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e Type Il and M-theory flux backgrounds play a central role in
e compactifications
e gauge/gravity duality

e A lot of effort has been devoted to the study of such backgrounds
e compute the back-reaction of the fluxes to determine the full geometry
e understand the properties of the new spaces

e Considerable progress has been made using techniques of
e (G3-structures
e Generalised Complex Geometry (GCGQG)
e Exceptional Generalised Geometry (EGG)



e Major progress has been achieved for SUSY backgrounds with
Ml() — M4 X w M6 — dS?lO) = 62A(y)d8%4> + dS%G) (y)

describing

e compactifications to four dimensions
M4 = {Minkowski4, dS4?}

e CFT5 and deformations (AdS,)

e CFT, and deformations

dsid& = — +r3ds? — e 2dr? 4 e24ds?



e WO main reasons

e under quite general conditions st tsimpis 04

10 dimensional N SUSY variations and
equations of motions Bianchi id. for the fluxes

e USe Generahsed Comp|eX Geometry [hitchin, gualtieri, grana, minasian, m.p., tomasiello 05]

10 dimensional SUSY N differential constraints on
variations od forms



e Susy vacua and Generalised Complex Geometry

e decompose the 10d type Il SUSY parameters

61 =C@nL+(@nt R (ni.)* =n'  6d Weyl spinors
€2=C @05 + (- @nt ¢t =¢( 44 Wey! spinors

e build polyforms on My as bispinors

e SUGRA equations of motions are equivalent to

10d SUSY variations + Bianchi identities
d(e34®,) =0
d(e?4Im®,) = 0
d(e*Red,) = ette B x \(F)

(d — H)F = (source)
dH =0

e unified description of type IIA and |IB



e Consequences

e Geometric characterisation of N’ = 1 flux vacua
e & are spinors on T'(Mg) & T*(Ms)
positive chirality <« ®, € AvenT* (M) even forms
negative chirality < ®_ ¢ A°T* (M) odd forms

e pure spinors — vacuum of Cliff(6,6)
e define a SU(3) x SU(3) structure on 7" T

SU(2) onT™ 77_1{_ = an <I>+ — %(Ele—z’j _ ic_gw) A ez/\2/2
ni =cng +ezon. | o= —ig(GeV +iciw) Az
SUB)onT* | nt =any O, = wbei/
= by O = —i%2Q




e Differential conditions
e One spinor is closed

d(e34®,) = 0 — generalised Calabi Yau

e the RR fields act as torsion

d(e32®y) = e34dA N Py + %63A * \(F)
zero fluxes fluxes
T TaT™
pure spinor Mo o
integrability | V,,no =0 d® =0
Calabi Yau | Generalised Calabi Yau




L EffeCtive aCtionS on ﬂUX baCkgroundS [grana, louis, waldram 05,06; martucci, koerber 07, 08, ...]
o MOdU“ Counting [tomasiello 07, martucci 09]

e Explicit solutions
e examples of compactifications on GCY manifolds  (gana, minasian, m.p. tomasietio 06]

e solutions in gauge/gravity duality
e baryonic branch of Klebanov-Strassler  (gana, minasian, m.p. zaftaroni s]
e massive deformations of type 1A AdS4 duals of CFT3 [m.p, zaffaroni 09, liist, tsimpis 09]
e geometry of superconformal N' = 1 theories  jminasian, myp, zaftaroni o6:

gabella, gauntlett, palti, sparks, waldram 09, ... ]



e Can we apply similar techniques beyond 4d vacua?
e product spaces M, x Mig_g4
e black hole solutions
e non-relativistic geometries

e non trivial fibrations

e Case by case examples

[haack, ldst, martucci,

e general conditions for A/ = 1 flux backgrounds in d = 3 and d = 6 tmasieio os;

[Ust, patalong, tsimpis 11]
e necessary conditions for AV = 1 flux backgrounds in d = 1 and even d

[koerber, martucci 07;
lust, patalong, tsimpis 11]

e 10d Generalised Geometry
o genel’ahsed ConneCtion [coimbra, strickland-constable, waldram 11]

e pure spinor [tomasiello1 1]

e In this talk
e description of the 10d pure spinor approach

e application of the formalism to Lifshitz solutions and D1-D5-P microstates



GENERALISED GEOMETRY AND SUSY IN d=10 omaseio 11

Same logic as in six-dimensions

e build a polyform out of SUSY parameters
b = 61@2

e rewrite the SUSY variations as differential eqn on ®

— ¢~ B ® must contain the same information as metric and B-field
— check that this set is equivalent to the SUSY variations



NULL VECTORS

e The SUSY parameters define a pair of null vectors
1 v ,
K(z’)M — @QFMEZ' K(i)K(z’)M =0 Z:1,2
e A null vector defines a natural splitting in 2 + 8 directions

)
€t+i-etx; =0

(Kize—i7€+i761) =

N\

e+i-er =10

€y = 1/2

€_

.

\

and the metric
8
dsiy = 2eje; + Z(GI)Q
=1
e Define also

1 -1
K = o (Ki + K») K = o (Ki — K»)



THE POLYFORM

Tensor the 10-d SUSY parameters

b = 61@@2
1 1 Mi...My
— 3—2 ﬁQFMk...MlGlF
k

e Spinor on T'(Mjg) @ T*(Mp) but not pure
e by construction

K;e; = K(z) MFMEi =0 = ?_iei =0
e annihilator of ®

ﬁM :d.CCM—I—LM

Ann(®) = span{ﬁ_1,$—2} T. = ()9 (dz™M — vpr)



e The form of ® depends on the relation between the null vectors K, and K5
e K; and K, proportional

1
KlNKQN?_:('I:O'Q—'_O'l)@]IS €;, — 0 ®ﬁz
e K; and K5 not proportional
K1NF_=(i02—|—01)®H8 R 0 .
_ = €1 = & 1 €2 = & 12
KQNF+:(Z02—01)®I[8 1
A 1B
K ~ K» /" opposite chirality n* same chirality
~1 ~2
d=KAN QbGQ 721 722 ¢SU(4)
n 1 n — P=KA qupin(?)
K, L Ko f* same chirality A" opposite chirality
N A —1/2KAK
771 ~ ,)72 — (I) = e 1/2KA ¢Sp’in(7) @ . 6_1/2KAK¢G
“ “ . o _ 2
771 J_ 772 SN (I) —e 1/2K/\K¢SU(4)




SUSY CONDITIONS

e SUSY variations are equivalent to a set of equations on (®,¢e.1,¢e.5)

dg (e ®®) = —(K A +u1g)F

dK = L H

(b1 @ epro, TMN[£dy (e %D - ) + e?d (e *Pesy)® — F])
(e41-®-eqo, [dr(ePeyr - @) — e?dl (e72%ess)® — FIITMHY)

plus L g = 0 and

5 n L]
kinteger in lIA
F — E F(2k> F = *10)\(F) _ _
—o k half-integer in 11B

e extra equations (® is not pure)

e the vector K is a symmeitry of the full solution



LIFSHITZ SOLUTIONS IN TYPE Il SUGRA

e Motivation from AdS/CMT

e study systems (ex strongly correlated electrons) that have critical points with an
anisotropic rescaling

t — N\t 2t s\t i=1...D

e according to the holographic dictionary such behaviour is described by a
Lifshitz geometry

D
ds? = —r?#de? + r? Z(dyci)2 + —
i=1

r — holographic energy direction



e Lifshitz solution in string theory

e 4d models of gravity coupled to a topological term or a massive vector

[kachru, liu, mulligan 08;
taylor 08, ...]

e 10d solutions : reductions of deformations of AdS solutiong  [baasueramanian, narayan 10

donos, gauntlett 10, ...]

e consistent truncations of d=10 and d = 11 SUGRA with massive vectors

[cassani, faedo 11]

o SOIU“O”S Of N — 2 SUGRA in 4d [halmagyi, m.p. zaffaroni 11]



SUSY LIFSHITZ SOLUTIONS IN 1A THEORY

Look for solutions dual to 3d theories with anisotropic scaling in ¢ and (x, y)

e metric
ds?, = —e*M1dt? 4+ 242 (da? + dy?) + (e')? + ds? ge! = do + p
e rotation invariance in (z,y)
e fluxes
HA = h 4 d(e)
FUA = —q(e' f+ " = A(f)) + (1 + ") (w + ™+ Mw))

with
f=hH+[s+f5 W = wp + w2 + Wy + wWe



SUSY VARIATIONS

e SUSY selects two directions

K1°61 :KQ'EQ =0

e natural choice
K ~ e =etrdt — Killing vector (static solutions)
K ~e' =1/q(dp+ p) (dp = «)

e SUSY conditions

with 7); o positive chiratlity 8-d spinors



e To construct the spinor ®

P=ea=—-(1+ 601>(I)(8)
e further split the spinors
2V 2 1 . 1 .
ﬁi — f 6A1/2 773'__|_ nz_i| 1 = ]_,2’
74| i —i

e define the 6d pure spinors

2
o, = U}an

e SO that
16

74112

D g) = eM {Tm[(1 + ie®™)®,] — Re[(e” — ie?)D_]}



e The SUSY conditions and Bl reduce to two independent sets of conditions on 6d
forms

e for f, hand &

1
dy(ge* = Im®,)=0

4112
1
dp(ge 2427~ Red,) = LMt \(f)
17411 8
1
dn(q eA1tAz—¢ = d_)=0
4112
dnf=dh =0

dn(ge™ 25 A(f) =0

d(q6A1+2A2—2¢ * h) — q6A1—|—2A2f * f ‘47

e for the forms o and w

e plus a differential equation for ¢

#d(qe* 2T d(ge™ M) = 242 (e7 ol + u]?) .



From IIB to lIA

e Setting

the equations for (f, h, ¢) become equations for a type |IB SUSY vacuum with 4d
Poincaré invariance

d(e34d_) =
d(e*Tm® )
d(e**Red., )

0
etde™B « \(F)



e Main result

e for a 4d SUSY vacuum in type |1B

ds?, = e**(nudatde”)? + ds? pw=0,---,3
Hirp=nh Frip=f+e"™ % \(f

e we can construct a non-relativistic SUSY solution in type IIA

ds?, = —e*M1dt? + 242 (da? + dy?) + (e)? + ds?
HITA — & d(e®h)
FHUA = —q(el f + €™+ M(f)) + (1 + ™) (w + e * A(w))
with
2A e?
q q
provided 3 on Mgz o and w = Zi:o woy. Ssatistying the constraints above.



Lif, from AdSs solutions

e type IIB : conformal Calabi-Yau cone over the SE with

» =0 h =0 *]“”:4g

r

e |IA Lif, solutions on U(1) fibrations over a 5d Sasaki-Einstein Y with wonos, gauntet 10

2

r

Fo = wo
9

Fy = —4r3dt Adaz' Adz? Adr + T—th A (de + @) A we
q

6—2¢:q2 (4(]2—qu2=‘04‘2—|—‘11}2‘2)

with a , w = ws type (1, 1), primitive and harmonic on Y’

e Explicit solutions for ¢ for 7' (¢ = cost) and some Y74



More general solutions

e Asymptotically Lif, solutions

e Supersymmetric domain walls in type |IB ( Mg is a conformal Calabi-Yau )

L f|rSt examp|e [klebanov, murugan 07]
AdS: x TG 5 AdS; x S°
Similar solutions for all resolved C'Yg (marteti, sparks o]

e non-relativistic type |IA solution solutions interpolating between L: f, vacua

o SO|U'[IOnS W|th hypersca“ng V|O|at|0n [dong, harrison, kachru, torroba, wang 12]
ds? — \20/P (g2 t— Nt b — A\t U — Au

e |IB vacuum on a conic Calabi-Yau manifold

L ”A SO|U’[IOH W|th Z = 3 D — 2 and 9 — 2 [narayan 12; dey, roy 12]

eP4 = g=c 4 =1/r

HTA = d(ridt A dy), Fy = —4r3dt Adazt Ada? Adr a=w=>0



D1-D5-P MICROSTATES

e Construct regular, horizonless solutions with the same asymptotic as the SV
black-hole

R | S| R* | T?
P | x| X
D1 | x| X
D5 | x | X X

e Known regular three charge solutions

® 5d SupergraVity [bena, warner, 05; berglund, gimon, levi 0 ]

e 1/8 BPS solutions smeared over the compact space S* x T

e Minimal 64 supergravity plus (at most) one tensor multiplet wena, giusto, shigemori, warner, 11

e No smearing in the S*



e The generic microstate geometries should be more general
e No smearing in S*!

e all type IIB fields are turned on

e hints from
® entropy COU nt| ng [bena, wang, warner, 06; de Boer, el-showk, messamah, van den bleeken, 08, 09]
L W0r|dShee'[ anaIyS|S [giusto, russo, 12]

o dual CFT [kanitscheider, skenderis, taylor, 07]

e Use GCG to find solutions directly in ten dimensions



P-D1-D5 GEOMETRIES

e Conditions for SUSY bounds states of P-D1-D5

e existence of a null Killing vector

0 1 1
K= — u=—(t — vV=—(1+
5 ﬂ( y) \@( y)
e fix the polyform
1 5 A o - .
¢ =—(1+ e*Cvoly + e*Cvoly — 2612C Z JaAJa.+ GGyl A voly)
V2 ot

where
Ja, JJa — SU(2) structures on Y4 and T*



SOLUTION

e Assume that T is rigid and all fields are isotropic along 7

e General form of the solution

e metric
2 20 vV 727 ds2 Z e
ds(ig) = — — (dv + ) {du +w + W(dv + B)} +V ZZds; + z dsy .
e dilaton
e =02
A

e NS and RR fields are completely determined as functions of

W,B,W7Z, Za Zbae)aéa@b



e the functions and forms above must satisfy the constraints

DJA—B/\JA:O

Dw+>|<4Dw:Z*4@+Z@—Zb(@b+*4@b)—2WD6.

~ ~

dov
D(Z)—BA(Z):%*4(DZ+ZB)
. d .
DO, — BNOp = 3, (DZy + Zp3)

D x4 (DZ + BZ) = —© A DJ
D x4 (DZ + BZ) = —© A DJ
D x4 (DZy + Zy) = —Oy A DJ

and Einstein equation in vv direction



EXAMPLE

e Start from Mathur, Saxena and Srivastava solution
e first example of a microstate geometry for the three-charge black hole
e deformation of the D1-D5 geometry corresponding to a RR state in the dual
CFT carrying one unit of momentum
e embedding it in our 10d ansatz
e determine the non linear completion

e extend it to the asymptotically flat region



CONCLUSIONS AND OUTLOOK

e GCG can be used to study fully 10d geometries
e |less insight into the geometric structure of the solutions

e powerful tool to compute explicit solutions
e non relativistic solutions and black hole microstate

e Study more formal properties
— role of symmetries

— solution generating techniques

— relation to gauge supergravity and effectve actions Extend the analysis to more
general backgrounds



SPINOR vs METRIC AND B-FIELD

e (G-structures and metric

e a metric defines an O(d) structure

e a G-structure determines the metric if G C O(d)

e Same argumenton 17" & T

e the metric plus B-field define

0(9,1) x O(9,1) structure

e O defines

(Sp%ﬂ(?))Q X SL(Q,R) X Hgg
structure

%

I\

— {?MNa $MN}

[ wgijl ?[1(]1,605%‘]2?]2{]2,
F—U ,$—212, ?+1—1 + $+2—2,
T T, TnT

1

A A N U O




e Since G D 0(9,1) x O(9,1), we need extra objects not invariant under ?M$N
(@, T 41, T 1)

Then
ANN(®, T 11, T 40) = Spin(7) x Spin(7) € 0(9,1) x 0(9,1)

e Not such a problemind =6

SU(3) x SU(3) € O(6) x O(6)



