10d STRUCTURES AND HOLOGRAPHY

M.P, A.ZAFFARONI, arXiv:1202.5542, S. GIUSTO, L. MARTUCCI, M.P, R. RUSSO, arXiv:1306.1745

- Type II and M-theory flux backgrounds play a central role in
 - compactifications
 - gauge/gravity duality
- A lot of effort has been devoted to the study of such backgrounds
 - compute the back-reaction of the fluxes to determine the full geometry
 - understand the properties of the new spaces
- Considerable progress has been made using techniques of
 - G-structures
 - Generalised Complex Geometry (GCG)
 - Exceptional Generalised Geometry (EGG)

• Major progress has been achieved for SUSY backgrounds with

$$M_{10} = M_4 \times_w M_6 \longrightarrow ds_{(10)}^2 = e^{2A(y)} ds_{(4)}^2 + ds_{(6)}^2(y)$$

describing

• compactifications to four dimensions

$$M_4 = \{ \text{Minkowski}_4, \text{dS}_4? \}$$

- CFT₃ and deformations (AdS₄)
- CFT₄ and deformations

$$ds^2_{AdS_5} = \frac{dr^2}{r^2} + r^2 ds^2_4 \quad \to \quad e^{-2A} dr^2 + e^{2A} ds^2_4$$

- Two main reasons
 - under quite general conditions [lüst, tsimpis 04]

10 dimensionalSUSY variations andequations of motionsBianchi id. for the fluxes

• Use Generalised Complex Geometry [hitchin, gualtieri, grana, minasian, m.p., tomasiello 05]

10 dimensional SUSY
variationsdifferential constraints on
6d forms

- Susy vacua and Generalised Complex Geometry
 - decompose the 10*d* type II SUSY parameters

$$\begin{aligned} \epsilon_1 &= \zeta_+ \otimes \eta^1_+ + \zeta_- \otimes \eta^1_- \\ \epsilon_2 &= \zeta_+ \otimes \eta^2_\mp + \zeta_- \otimes \eta^2_\pm \end{aligned} \xrightarrow{\qquad (\eta^i_+)^* = \eta^i_- 6d \text{ Weyl spinors}} \\ \zeta_+^* &= \zeta_- 4d \text{ Weyl spinors} \end{aligned}$$

• build polyforms on M_6 as bispinors

$$\Phi_{\pm} = \eta_{\pm}^{1} \otimes \bar{\eta}_{\pm}^{2} = \frac{1}{8} \sum_{p} \frac{1}{p!} \left(\bar{\eta}_{\pm}^{2} \gamma_{m_{1}...m_{p}} \eta_{\pm}^{1} \right) \mathrm{d}x^{m_{p}...m_{1}}$$

• SUGRA equations of motions are equivalent to

 $\begin{array}{ll} 10d \ {\rm SUSY} \ {\rm variations} & + & {\rm Bianchi} \ {\rm identities} \\ {\rm d}(e^{3A}\Phi_1) = 0 & & \\ {\rm d}(e^{2A}{\rm Im}\Phi_2) = 0 & & ({\rm d}-H)F = \delta(source) \\ {\rm d}(e^{4A}{\rm Re}\Phi_2) = e^{4A}e^{-B}*\lambda(F) & & {\rm d}H = 0 \end{array}$

• unified description of type IIA and IIB

• Consequences

- Geometric characterisation of $\mathcal{N} = 1$ flux vacua
 - Φ_{\pm} are spinors on $T(M_6) \oplus T^*(M_6)$

positive chirality \leftrightarrow $\Phi_+ \in \Lambda^{even}T^*(M)$ even formsnegative chirality \leftrightarrow $\Phi_- \in \Lambda^{odd}T^*(M)$ odd forms

- pure spinors → vacuum of Cliff(6,6)
- define a SU(3) \times SU(3) structure on $T \oplus T^*$

- Differential conditions
 - one spinor is closed

$$d(e^{3A}\Phi_1) = 0 \rightarrow \text{generalised Calabi Yau}$$

• the RR fields act as torsion

$$\mathbf{d}(e^{3A}\Phi_2) = e^{3A}\mathbf{d}A \wedge \bar{\Phi}_2 + \frac{i}{8}e^{3A} * \lambda(F)$$

	zero fluxes	fluxes	
	T	$T\oplus T^*$	
pure spinor	η_0	Φ	
integrability	$\nabla_m \eta_0 = 0$	$\mathrm{d}\Phi=0$	
	Calabi Yau	Generalised Calabi Yau	

- Effective actions on flux backgrounds [grana, louis, waldram 05,06; martucci, koerber 07, 08, ...]
- Moduli counting [tomasiello 07, martucci 09]
- Explicit solutions
 - examples of compactifications on GCY manifolds [grana, minasian, m.p. tomasiello 06]
 - solutions in gauge/gravity duality
 - baryonic branch of Klebanov-Strassler [grana, minasian, m.p. zaffaroni 06]
 - massive deformations of type IIA AdS₄ duals of CFT₃ [m.p, zaffaroni 09, lüst, tsimpis 09]
 - geometry of superconformal $\mathcal{N} = 1$ theories

[minasian, m.p, zaffaroni 06;

gabella, gauntlett, palti, sparks, waldram 09, ...]

- Can we apply similar techniques beyond 4d vacua?
 - product spaces $M_d \times M_{10-d}$
 - black hole solutions
 - non-relativistic geometries
 - non trivial fibrations
- Case by case examples
 - general conditions for $\mathcal{N} = 1$ flux backgrounds in d = 3 and d = 6 tomasiello 09;

lüst, patalong, tsimpis 11]

• necessary conditions for $\mathcal{N} = 1$ flux backgrounds in d = 1 and even d

[koerber, martucci 07; lust, patalong, tsimpis 11]

- 10d Generalised Geometry
 - generalised connection [coimbra, strickland-constable, waldram 11]
 - pure spinor [tomasiello11]
- In this talk
 - description of the 10*d* pure spinor approach
 - application of the formalism to Lifshitz solutions and D1-D5-P microstates

GENERALISED GEOMETRY AND SUSY IN d=10 [tomasiello 11]

Same logic as in six-dimensions

• build a polyform out of SUSY parameters

 $\Phi = \epsilon_1 \bar{\epsilon}_2$

- rewrite the SUSY variations as differential eqn on Φ
- $\rightarrow e^{-B} \Phi$ must contain the same information as metric and B-field
- \rightarrow check that this set is equivalent to the SUSY variations

NULL VECTORS

• The SUSY parameters define a pair of null vectors

$$K_{(i)M} = \frac{1}{32} \bar{\epsilon}_i \Gamma_M \epsilon_i \qquad K^M_{(i)M} = 0 \qquad i = 1, 2$$

• A null vector defines a natural splitting in 2 + 8 directions

$$(K_i = e_{-i}, e_{+i}, e_I) \qquad \Rightarrow \qquad \begin{cases} e_{\pm i} \cdot e_{\pm i} = 0\\ e_{\pm i} \cdot e_I = 0\\ e_{-i} \cdot e_{+i} = 1/2 \end{cases}$$

and the metric

$$ds_{10}^2 = 2e_i^+ e_i^- + \sum_{I=1}^8 (e^I)^2$$

• Define also

$$K = \frac{1}{2}(K_1 + K_2) \qquad \qquad \tilde{K} = \frac{1}{2}(K_1 - K_2)$$

THE POLYFORM

Tensor the 10-*d* SUSY parameters

$$\Phi = \epsilon_1 \otimes \overline{\epsilon}_2$$

= $\frac{1}{32} \sum_k \frac{1}{k!} \overline{\epsilon}_2 \Gamma_{M_k \dots M_1} \epsilon_1 \Gamma^{M_1 \dots M_k}$

- Spinor on $T(M_{10}) \oplus T^*(M_{10})$ but not pure
 - by construction

$$K_i \epsilon_i = K_{(i) M} \Gamma^M \epsilon_i = 0 \qquad \Rightarrow \qquad \overrightarrow{\Gamma}_{-i} \epsilon_i = 0$$

• annihilator of Φ

$$\operatorname{Ann}(\Phi) = \operatorname{span}\{\overrightarrow{\Gamma}_{-1}, \overleftarrow{\Gamma}_{-2}\} \qquad \qquad \overrightarrow{\Gamma}_{M} = \mathrm{d}x^{M} + \iota_{M}$$

$$\overleftarrow{\Gamma}_{M} = (-)^{deg}(\mathrm{d}x^{M} - \iota_{M})$$

- The form of Φ depends on the relation between the null vectors K_1 and K_2
 - K_1 and K_2 proportional

$$K_1 \sim K_2 \sim \overrightarrow{\Gamma}_- = (i\sigma_2 + \sigma_1) \otimes \mathbb{I}_8 \qquad \Rightarrow \qquad \epsilon_i = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \hat{\eta}_i$$

• K_1 and K_2 not proportional

$$\begin{array}{ll}
K_1 \sim \Gamma_- = (i\sigma_2 + \sigma_1) \otimes \mathbb{I}_8 \\
K_2 \sim \Gamma_+ = (i\sigma_2 - \sigma_1) \otimes \mathbb{I}_8
\end{array} \Rightarrow \epsilon_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \hat{\eta}_1 \quad \epsilon_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \hat{\eta}_2$$

	IIA	IIB	
$K_1 \sim K_2$	$\hat{\eta}^i$ opposite chirality	$\hat{\eta}^i$ same chirality	
	$\Phi - K \wedge \phi_{\alpha}$	$\hat{\eta}^1 \sim \hat{\eta}^2 \rightarrow \Phi = K \wedge \phi_{SU(4)}$	
	$\Psi = \Lambda \land \varphi_{G_2}$	$\hat{\eta}^1 \perp \hat{\eta}^2 \rightarrow \Phi = K \wedge \phi_{Spin(7)}$	
$K_1 \perp K_2$	$\hat{\eta}^i$ same chirality	$\hat{\eta}^i$ opposite chirality	
	$\hat{\eta}^1 \sim \hat{\eta}^2 \to \Phi = e^{-1/2K \wedge \tilde{K}} \phi_{Spin(7)}$	$\Phi = e^{-1/2K \wedge \tilde{K}} \phi_{G_2}$	
	$\hat{\eta}^1 \perp \hat{\eta}^2 \rightarrow \Phi = e^{-1/2K \wedge \tilde{K}} \phi_{SU(4)}$		

SUSY CONDITIONS

• SUSY variations are equivalent to a set of equations on (Φ, e_{+1}, e_{+2})

$$d_{H}(e^{-\phi} \Phi) = -(\tilde{K} \wedge +\iota_{K})F$$

$$d\tilde{K} = \iota_{K}H$$

$$(e_{+1} \cdot \Phi \cdot e_{+2}, \Gamma^{MN}[\pm d_{H}(e^{-\phi}\Phi \cdot e_{+2}) + e^{\phi}d^{\dagger}(e^{-2\phi}e_{+2})\Phi - F])$$

$$(e_{+1} \cdot \Phi \cdot e_{+2}, [d_{H}(e^{-\phi}e_{+1} \cdot \Phi) - e^{\phi}d^{\dagger}(e^{-2\phi}e_{+2})\Phi - F]\Gamma^{MN})$$

plus $L_K g = 0$ and

$$F = \sum_{k=0}^{5} F_{(2k)} \qquad F = *_{10}\lambda(F) \qquad \begin{array}{c} k \text{ integer in IIA} \\ k \text{ half-integer in IIB} \end{array}$$

- extra equations (Φ is not pure)
- the vector K is a symmetry of the full solution

LIFSHITZ SOLUTIONS IN TYPE II SUGRA

- Motivation from AdS/CMT
 - study systems (ex strongly correlated electrons) that have critical points with an anisotropic rescaling

$$t \to \lambda^z t$$
 $x^i \to \lambda x^i$ $i = 1 \dots D$

 according to the holographic dictionary such behaviour is described by a Lifshitz geometry

$$ds^{2} = -r^{2z}dt^{2} + r^{2}\sum_{i=1}^{D} (dx^{i})^{2} + \frac{dr^{2}}{r^{2}},$$

 $r \rightarrow$ holographic energy direction

- Lifshitz solution in string theory
 - 4*d* models of gravity coupled to a topological term or a massive vector

[kachru, liu, mulligan 08; taylor 08, ...]

- 10*d* solutions : reductions of deformations of AdS solutions [balasubramanian, narayan 10; donos, gauntlett 10, ...]
- consistent truncations of d=10 and d=11 SUGRA with massive vectors

[cassani, faedo 11]

• solutions of $\mathcal{N} = 2$ SUGRA in 4d [halmagyi, m.p. zaffaroni 11]

SUSY LIFSHITZ SOLUTIONS IN IIA THEORY

Look for solutions dual to 3d theories with anisotropic scaling in t and (x,y) $\,$ $\,$ $\,$ metric

$$ds_{10}^2 = -e^{2A_1}dt^2 + e^{2A_2}(dx^2 + dy^2) + (e^1)^2 + ds_6^2 \qquad qe^1 = d\phi + \mu$$

• rotation invariance in (x, y)

• fluxes

$$\begin{split} H^{IIA} &= h + d(e^{01}) \\ F^{IIA} &= -q(e^1f + e^{0xy} * \lambda(f)) + (1 + e^{01})(w + e^{xy} * \lambda(w)) \end{split}$$

with

$$f = f_1 + f_3 + f_5 \qquad \qquad w = w_0 + w_2 + w_4 + w_6$$

SUSY VARIATIONS

SUSY selects two directions

$$K_1 \cdot \epsilon_1 = K_2 \cdot \epsilon_2 = 0$$

- natural choice
 - $K \sim e^0 = e^{A_1} dt$ \rightarrow Killing vector (static solutions) $\tilde{K} \sim e^1 = 1/q(d\varphi + \mu)$ $(d\mu = \alpha)$
- SUSY conditions

$$\begin{pmatrix} (\Gamma^0 + \Gamma^1)\epsilon_1 = 0\\ (\Gamma^0 - \Gamma^1)\epsilon_2 = 0 \end{pmatrix} \Rightarrow \quad \epsilon_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix} \hat{\eta}_1 \quad \epsilon_2 = \begin{pmatrix} 0\\ 1 \end{pmatrix} \hat{\eta}_2$$

with $\hat{\eta}_{1,2}$ positive chiratlity 8-d spinors

• To construct the spinor Φ

$$\Phi = \epsilon_1 \bar{\epsilon}_2 = -\frac{1}{2} (1 + e^{01}) \Phi_{(8)}$$

• further split the spinors

$$\hat{\eta}_i = \frac{2\sqrt{2}}{||\eta_+||} e^{A_1/2} \left[\begin{pmatrix} 1\\ i \end{pmatrix} \eta^i_+ + \begin{pmatrix} 1\\ -i \end{pmatrix} \eta^i_- \right] \qquad i = 1, 2,$$

• define the 6d pure spinors

$$\Phi_{\pm} = \eta_{\pm}^1 \eta_{\pm}^{2\dagger}$$

• so that

$$\Phi_{(8)} = \frac{16}{||\eta_+||^2} e^{A_1} \left\{ \operatorname{Im}[(1+ie^{xy})\Phi_+] - \operatorname{Re}[(e^x - ie^y)\Phi_-] \right\}$$

 The SUSY conditions and BI reduce to two independent sets of conditions on 6d forms

• for f, h and Φ_{\pm}

$$d_h(q e^{A_1 - \phi} \frac{1}{||\eta_+||^2} \operatorname{Im} \Phi_+) = 0$$

$$d_h(q e^{A_1 + 2A_2 - \phi} \frac{1}{||\eta_+||^2} \operatorname{Re} \Phi_+) = \frac{q}{8} e^{A_1 + 2A_2} * \lambda(f)$$

$$d_h(q e^{A_1 + A_2 - \phi} \frac{1}{||\eta_+||^2} \Phi_-) = 0$$

$$\begin{aligned} d_h f &= dh = 0 \\ d_h (q \, e^{A_1 + 2A_2} * \lambda(f)) &= 0 \\ d(q e^{A_1 + 2A_2 - 2\phi} * h) &= q \, e^{A_1 + 2A_2} f * f \mid_4, \end{aligned}$$

- for the forms α and w
- plus a differential equation for q

$$*d(qe^{2A_2+A_1-2\phi} *d(qe^{-A_1})) = e^{2A_2}(e^{-2\phi}|\alpha|^2 + |w|^2).$$

From IIB to IIA

 $e^{A_1} = \frac{e^{2A_2}}{q}$

the equations for (f, h, ϕ) become equations for a type IIB SUSY vacuum with 4d Poincaré invariance

$$d(e^{3A}\Phi_{-}) = 0$$

$$d(e^{2A}Im\Phi_{+}) = 0$$

$$d(e^{4A}Re\Phi_{+}) = e^{4A}e^{-B} * \lambda(F)$$

- Main result
 - for a 4d SUSY vacuum in type IIB

$$ds_{10}^{2} = e^{2A} (\eta_{\mu\nu} dx^{\mu} dx^{\nu})^{2} + ds_{6}^{2}, \qquad \mu = 0, \cdots, 3$$
$$H_{IIB} = h \qquad F_{IIB} = f + e^{0xyz} * \lambda(f)$$

• we can construct a non-relativistic SUSY solution in type IIA

$$ds_{10}^2 = -e^{2A_1}dt^2 + e^{2A_2}(dx^2 + dy^2) + (e^1)^2 + ds_6^2$$

$$H^{IIA} = h + d(e^{01})$$

$$F^{IIA} = -q(e^1f + e^{0xy} * \lambda(f)) + (1 + e^{01})(w + e^{xy} * \lambda(w))$$

with

$$e^{A_1} = \frac{e^{2A}}{q}$$
 $e^{A_2} = e^A$ $e^{\phi_A} = \frac{e^{\phi}}{q}$

provided \exists on $M_6 \alpha$ and $w = \sum_{k=0}^{3} w_{2k}$ satisfying the constraints above.

Lif_4 from AdS_5 solutions

• type IIB : conformal Calabi-Yau cone over the SE with

$$\phi = 0 \qquad h = 0 \qquad * f = 4 \frac{\mathrm{d}r}{r}$$

• IIA Lif₄ solutions on U(1) fibrations over a 5d Sasaki-Einstein Y with [donos, gauntlett 10]

$$B = \frac{r^2}{q^2} dt \wedge (d\varphi + \mu)$$

$$F_2 = w_2$$

$$F_4 = -4r^3 dt \wedge dx^1 \wedge dx^2 \wedge dr + \frac{r^2}{q^2} dt \wedge (d\varphi + \mu) \wedge w_2$$

$$e^{-2\phi} = q^2 \qquad (4q^2 - \Box_Y q^2 = |\alpha|^2 + |w_2|^2)$$

with α , $w = w_2$ type (1, 1), primitive and harmonic on Y

• Explicit solutions for q for $T^{1,1}$ (q = cost) and some $Y^{p,q}$

More general solutions

- Asymptotically *Lif*₄ solutions
 - Supersymmetric domain walls in type IIB (M_6 is a conformal Calabi-Yau)
 - first example [klebanov, murugan 07]

$$\mathsf{AdS}_5 \times \mathsf{T}^{(1,1)} \rightarrow \mathsf{AdS}_5 \times \mathsf{S}^5$$

Similar solutions for all resolved CY_6 [martelli, sparks 08]

- non-relativistic type IIA solution solutions interpolating between Lif_4 vacua
- Solutions with hyperscaling violation [dong, harrison, kachru, torroba, wang 12]
 - $\mathrm{d}s^2 \to \lambda^{2\theta/D} \mathrm{d}s^2 \qquad t \to \lambda^z t \qquad x^i \to \lambda x^i \qquad u \to \lambda u$
 - IIB vacuum on a conic Calabi-Yau manifold
 - IIA solution with z = 3 D = 2 and $\theta = 2$ [narayan 12; dey, roy 12]

$$e^{\phi_A} = r \qquad q = e^{-A} = 1/r$$
$$H^{IIA} = d(r^4 dt \wedge d\varphi), \qquad F_4 = -4r^3 dt \wedge dx^1 \wedge dx^2 \wedge dr \qquad \alpha = w = 0$$

D1-D5-P MICROSTATES

 Construct regular, horizonless solutions with the same asymptotic as the SV black-hole

	\mathbb{R}	S^1	\mathbb{R}^4	T^4
Ρ	x	X		
D1	x	x		
D5	x	x		Х

- Known regular three charge solutions
 - 5*d* supergravity [bena, warner, 05; berglund, gimon, levi 0]
 - 1/8 BPS solutions smeared over the compact space $S^1 \times T^4$
 - Minimal 6d supergravity plus (at most) one tensor multiplet [bena, giusto, shigemori, warner, 11]
 - no smearing in the ${\cal S}^1$

- The generic microstate geometries should be more general
 - no smearing in ${\cal S}^1$
 - all type IIB fields are turned on
- hints from
 - entropy counting [bena, wang, warner, 06; de Boer, el-showk, messamah, van den bleeken, 08, 09]
 - worldsheet analysis [giusto, russo, 12]
 - dual CFT [kanitscheider, skenderis, taylor, 07]
- Use GCG to find solutions directly in ten dimensions

P-D1-D5 GEOMETRIES

- Conditions for SUSY bounds states of P-D1-D5
 - existence of a null Killing vector

$$K = \frac{\partial}{\partial u}$$
 $u = \frac{1}{\sqrt{2}}(t-y)$ $v = \frac{1}{\sqrt{2}}(t+y)$

• fix the polyform

$$\Phi = \frac{1}{\sqrt{2}} (1 + e^{4G} \operatorname{vol}_4 + e^{4\hat{G}} \operatorname{vol}_4 - e^{2G + 2\hat{G}} \sum_{A=1}^3 J_A \wedge \hat{J}_A \cdot e^{4G + 4\hat{G}} \operatorname{vol}_4 \wedge \operatorname{vol}_4)$$

where

 $J_A, \hat{J}_A \rightarrow SU(2)$ structures on Y^4 and T^4

SOLUTION

- Assume that T^4 is rigid and all fields are isotropic along T^4
- General form of the solution
 - metric

$$\mathrm{d}s_{(10)}^2 = -\frac{2\alpha}{\sqrt{Z\tilde{Z}}} \left(\mathrm{d}v + \beta\right) \left[\mathrm{d}u + \omega + W(\mathrm{d}v + \beta)\right] + \sqrt{Z\tilde{Z}} \,\mathrm{d}s_4^2 + \sqrt{\frac{Z}{\tilde{Z}}} \,\mathrm{d}\hat{s}_4^2 \,\mathrm{d}\hat{s}_4$$

• dilaton

$$e^{2\phi} = \alpha \, \frac{Z}{\tilde{Z}} \, .$$

• NS and RR fields are completely determined as functions of

 $\omega, \beta, \mathcal{W}, Z, \tilde{Z}, Z_b, \Theta, \tilde{\Theta}, \Theta_b$

• the functions and forms above must satisfy the constraints

$$*_{4}\mathcal{D}\beta = \mathcal{D}\beta$$
$$\mathcal{D}J_{A} - \dot{\beta} \wedge J_{A} = 0$$

$$\mathcal{D}\omega + *_4 \mathcal{D}\omega = Z *_4 \Theta + \tilde{Z} \,\tilde{\Theta} - Z_b \left(\Theta_b + *_4 \Theta_b\right) - 2 W \,\mathcal{D}\beta$$
.

$$\mathcal{D}\Theta - \dot{\beta} \wedge \Theta = \frac{\mathrm{d}}{\mathrm{d}v} *_4 \left(\mathcal{D}\tilde{Z} + \tilde{Z}\dot{\beta}\right)$$
$$\mathcal{D}\tilde{\Theta} - \dot{\beta} \wedge \tilde{\Theta} = \frac{\mathrm{d}}{\mathrm{d}v} *_4 \left(\mathcal{D}Z + Z\dot{\beta}\right)$$
$$\mathcal{D}\Theta_b - \dot{\beta} \wedge \Theta_b = \frac{\mathrm{d}}{\mathrm{d}v} *_4 \left(\mathcal{D}Z_b + Z_b\dot{\beta}\right)$$

$$egin{aligned} \mathcal{D} *_4 & (\mathcal{D}Z + \dot{eta}Z) = - ilde{\Theta} \wedge \mathcal{D}eta \ \mathcal{D} *_4 & (\mathcal{D} ilde{Z} + \dot{eta} ilde{Z}) = -\Theta \wedge \mathcal{D}eta \ \mathcal{D} *_4 & (\mathcal{D}Z_b + \dot{eta}Z_b) = -\Theta_b \wedge \mathcal{D}eta \end{aligned}$$

and Einstein equation in vv direction

EXAMPLE

- Start from Mathur, Saxena and Srivastava solution
 - first example of a microstate geometry for the three-charge black hole
 - deformation of the D1-D5 geometry corresponding to a RR state in the dual CFT carrying one unit of momentum
- embedding it in our 10d ansatz
 - determine the non linear completion
 - extend it to the asymptotically flat region

CONCLUSIONS AND OUTLOOK

- GCG can be used to study fully 10*d* geometries
 - less insight into the geometric structure of the solutions
 - powerful tool to compute explicit solutions
 - non relativistic solutions and black hole microstate
- Study more formal properties
 - \rightarrow role of symmetries
 - \rightarrow solution generating techniques
 - → relation to gauge supergravity and effective actions Extend the analysis to more general backgrounds

SPINOR vs METRIC AND B-FIELD

- G-structures and metric
 - a metric defines an O(d) structure
 - a G-structure determines the metric if $G \subset O(d)$
- Same argument on $T \oplus T^*$
 - the metric plus B-field define

 $O(9,1) \times O(9,1)$ structure $\rightarrow \{\overrightarrow{\Gamma}_{MN}, \overleftarrow{\Gamma}_{MN}\}$

• Φ defines

 $(Spin(7))^2 \times SL(2,\mathbb{R}) \ltimes \mathbb{H}_{33} \longrightarrow$ structure

$$\begin{pmatrix} \omega_{21}^{I_1 J_1} \overrightarrow{\Gamma}_{I_1 J_1}, \omega_{21}^{I_2 J_2} \overleftarrow{\Gamma}_{I_2 J_2}, \\ \overrightarrow{\Gamma}_{-1 I_1}, \overleftarrow{\Gamma}_{-2 I_2}, \overrightarrow{\Gamma}_{+1-1} + \overleftarrow{\Gamma}_{+2-2}, \\ \overrightarrow{\Gamma}_{-1} \overleftarrow{\Gamma}_{I_2}, \overrightarrow{\Gamma}_{I_1} \overleftarrow{\Gamma}_{-2}, \\ \overrightarrow{\Gamma}_{-1} \overleftarrow{\Gamma}_{+2}, \overrightarrow{\Gamma}_{+1} \overleftarrow{\Gamma}_{-2}, \overrightarrow{\Gamma}_{-1} \overleftarrow{\Gamma}_{-2} \end{pmatrix}$$

• Since $G \supset O(9,1) \times O(9,1)$, we need extra objects not invariant under $\overrightarrow{\Gamma}_M \overleftarrow{\Gamma}_N$ $(\Phi, \overrightarrow{\Gamma}_{+1}, \overleftarrow{\Gamma}_{+2})$

Then

$$\mathsf{Ann}(\Phi,\overrightarrow{\Gamma}_{+1},\overleftarrow{\Gamma}_{+2}) = Spin(7) \times Spin(7) \subset O(9,1) \times O(9,1)$$

• Not such a problem in d = 6

 $SU(3)\times SU(3)\subset O(6)\times O(6)$