftable to M-theory) and different instantons
- The metric is real, but the three (generically) different values of **Q** correspond to a generically complex instanton field
- \bullet Includes all previous solutions (with \mathbb{R}^4 topology) as special cases

Holographic free energy

• The holographic free energies in the three cases read

$$\mathcal{F} = \frac{\pi}{2\mathsf{G}_4} \begin{cases} \frac{1}{1-4\mathsf{Q}^2} \\ 1 \end{cases}$$

- ullet Remarkably, when it's non-trivial, it depends only on one parameter $oldsymbol{Q}$
- In general Q is complex, therefore \mathcal{F} is complex. In the cases $\mathbf{a} = \mathbf{0}$ or $\mathbf{v}^2 = \mathbf{1}$ one recovers the expressions of the previous holographic free energies
- Setting $\mathbf{Q} = \frac{1}{2} \frac{\beta^2 1}{\beta^2 + 1}$ gives the following expression for the (large **N**) free energy

$$\mathcal{F} = \frac{\pi}{8\mathsf{G}_4} \left(\beta + \frac{1}{\beta}\right)^2$$

• We conjectured that the full localised partition function on this background will be given by a matrix integral involving $s_{\beta}(x)$

Four-dimensional rigid supersymmetry

• General rigid ("new minimal") KSE for d = 4, N = 1 gauge theories:

$$\left[\nabla_{\rm m} - i a_{\rm m} + i v_{\rm m} + \frac{i}{2} v^{\rm n} \gamma_{\rm mn} \right] \zeta = 0$$

• ζ is a chiral supersymmetry parameter and a_m, v_m are background fields

- $\bullet\,$ The combination $A_m=a_m-\frac{3}{2}v_m$ couples to the R-symmetry current J^m
- 4d field theories on supersymmetric curved backgrounds:
 - Localization computations not yet as developed as in 3d but certainly will appear soon
 - Putting 4d SCFTs on curved backgrounds is necessary for detecting superconformal anomalies

イロト 不得下 イヨト イヨト 二日

Charged conformal Killing spinors (CKS)

• An essentially equivalent supersymmetry equation obeyed by $\boldsymbol{\zeta}$ is

$$abla_{\mathrm{m}}^{\mathrm{A}}\zeta = rac{1}{4}\gamma_{\mathrm{m}}\gamma^{\mathrm{n}}
abla_{\mathrm{n}}^{\mathrm{A}}\zeta$$

where $\nabla_m^A = \nabla_m - iA_m$

- This has the same form in Lorentzian and Euclidean signature. The main difference is that A_m is real in the first case, and complex in the second case
- In Euclidean signature: equivalent to Hermitian metric [Klare-Tomasiello-Zaffaroni,Festuccia-Seiberg]
- In Lorentzian signature: equivalent to existence of null conformal Killing vector [Cassani-Klare-DM-Tomasiello-Zaffaroni]

イロト 不得下 イヨト イヨト 二日

Extracting information on the geometry

- $\bullet\,$ In the references above it was shown that the geometry determines (not very explicitly) the field A_m
- $\bullet\,$ By using a different method, we have obtained useful relations between the geometry and the gauge field A_m
- The starting point is the integrability condition of the CKS equation

$$\Big(\frac{1}{4}\mathsf{C}_{\mathsf{mnpq}}-\frac{\mathsf{i}}{3}\mathsf{g}_{\mathsf{P}[\mathsf{m}}\mathsf{F}_{\mathsf{n}]\mathsf{q}}\Big)\gamma^{\mathsf{pq}}\zeta-\frac{\mathsf{i}}{3}\Big(\mathsf{F}_{\mathsf{mn}}-\frac{1}{2}\gamma_{\mathsf{mnpq}}\mathsf{F}^{\mathsf{pq}}\Big)\zeta \ = \ \mathbf{0}$$

where

$${\sf C}_{{\sf mnpq}} \; = \; {\sf R}_{{\sf mnpq}} - rac{1}{2} \left({{{f g}_{{\sf m}[p}}}{\sf R}_{{\sf q}]{\sf n}} - {{f g}_{{\sf n}[p}}{\sf R}_{{\sf q}]{\sf m}}
ight) + rac{1}{3}{\sf R}\,{f g}_{{\sf m}[p}{f g}_{{\sf q}]{\sf n}}$$

is the Weyl tensor of the metric g_{mn} and $F_{mn}=\partial_m A_n-\partial_n A_m$

Implications of integrability of the CKS equation

- Idea: given a metric g_{mn} , we can express F_{mn} in terms of the Weyl tensor
- Strategy: decompose C_{mnpq} and F_{mn} in a basis of two-forms, *a la* Newman-Penrose, and then use the integrability to relate the coefficients of the expansions (Weyl scalars)
- In Lorentzian signature we obtain:

$$C_{mnpq}C^{mnpq} = \frac{8}{3} F_{mn}F^{mn}, \qquad C_{mnpq}\widetilde{C}^{mnpq} = \frac{8}{3} F_{mn}\widetilde{F}^{mn}$$

• In Euclidean signature we obtain:

$$C_{mnpq}C^{mnpq} - \frac{8}{3}\,F_{mn}F^{mn} \;=\; -C_{mnpq}\widetilde{C}^{mnpq} + \frac{8}{3}\,F_{mn}\widetilde{F}^{mn}$$

where
$$\widetilde{C}_{mnpq} = \frac{1}{2} \epsilon_{mn}^{rs} C_{rspq}$$
 and $\widetilde{F}_{mn} = \frac{1}{2} \epsilon_{mn}^{rs} F_{rs}$

Superconformal anomalies

• The trace and R-symmetry anomalies of $\mathcal{N} = 1$ SCFT [Anselmi *et al*]² read

$$\langle \mathsf{T}_{\mathsf{m}}^{\mathsf{m}} \rangle \; = \; \frac{\mathsf{c}}{16\pi^{2}} \mathscr{C}^{2} - \frac{\mathsf{a}}{16\pi^{2}} \mathscr{E} - \frac{\mathsf{c}}{6\pi^{2}} \mathsf{F}_{\mathsf{mn}} \mathsf{F}^{\mathsf{mn}}$$

$$\langle \nabla_{\mathsf{m}} \mathsf{J}^{\mathsf{m}} \rangle \; = \; \frac{\mathsf{c} - \mathsf{a}}{24\pi^{2}} \, \mathsf{R}_{\mathsf{mnpq}} \widetilde{\mathsf{R}}^{\mathsf{mnpq}} + \frac{5\mathsf{a} - 3\mathsf{c}}{27\pi^{2}} \, \mathsf{F}_{\mathsf{mn}} \widetilde{\mathsf{F}}^{\mathsf{mn}}$$

where \boldsymbol{a} and \boldsymbol{c} are the central charges and

$$\mathscr{C}^2 \equiv \mathsf{C}_{\mathsf{mnpq}}\mathsf{C}^{\mathsf{mnpq}} = \mathsf{R}_{\mathsf{mnpq}}\mathsf{R}^{\mathsf{mnpq}} - 2\mathsf{R}_{\mathsf{mn}}\mathsf{R}^{\mathsf{mn}} + \frac{1}{3}\mathsf{R}^2$$

$$\mathscr{E} \equiv \frac{1}{4} \epsilon^{mnpq} \epsilon^{rsuv} R_{mnrs} R_{pquv} = R_{mnpq} R^{mnpq} - 4R_{mn} R^{mn} + R^2$$
$$\mathscr{P} \equiv \frac{1}{2} \epsilon^{mnpq} R_{mnrs} R_{pq}^{rs} = \frac{1}{2} \epsilon^{mnpq} C_{mnrs} C_{pq}^{rs}$$

²After correcting some errors in this reference

Taming the anomalies

- Using the identities implied by supersymmetry we find that the anomalies become topological
- In Euclidean signature:

$$\begin{split} \langle \mathsf{T}_{\mathsf{m}}^{\mathsf{m}} \rangle &= -\frac{c}{16\pi^2} \left(\mathscr{P} - \frac{8}{3} \mathrm{Re}\mathsf{F}\widetilde{\mathsf{F}} \right) - \frac{a}{16\pi^2} \mathscr{E} + \mathrm{i}\,\frac{c}{6\pi^2} \mathrm{Im}\mathsf{F}\widetilde{\mathsf{F}} \\ \langle \nabla_{\mathsf{m}}\mathsf{J}^{\mathsf{m}} \rangle &= \frac{c-a}{24\pi^2} \mathscr{P} + \frac{5a-3c}{27\pi^2} \mathrm{Re}\mathsf{F}\widetilde{\mathsf{F}} + \mathrm{i}\,\frac{5a-3c}{27\pi^2} \mathrm{Im}\mathsf{F}\widetilde{\mathsf{F}} \end{split}$$

 In Lorentzian signature (and Euclidean, assuming two CKS of opposite chiralities):

$$\begin{array}{rcl} \langle \mathsf{T}_{\mathsf{m}}^{\mathsf{m}}\rangle &=& -\frac{\mathsf{a}}{16\pi^{2}}\mathscr{E}\\ \\ \langle \nabla_{\mathsf{m}}\mathsf{J}^{\mathsf{m}}\rangle &=& \frac{\mathsf{a}}{9\pi^{2}}\mathscr{P} &=& \mathsf{a}\frac{\mathsf{8}}{27\pi^{2}}\mathsf{F}\widetilde{\mathsf{F}} \end{array}$$

Topological formulas for the integrated anomalies

 When the 4d Euclidean manifold is compact we can integrate the anomalies on M, obtaining the following relations

$$\int_{M} d^{4}x \sqrt{g} \langle T_{m}^{m} \rangle = -3c\sigma(M) + \frac{c}{3}\nu(M) - a2\chi(M)$$
$$\int_{M} d^{4}x \sqrt{g} \nabla_{m} J^{m} = 2(c-a)\sigma(M) + (5a-3c)\frac{2}{27}\nu(M)$$

where

$$\mathbb{Z} \ \ni \chi(\mathsf{M}) = \frac{1}{32\pi^2} \int_{\mathsf{M}} d^4 x \sqrt{g} \,\mathscr{E}$$
$$\mathbb{Z} \ \ni \sigma(\mathsf{M}) = \frac{1}{3} \int_{\mathsf{M}} \mathsf{p}_1(\mathsf{M}) = \frac{1}{48\pi^2} \int_{\mathsf{M}} d^4 x \sqrt{g} \,\mathscr{P}$$
$$\mathbb{N} \ \ni \nu(\mathsf{M}) = \int_{\mathsf{M}} \mathsf{c}_1(\mathsf{M}) \wedge \mathsf{c}_1(\mathsf{M})$$

• With two solutions ζ_+ and ζ_- with opposite charge, we conclude

$$\nu(\mathsf{M}) = \sigma(\mathsf{M}) = \chi(\mathsf{M}) = 0$$

Searching a 5d gravity dual to 4d SCFT on a supersymmetric curved manifold

- [Klare-Tomasiello-Zaffaroni]/[KTZ+Cassani+DM] showed that *locally* d = 4 rigid susy arises at the boundary of supersymmetric Euclidean/Lorentzian AlAdS solutions of minimal gauged supergravity in d = 5
- Examples of 5d sugra solutions with non-trivial boundary? Very few!
- A deformation of AdS₅ [Gauntlett-Gutowski], with boundary $\mathbb{R}\times S^3$ preserving SU(2) \times U(1) symmetry. Impossible to Euclideanize & compactify
- A magnetic string [Klemm-Sabra] with boundary $\mathbb{R}^{1,1} \times H^2$ (or $\mathbb{T}^2 \times H^2$) and $F \propto vol(H^2)$
- Would like a non conformally flat, compact and Euclidean boundary
- A priori endless possibilities (i.e. take any compact complex manifold). However σ(M) = 0 gives a first restriction: e.g. for del Pezzo surfaces dP_k, only dP₁ has vanishing signature. In particular CP² it's not allowed

A new supersymmetric deformation of AdS₅ [Cassani-DM]

- Uplift" known 3d supersymmetric backgrounds to 4d
- 2 Require large symmetry
- Solve both Euclidean and Lorentzian rigid KSE
- $\bullet\,$ This singles out $S^3_{\rm squashed} \times S^1$ with $SU(2) \times U(1) \times U(1)$ symmetry
- We looked for a supersymmetric "filling" of this boundary, in minimal gauged supergravity in d = 5, which is topologically global AdS₅

A new supersymmetric deformation of AdS₅ [Cassani-DM]

- Uplift" known 3d supersymmetric backgrounds to 4d
- 2 Require large symmetry
- Solve both Euclidean and Lorentzian rigid KSE
- $\bullet\,$ This singles out $S^3_{\rm squashed} \times S^1$ with $SU(2) \times U(1) \times U(1)$ symmetry
- We looked for a supersymmetric "filling" of this boundary, in minimal gauged supergravity in d = 5, which is topologically global AdS₅
- We found a new one-parameter supersymmetric deformation of AdS₅ with the above rigid susy boundary!
- $\bullet\,$ We found the solution numerically, and analytically at first order in the deformation parameter $\pmb{\xi}$

Some properties of the solution

- The holographic anomaly vanishes $\langle T_i^i \rangle = 0$, in agreement with our general results about anomalies in supersymmetric backgrounds
- The Casimir energy on the deformed S_{ξ}^{3} may be computed from the renormalised holographic energy-momentum tensor (up to ambiguities)

$$\mathsf{E}(\xi) = \int_{\mathsf{S}_{\xi}^{3}} \langle \mathsf{T}_{tt} \rangle \operatorname{vol}(\mathsf{S}_{\xi}^{3}) = \frac{\pi \ell^{2}}{32\mathsf{G}_{5}} \left[3 + \xi(2 - \log 2) + \mathcal{O}(\xi^{2}) \right]$$

- Euclidean version of solution is obtained by $t \rightarrow it$ (t is global time in AdS). Boundary metric is real (gauge field is complex), but bulk 5d metric is complex!
- Would be interesting to compute Casimir energy exactly using localisation

イロト 不得下 イヨト イヨト 二日

THE END

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト