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Gauge/Gravity duality

Conjectured equivalence between (quantum) gravity in “bulk” space-times

and quantum field theories on their boundaries

CFT lives on the

boundary of AdS
AdS/CFT
QFT <:> Gravity
Strongly coupled Weakly coupled
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Supersymmetry

@ When bulk and boundary are supersymmetric we can perform detailed

computations on both sides and (in certain limits) compare them

supersymmetric solutions of

in th 1k . .
® Supersymmetry in the bulk = supergravity equations

@ There exist Killing spinors obeying first order equations (KSE)

“rigid” KSE on

S t the bound.
@ Supersymmetry on the bounaary = curved space
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3d supersymmetric field theories from M2-branes
[BL/G], [ABJM]

@ Worldvolume theory on N M2-branes in flat R¥? space-time

@ N M2-branes on R? x RB/Zk, where the Zy quotient leaves
N =6 C N = 8 supersymmetry unbroken

@ Low-energy theory is an N/ = 6 superconformal U(N)ik x U(N)_x
Chern-Simons theory coupled to bi-fundamental matter, with k € N a
Chern-Simons coupling:

S = sCS + smatter + Spotential

k 2
Scs = - /’I‘r (A ANdA+ 3A3> + supersymmetry completion
™
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M-theory dual of ABJM

@ The supergravity dual is the AdSs X S7/Zk solution to d = 11 supergravity
with quantized flux of G:

1
N=__"—_
(271’2,,)6 57/Zk

@ 3/4 unbroken supersymmetry

*G

@ N is the number of M2 branes = N in U(N)

@ k is the Chern-Simons level
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Generalisations with less supersymmetry

(Calabi-Yau)
singularity

multiple M2-branes

@ M2-branes at other isolated singularities in 8 dimensions: RY2 x Xg with Xg
Calabi-Yau

@ Conical metric dsXa =dr* + r2dsY . in the near-horizon leads to
supergravity solution AdSs X Y7, W|th Y7 a Sasaki-Einstein manifold

@ Field theories are N/ = 2 quiver gauge theories with Chern-Simons terms
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The boundary of Euclidean AdS4

@ Conformal boundary of Euclidean-AdS, is S® with “round” (Einstein) metric

@ One can put an arbitrary d = 3, A/ = 2 gauge theory on the round S3,
preserving supersymmetry [Kapustin-Willet-Yaakov, Jafferis,
Hama-Hosomichi-Lee]

@ Key ingredient: on the round S3 there exist Killing spinors €
i

flat space 9, = 0 —— sphere V,e = 3 e

@ Supersymmetric Lagrangian can be obtained taking mp; — oo limit of a
suitable supergravity (in the same dimension) to obtain a rigid
supersymmetric theory [Festuccia-Seiberg]
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Exact free energy

@ Using localisation, the exact path integral Z of an A/ = 2 gauge theory on
the three-sphere is reduced to a matrix integral, containing the “double
sine” function

509 = [] mB+n871 + (B+877)/2 — ix

=1
mB+nB-14 (B+8-1)/2+ix’ o

m,n>0
@ For the ABJM model [Drukker-Marino-Putrov]:

V2 1/2p3/2 1/2
=108 Zfiel theory = —3 K /?N*2 + O(N'/%)

@ This agrees (including numerical factors!) with the holographic free energy
of AdS,4 (holographically renormalized action of AdS4), reproducing the
famous N3/2 scaling
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Large N free energy

@ For more general N/ = 2 SCFTs, similar results have been obtained by
extracting the large N limit of the corresponding matrix integrals:

276

— 3/2 1/2
108 Zfield theory = || 7v010v7) " /2 + O(N'/?)

(at least when the matter representation of the gauge group is real)

@ This agrees with the holographic free energy computed from the (Euclidean)
M-theory solutions AdS4 X Y7, with generic Sasaki-Einstein manifold Y7
[DM-Sparks,Cheon-Kim-Kim, Jafferis-Klebanov-Pufu-Safdi]
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More general three-manifolds

One can put A/ = 2 theories on 3-manifolds more general than the round S3, still
preserving supersymmetry. General rigid KSE for 3-manifolds:

H
Vo —iA® —iv® 4 Vet €appVPYP| x =0

X is the supersymmetry parameter. AS’), VS’), H are fixed background fields

[Klare-Tomasiello-Zaffaroni, Closset-Dumitrescu-Festuccia-Komardgodski]

Results about supersymmetry, localization, and reduction to matrix integrals go
through if we replace the round S3 by the bi-axially squashed S3, with metric

ds? = d6? + sin? 9d¢? + 4s? (dep + cos 0dg)’
and specific background fields A(3),V(3), H

flat space 0o — iqAo —> curved space Vo — iqAlq — iR - AG)
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The two supersymmetric biaxially squashed three-spheres

Supersymmetry can be preserved in two cases, adding slightly different
background gauge fields:

1
1/4 BPS: A® = —5(452 — 1) (de) + cos 8d o) [Hama-Hosomichi-Lee]
1/2BPS: A® = _s\/4s2 — 1 (de) + cos 8do) [Imamura-Yokoyamal]

Here 0 < s = squashing parameter, with the round metric on s3 being s = %

1
In the 1/2 BPS case the partition function involves sp(x), where 4s = b + b

The large N limit of the partition function for d = 3, A/ = 2 theories can be
computed from the matrix models and to leading order in N is:

1 1/4 BPS

log Zfie|d theoryls] = logZ 4 g3 ¥ { 4 1/2 BPS
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Gravity duals

Idea: find a supersymmetric filling Mg of the squashed S ind = 4, A" = 2
gauged supergravity (Einstein-Maxwell theory), and use the fact that any! such
solution uplifts to a supersymmetric solution My X Y7 of d = 11 supergravity

Action: S = —

1 4 2
le.mG‘l/dlx\/g(RHi—F)

1 .
Killing Spinor Equation: <V“ —iA, + 51"“ + ;Fl,pl'"”’l““> e=0
Where I',, € Cliff(4,0), so {I',,I,} = 2g,.
Dirichlet problem: find an (Ma, g,.) and gauge field A such that

@ The conformal boundary of My is the squashed s3

@ The d = 4 gauge field A restricts to A®) on the conformal boundary

@ The d = 4 Killing spinor € restricts to the d = 3 Killing spinor x

'Locally.
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Gravity duals

M; = Taub-NUT-AdS
squashed s conformal boundary
< gauge oA A = self-dual gauge field (*F=F)

solution to Einstein-Maxwell theory The gauge fields and Killing spinors are
(Taub-NUT-AAS * instanton) different for the 1/4 BPS and 1/2 BPS
solutions

Taub-NUT-AdS is an asymptotically locally AdS Einstein metric (with self-dual
Wey! tensor) on R*:

ds? = rZQ( m) dr? 4 (r* — s?)(d6? + sin® 6d¢p?) + ( 2 )) (d + cos 8d¢)?

where 2(r) = (r — s)?[1 + (r — s)(r + 3s)]

A = f(r,s)(dvy + cos 8d¢)

Dario Martelli (King's College London) SFSH2013 17 July 2013 14 / 33



Holographic free energy
The holographic free energy is

—10g Zgavity = SEinstein-Maxwell T SGibbons-Hawking T Scounterterm

Remarkably, we find

1 1/4 BPS

IOg Zgravity[S] = IOg ZAdS4 X { 452 1/2 BPS

agreeing exactly with the leading large N matrix model results!

For the 1/4 BPS case the independence of s is non-trivial: each term in the
action has a complicated s-dependence, which cancels only when all are summed
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The other one-parameter deformation of the three-sphere

@ There is another known one-parameter deformation of S3, preserving
U(1) x U(1) symmetry — the “ellipsoid” [Hama-Hosomichi-Lee] (this was in
fact the first non-trivial example)

1
ds3 = f2(9)d¥? + cos® 9de] + 0 sin® 9d?2

A(3)=1<d<P1—1d<P2> , V=0, H=- i
2f(9) b2 f(9)

where
f72(9) = sin®> 9 + b* cos? ¥

@ The original f(99) in HHL is slightly different, but we [DM-Passias-Sparks]
showed that it can be an arbitrary function, provided it gives a smooth
metric with the topology of the three-sphere
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A two-parameter squashed three-sphere

[DM-Passias]

New family of metrics on a deformed three-sphere, depending on two
non-trivial parameters

A possible way of writing the metric:
, _ d6? 2
ds; = f0) + £(0) sin? 0 dp? + (de) + (cos @ + asin® 0)de)
where

f(0) = v2 — a?sin? @ — 2acos 0
The parameters area € Rand v € R

This looks like a deformation of the Hopf fibration over (a deformed) S2.
However, these coordinates are only local (cf. irregular Sasaki-Einstein
manifolds looking like a "fibration” over a K&hler-Einstein “manifold”)
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Two-parameter deformations

Global regularity of the metric can be checked introducing two different
angular coordinates as

- 1 1
v = v2—2a(pl+ v2+23892

1 + 1
v2 — 2a(pl v2 + 2a"02

b=-

©1, 92 € [0,27] parameterise a torus and S3 is realized as a T? fibration
over an interval (parameterized by 8 € [0, 7])

The other background fields are all non-trivial

v2

A®) = QA;(8)dy;, VO =

Q_ ! ZVi(B)dcpi , H= i(%—a cos 6)

A® and VO can be real, imaginary, or complex, depending on Q = Q(v, a)
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Parameter space

-10 -05 05 1.0

Plot of the moduli space of solutions in the (a,v?) plane
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The special one-parameter families

:I:%(a+\/1—v2+a2)
Q=< +3(@a— V1-—v2+a?)

v—1
+ 2

@ When 1 — v2 4 a? < 0 there are two complex conjugate configurations.
NB: the metric is always real, H is always pure imaginary

@ The two known cases are recovered from the one-parameter sub-families
defined bya=0orv? =1

@ Setting a = 0, and defining s = % gives the biaxially squashed metric, with
the two distinct background fields

@ Setting v2 = 1, and defining a = %i’;—ﬁ gives the ellipsoid metric, with the
unique background field
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Gravity duals

@ Four-dimensional supersymmetric gravity dual solution constructed (as
before) in minimal gauged supergravity

@ Originates from the class of Plebanski-Demianski solutions of
Maxwell-Einstein supergravity

@ Solution comprises an ALEAJS self-dual metric on the ball (with topology of
R* = upliftable to M-theory) and different instantons

@ The metric is real, but the three (generically) different values of Q
correspond to a generically complex instanton field

@ Includes all previous solutions (with R? topology) as special cases
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Holographic free energy
@ The holographic free energies in the three cases read
1
F=_"11_4aQ
2G4 1

@ Remarkably, when it's non-trivial, it depends only on one parameter Q

@ In general Q is complex, therefore F is complex. In the cases a = 0 or
v2 = 1 one recovers the expressions of the previous holographic free energies

@ Setting Q = 2 62 1 gives the following expression for the (large N) free

energy
< 1 >2
) B+

@ We conjectured that the full localised partition function on this background
will be given by a matrix integral involving sg(x)
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Four-dimensional rigid supersymmetry
@ General rigid (“new minimal”) KSE for d = 4, N/ = 1 gauge theories:

Vi — iam + iV + %v"'ymn c=0

@ ( is a chiral supersymmetry parameter and an,, vy are background fields

@ The combination A, = a,, — Evm couples to the R-symmetry current J™

@ 4d field theories on supersymmetric curved backgrounds:

© Localization computations not yet as developed as in 3d but certainly
will appear soon
@ Putting 4d SCFTs on curved backgrounds is necessary for detecting

superconformal anomalies
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Charged conformal Killing spinors (CKS)

@ An essentially equivalent supersymmetry equation obeyed by ¢ is

1
VﬁC = Z"/m’Y"Vf,\C
where VA =V, —iA,

@ This has the same form in Lorentzian and Euclidean signature. The main
difference is that A, is real in the first case, and complex in the second case

@ In Euclidean signature: equivalent to Hermitian metric
[Klare-Tomasiello-Zaffaroni,Festuccia-Seiberg]

@ In Lorentzian signature: equivalent to existence of null conformal Killing
vector [Cassani-Klare-DM-Tomasiello-Zaffaroni]
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Extracting information on the geometry
@ In the references above it was shown that the geometry determines (not very
explicitly) the field Ay,

@ By using a different method, we have obtained useful relations between the
geometry and the gauge field Ay,

@ The starting point is the integrability condition of the CKS equation

(%Cmnpq :;gp[m n]q) Pag — *( - %’ymnqupq)C =0

where

1 1
Cmnpq = Rmnpq - E (gm[qu]n - gn[qu]m) + ER Em[p8&q]n

is the Weyl tensor of the metric gmn and Frun = OmAn — OnAm
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Implications of integrability of the CKS equation
@ Idea: given a metric gmn, we can express Fp,, in terms of the Weyl tensor
@ Strategy: decompose Cmnpq and Fy, in a basis of two-forms, a la
Newman-Penrose, and then use the integrability to relate the coefficients of

the expansions (Weyl scalars)

@ In Lorentzian signature we obtain:

8 ~ 8 ~
CmnpqCmnpq = g anan7 CmnpqCmnpq = g anan
@ In Euclidean signature we obtain:
mn 8 mn Nmn 8 ~mn
CmnpqC Pa — 5 FmnF = _Cmnpqc Pa 4 5 FmnF
o 1 rs e rs
where Cpppq = Eemn Cispq and Fryp = Eem" F.s
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Superconformal anomalies

@ The trace and R-symmetry anomalies of N' = 1 SCFT [Anselmi et a/]? read

C a C
™) = ¢? — & — ——=FpnF™
(Tm) 1672 1672 672
c—a ~ 5a — 3c ~
Vme = Rimn mnpa anan
{ ) 2472 pa 2772

where a and c are the central charges and
1
€ = CompaC™? = RmnnpgR™* — 2RmnR™ + 2R?

& = ™I R Roquw = RmnpgR™™9 — 4RpaR™ + R

FNJ

rs

1 1
P = Eem""qumstqrs = —€"P9CnsCpq

2 After correcting some errors in this reference
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Taming the anomalies

@ Using the identities implied by supersymmetry we find that the anomalies
become topological

@ In Euclidean signature:

(T = — (3@ r FF) 2 & +i——ImFF
m’ = T 1 6m2 3 1672 " lemz

c—a 5a — 3c ~ .ba—3c ~

(Vid™) = P+ ReFF + ImFF
" T 24x2 2772 © ! 2772 m

@ In Lorentzian signature (and Euclidean, assuming two CKS of opposite
chiralities):
a

™) = —

a 8 -
Ved™ = — 2 = FF
{ ) 972 a277'r2
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Topological formulas for the integrated anomalies

@ When the 4d Euclidean manifold is compact we can integrate the anomalies
on M, obtaining the following relations

/M d*x/E (T™) = —3co (M) + gu(M) — a2x(M)

/M d*x/E Vard™ = 2(c — a)or(M) + (5a — 3c)%u(M)

where

Z 3 x(M) = /Md"x\/gé’
/Md4x\/§<@

N 3 v(M) = /Mcl(M)/\cl(M)

3272

z30M) =3 [ ) =

4872

@ With two solutions ¢4 and {_ with opposite charge, we conclude

v(M) = (M) = x(M) =0
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Searching a 5d gravity dual to 4d SCFT on a

supersymmetric curved manifold
o [Klare-Tomasiello-Zaffaroni] /[KTZ+Cassani+DM)] showed that locallyd = 4

rigid susy arises at the boundary of supersymmetric Euclidean/Lorentzian
AIAdS solutions of minimal gauged supergravity ind = 5

@ Examples of 5d sugra solutions with non-trivial boundary? Very few!
@ A deformation of AdSs [Gauntlett-Gutowski], with boundary R x S3

preserving SU(2) X U(1) symmetry. Impossible to Euclideanize &
compactify

@ A magnetic string [Klemm-Sabra] with boundary Rb! x H? (or T2 x H?)
and F o vol(H?)

@ Would like a non conformally flat, compact and Euclidean boundary

@ A priori endless possibilities (i.e. take any compact complex manifold).
However o(M) = 0 gives a first restriction: e.g. for del Pezzo surfaces dPy,
only dP; has vanishing signature. In particular CP? it’s not allowed
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A new supersymmetric deformation of AdSs
[Cassani-DM]

@ "Uplift” known 3d supersymmetric backgrounds to 4d
@ Require large symmetry

© Solve both Euclidean and Lorentzian rigid KSE

Q@ o=0 x=0mod?2

@ This singles out quuashed x S with SU(2) x U(1) x U(1) symmetry

@ We looked for a supersymmetric “filling” of this boundary, in minimal
gauged supergravity in d = 5, which is topologically global AdSs
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A new supersymmetric deformation of AdSs
[Cassani-DM]

@ "Uplift” known 3d supersymmetric backgrounds to 4d
@ Require large symmetry

© Solve both Euclidean and Lorentzian rigid KSE

Q@ o=0 x=0mod?2

@ This singles out quuashed x S with SU(2) x U(1) x U(1) symmetry

@ We looked for a supersymmetric “filling” of this boundary, in minimal
gauged supergravity in d = 5, which is topologically global AdSs

@ We found a new one-parameter supersymmetric deformation of AdSs with
the above rigid susy boundary!

@ We found the solution numerically, and analytically at first order in the
deformation parameter £
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Some properties of the solution

@ The holographic anomaly vanishes (T:) = 0, in agreement with our general
results about anomalies in supersymmetric backgrounds

@ The Casimir energy on the deformed SZ may be computed from the
renormalised holographic energy-momentum tensor (up to ambiguities)

A

326, 3 T 62— log2) + O(&)]

EE) = [ (Tu)vol(s}) =

@ Euclidean version of solution is obtained by t — it (t is global time in AdS).
Boundary metric is real (gauge field is complex), but bulk 5d metric is
complex!

@ Would be interesting to compute Casimir energy exactly using localisation
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