10d STRUCTURES AND HOLOGRAPHY

M.P, A.ZAFFARONI, arXiv:1202.5542, S. GIUSTO, L. MARTUCCI, M.P, R. RUSSO, arXiv:1306. 1745

- Type II and M-theory flux backgrounds play a central role in
- compactifications
- gauge/gravity duality
- A lot of effort has been devoted to the study of such backgrounds
- compute the back-reaction of the fluxes to determine the full geometry
- understand the properties of the new spaces
- Considerable progress has been made using techniques of
- G-structures
- Generalised Complex Geometry (GCG)
- Exceptional Generalised Geometry (EGG)
- Major progress has been achieved for SUSY backgrounds with

$$
M_{10}=M_{4} \times_{w} M_{6} \quad \longrightarrow \quad \mathrm{~d} s_{(10)}^{2}=e^{2 A(y)} \mathrm{d} s_{(4)}^{2}+\mathrm{d} s_{(6)}^{2}(y)
$$

describing

- compactifications to four dimensions

$$
M_{4}=\left\{\text { Minkowski }_{4}, \mathrm{dS}_{4} ?\right\}
$$

- CFT_{3} and deformations (AdS_{4})
- CFT_{4} and deformations

$$
\mathrm{d} s_{A d S_{5}}^{2}=\frac{\mathrm{d} r^{2}}{r^{2}}+r^{2} \mathrm{~d} s_{4}^{2} \quad \rightarrow \quad e^{-2 A} \mathrm{~d} r^{2}+e^{2 A} \mathrm{~d} s_{4}^{2}
$$

- Two main reasons
- under quite general conditions [uss, tsimpis 04]
10 dimensional

equations of motions $\Leftrightarrow \quad$| SUSY variations and |
| :---: |
| Bianchi id. for the fluxes |

- use Generalised Complex Geometry [hitchin, gualieier, gana, minasian, m.p., tomasiello o5]

10 dimensional SUSY \Leftrightarrow differential constraints on variations 6d forms

- Susy vacua and Generalised Complex Geometry
- decompose the $10 d$ type II SUSY parameters

$$
\begin{aligned}
& \epsilon_{1}=\zeta_{+} \otimes \eta_{+}^{1}+\zeta_{-} \otimes \eta_{-}^{1} \quad \rightarrow \quad\left(\eta_{+}^{i}\right)^{*}=\eta_{-}^{i} \quad 6 d \text { Weyl spinors } \\
& \epsilon_{2}=\zeta_{+} \otimes \eta_{\mp}^{2}+\zeta_{-} \otimes \eta_{ \pm}^{2} \quad \zeta_{+}^{*}=\zeta_{-} \quad 4 d \text { Weyl spinors }
\end{aligned}
$$

- build polyforms on M_{6} as bispinors

$$
\Phi_{ \pm}=\eta_{+}^{1} \otimes \bar{\eta}_{ \pm}^{2}=\frac{1}{8} \sum_{p} \frac{1}{p!}\left(\bar{\eta}_{ \pm}^{2} \gamma_{m_{1} \ldots m_{p}} \eta_{+}^{1}\right) \mathrm{d} x^{m_{p} \ldots m_{1}}
$$

- SUGRA equations of motions are equivalent to

$$
\begin{array}{cc}
\text { 10d SUSY variations } & + \\
\text { Bianchi identities } \\
\mathrm{d}\left(e^{3 A} \Phi_{1}\right)=0 & (\mathrm{~d}-H) F=\delta(\text { source }) \\
\mathrm{d}\left(e^{2 A} \operatorname{Im} \Phi_{2}\right)=0 & \mathrm{~d} H=0 \\
\mathrm{~d}\left(e^{4 A} \operatorname{Re}_{2}\right)=e^{4 A} e^{-B} * \lambda(F) &
\end{array}
$$

- unified description of type IIA and IIB
- Consequences
- Geometric characterisation of $\mathcal{N}=1$ flux vacua
- $\Phi_{ \pm}$are spinors on $T\left(M_{6}\right) \oplus T^{*}\left(M_{6}\right)$

$$
\begin{array}{rll}
\text { positive chirality } & \leftrightarrow & \Phi_{+} \in \Lambda^{\text {even }} T^{*}(M) \text { even forms } \\
\text { negative chirality } & \leftrightarrow & \Phi_{-} \in \Lambda^{\text {odd }} T^{*}(M) \text { odd forms }
\end{array}
$$

- pure spinors \rightarrow vacuum of $\operatorname{Cliff}(6,6)$
- define a $\operatorname{SU}(3) \times \operatorname{SU}(3)$ structure on $T \oplus T^{*}$

$\mathrm{SU}(2)$ on T^{*}	$\eta_{+}^{1}=a \eta_{+}$	$\Phi_{+}=\frac{a}{8}\left(\bar{c}_{1} e^{-i j}-i \overline{c_{2}} \omega\right) \wedge e^{z \wedge \bar{z} / 2}$
	$\eta_{+}^{2}=c_{1} \eta_{+}+c_{2} z \cdot \eta_{-}$	$\Phi_{-}=-i \frac{a}{8}\left(\bar{c}_{2} e^{-i j}+i \overline{c_{1}} \omega\right) \wedge z$
$\mathrm{SU}(3)$ on T^{*}	$\eta_{+}^{1}=a \eta_{+}$	$\Phi_{+}=\frac{a \bar{b}}{8} e^{-i J}$
	$\eta_{+}^{2}=b \eta_{+}$	$\Phi_{-}=-i \frac{a b}{8} \Omega$

- Differential conditions
- one spinor is closed

$$
\mathrm{d}\left(e^{3 A} \Phi_{1}\right)=0 \rightarrow \text { generalised Calabi Yau }
$$

- the RR fields act as torsion

$$
\mathrm{d}\left(e^{3 A} \Phi_{2}\right)=e^{3 A} \mathrm{~d} A \wedge \bar{\Phi}_{2}+\frac{i}{8} e^{3 A} * \lambda(F)
$$

	zero fluxes	fluxes
	T	$T \oplus T^{*}$
pure spinor	η_{0}	Φ
integrability	$\nabla_{m} \eta_{0}=0$	$\mathrm{~d} \Phi=0$
	Calabi Yau	Generalised Calabi Yau

- Effective actions on flux backgrounds [grana, louis, waldram 05,06; martuci, koerber 07, 08, ...]
- Moduli counting ${ }_{\text {[tomasiello } 0} 07$, martucci 09$]$
- Explicit solutions
- examples of compactifications on GCY manifolds [grana, minasian, m.p. tomasiello 06]
- solutions in gauge/gravity duality
- baryonic branch of Klebanov-Strassler
[grana, minasian, m.p. zaffaroni 06]
- massive deformations of type IIA AdS 4 duals of CFT_{3}
[m.p, zaffaroni 09, lüst, tsimpis 09]
- geometry of superconformal $\mathcal{N}=1$ theories
[minasian, m.p, zaffaroni 06;
gabella, gauntlett, palti, sparks, waldram 09, ...]
- Can we apply similar techniques beyond $4 d$ vacua?
- product spaces $M_{d} \times M_{10-d}$
- black hole solutions
- non-relativistic geometries
- non trivial fibrations
- Case by case examples

- necessary conditions for $\mathcal{N}=1$ flux backgrounds in $d=1$ and even d
- 10d Generalised Geometry
- generalised connection [coimba, strickand.constable, waldram 11]
- pure spinor [tomasiello11]
- In this talk
- description of the $10 d$ pure spinor approach
- application of the formalism to Lifshitz solutions and D1-D5-P microstates

GENERALISED GEOMETRY AND SUSY $\operatorname{IN} \mathrm{d}=10_{\text {Iomasislo 11] }}$

Same logic as in six-dimensions

- build a polyform out of SUSY parameters

$$
\Phi=\epsilon_{1} \bar{\epsilon}_{2}
$$

- rewrite the SUSY variations as differential eqn on Φ
$\rightarrow e^{-B} \Phi$ must contain the same information as metric and B -field
\rightarrow check that this set is equivalent to the SUSY variations

NULL VECTORS

- The SUSY parameters define a pair of null vectors

$$
K_{(i) M}=\frac{1}{32} \bar{\epsilon}_{i} \Gamma_{M} \epsilon_{i} \quad K_{(i)}^{M} K_{(i) M}=0 \quad i=1,2
$$

- A null vector defines a natural splitting in $2+8$ directions

$$
\left(K_{i}=e_{-i}, e_{+i}, e_{I}\right) \quad \Rightarrow \quad\left\{\begin{array}{l}
e_{ \pm i} \cdot e_{ \pm i}=0 \\
e_{ \pm i} \cdot e_{I}=0 \\
e_{-i} \cdot e_{+i}=1 / 2
\end{array}\right.
$$

and the metric

$$
\mathrm{d} s_{10}^{2}=2 e_{i}^{+} e_{i}^{-}+\sum_{I=1}^{8}\left(e^{I}\right)^{2}
$$

- Define also

$$
K=\frac{1}{2}\left(K_{1}+K_{2}\right) \quad \tilde{K}=\frac{1}{2}\left(K_{1}-K_{2}\right)
$$

THE POLYFORM

Tensor the 10-d SUSY parameters

$$
\begin{aligned}
\Phi & =\epsilon_{1} \otimes \bar{\epsilon}_{2} \\
& =\frac{1}{32} \sum_{k} \frac{1}{k!} \bar{\epsilon}_{2} \Gamma_{M_{k} \ldots M_{1}} \epsilon_{1} \Gamma^{M_{1} \ldots M_{k}}
\end{aligned}
$$

- Spinor on $T\left(M_{10}\right) \oplus T^{*}\left(M_{10}\right)$ but not pure
- by construction

$$
K_{i} \epsilon_{i}=K_{(i) M} \Gamma^{M} \epsilon_{i}=0 \quad \Rightarrow \quad \vec{\Gamma}_{-i} \epsilon_{i}=0
$$

- annihilator of Φ

$$
\operatorname{Ann}(\Phi)=\operatorname{span}\left\{\vec{\Gamma}_{-1}, \overleftarrow{\Gamma}_{-2}\right\} \quad \begin{aligned}
& \vec{\Gamma}_{M}=\mathrm{d} x^{M}+\iota_{M} \\
& \overleftarrow{\Gamma}_{M}=(-)^{\operatorname{deg}}\left(\mathrm{d} x^{M}-\iota_{M}\right)
\end{aligned}
$$

- The form of Φ depends on the relation between the null vectors K_{1} and K_{2}
- K_{1} and K_{2} proportional

$$
K_{1} \sim K_{2} \sim \vec{\Gamma}_{-}=\left(i \sigma_{2}+\sigma_{1}\right) \otimes \mathbb{I}_{8} \quad \Rightarrow \quad \epsilon_{i}=\binom{1}{0} \otimes \hat{\eta}_{i}
$$

- K_{1} and K_{2} not proportional

$$
\begin{aligned}
K_{1} & \sim \Gamma_{-}=\left(i \sigma_{2}+\sigma_{1}\right) \otimes \mathbb{I}_{8} \\
K_{2} & \sim \Gamma_{+}=\left(i \sigma_{2}-\sigma_{1}\right) \otimes \mathbb{I}_{8}
\end{aligned} \quad \Rightarrow \quad \epsilon_{1}=\binom{1}{0} \otimes \hat{\eta}_{1} \quad \epsilon_{2}=\binom{0}{1} \otimes \hat{\eta}_{2}
$$

	IIA	IIB
$K_{1} \sim K_{2}$	$\hat{\eta}^{i}$ opposite chirality	$\hat{\eta}^{i}$ same chirality
	$\Phi=K \wedge \phi_{G_{2}}$	$\hat{\eta}^{1} \sim \hat{\eta}^{2} \rightarrow \Phi=K \wedge \phi_{S U(4)}$
	$\hat{\eta}^{1} \perp \hat{\eta}^{2} \rightarrow \Phi=K \wedge \phi_{\operatorname{Spin}(7)}$	
$K_{1} \perp K_{2}$	$\hat{\eta}^{i}$ same chirality	$\hat{\eta}^{i}$ opposite chirality
	$\hat{\eta}^{1} \sim \hat{\eta}^{2} \rightarrow \Phi=e^{-1 / 2 K \wedge K} \phi_{\operatorname{SPin(7)}}$	$\Phi=e^{-1 / 2 K \wedge \tilde{K}} \phi_{G_{2}}$

SUSY CONDITIONS

- SUSY variations are equivalent to a set of equations on $\left(\Phi, e_{+1}, e_{+2}\right)$

$$
\begin{aligned}
& \mathrm{d}_{H}\left(e^{-\phi} \Phi\right)=-\left(\tilde{K} \wedge+\iota_{K}\right) F \\
& \mathrm{~d} \tilde{K}=\iota_{K} H \\
& \left(e_{+1} \cdot \Phi \cdot e_{+2}, \Gamma^{M N}\left[\pm \mathrm{d}_{H}\left(e^{-\phi} \Phi \cdot e_{+2}\right)+e^{\phi} \mathrm{d}^{\dagger}\left(e^{-2 \phi} e_{+2}\right) \Phi-F\right]\right) \\
& \left(e_{+1} \cdot \Phi \cdot e_{+2},\left[\mathrm{~d}_{H}\left(e^{-\phi} e_{+1} \cdot \Phi\right)-e^{\phi} \mathrm{d}^{\dagger}\left(e^{-2 \phi} e_{+2}\right) \Phi-F\right] \Gamma^{M N}\right)
\end{aligned}
$$

plus $L_{K} g=0$ and

$$
F=\sum_{k=0}^{5} F_{(2 k)} \quad F=*_{10} \lambda(F) \quad k \text { integer in IIA } \quad k \text { half-integer in IIB }
$$

- extra equations (Φ is not pure)
- the vector K is a symmetry of the full solution

LIFSHITZ SOLUTIONS IN TYPE II SUGRA

- Motivation from AdS/CMT
- study systems (ex strongly correlated electrons) that have critical points with an anisotropic rescaling

$$
t \rightarrow \lambda^{z} t \quad x^{i} \rightarrow \lambda x^{i} \quad i=1 \ldots D
$$

- according to the holographic dictionary such behaviour is described by a Lifshitz geometry

$$
\mathrm{d} s^{2}=-r^{2 z} \mathrm{~d} t^{2}+r^{2} \sum_{i=1}^{D}\left(\mathrm{~d} x^{i}\right)^{2}+\frac{\mathrm{d} r^{2}}{r^{2}}
$$

$r \rightarrow$ holographic energy direction

- Lifshitz solution in string theory
- $4 d$ models of gravity coupled to a topological term or a massive vector
[kachru, liu, mulligan 08; taylor 08, ...]
- $10 d$ solutions : reductions of deformations of AdS solutions $\underset{\substack{\text { [balasubramanian, narayan } 10 \text {; } \\ \text { donos, gauntetet } 10, \ldots,}}{ }$
- consistent truncations of $d=10$ and $d=11$ SUGRA with massive vectors
[cassani, faedo 11]
- solutions of $\mathcal{N}=2$ SUGRA in $4 d$

SUSY LIFSHITZ SOLUTIONS IN IIA THEORY

Look for solutions dual to $3 d$ theories with anisotropic scaling in t and (x, y)

- metric

$$
\mathrm{d} s_{10}^{2}=-e^{2 A_{1}} \mathrm{~d} t^{2}+e^{2 A_{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)+\left(e^{1}\right)^{2}+\mathrm{d} s_{6}^{2} \quad q e^{1}=\mathrm{d} \phi+\mu
$$

- rotation invariance in (x, y)
- fluxes

$$
\begin{aligned}
& H^{I I A}=h+\mathrm{d}\left(e^{01}\right) \\
& F^{I I A}=-q\left(e^{1} f+e^{0 x y} * \lambda(f)\right)+\left(1+e^{01}\right)\left(w+e^{x y} * \lambda(w)\right)
\end{aligned}
$$

with

$$
f=f_{1}+f_{3}+f_{5} \quad w=w_{0}+w_{2}+w_{4}+w_{6}
$$

SUSY VARIATIONS

- SUSY selects two directions

$$
K_{1} \cdot \epsilon_{1}=K_{2} \cdot \epsilon_{2}=0
$$

- natural choice

$$
\begin{array}{lll}
K \sim e^{0}=e^{A_{1}} \mathrm{~d} t & \rightarrow & \text { Killing vector (static solutions) } \\
\tilde{K} \sim e^{1}=1 / q(\mathrm{~d} \varphi+\mu) & & (\mathrm{d} \mu=\alpha)
\end{array}
$$

- SUSY conditions

$$
\left.\begin{array}{l}
\left(\Gamma^{0}+\Gamma^{1}\right) \epsilon_{1}=0 \\
\left(\Gamma^{0}-\Gamma^{1}\right) \epsilon_{2}=0
\end{array}\right\} \quad \Rightarrow \quad \epsilon_{1}=\binom{1}{0} \hat{\eta}_{1} \quad \epsilon_{2}=\binom{0}{1} \hat{\eta}_{2}
$$

with $\hat{\eta}_{1,2}$ positive chiratlity 8-d spinors

- To construct the spinor Φ

$$
\Phi=\epsilon_{1} \bar{\epsilon}_{2}=-\frac{1}{2}\left(1+e^{01}\right) \Phi_{(8)}
$$

- further split the spinors

$$
\hat{\eta}_{i}=\frac{2 \sqrt{2}}{\left\|\eta_{+}\right\|} e^{A_{1} / 2}\left[\binom{1}{i} \eta_{+}^{i}+\binom{1}{-i} \eta_{-}^{i}\right] \quad i=1,2
$$

- define the 6 d pure spinors

$$
\Phi_{ \pm}=\eta_{+}^{1} \eta_{ \pm}^{2 \dagger}
$$

- so that

$$
\Phi_{(8)}=\frac{16}{\left\|\eta_{+}\right\|^{2}} e^{A_{1}}\left\{\operatorname{Im}\left[\left(1+i e^{x y}\right) \Phi_{+}\right]-\operatorname{Re}\left[\left(e^{x}-i e^{y}\right) \Phi_{-}\right]\right\}
$$

- The SUSY conditions and BI reduce to two independent sets of conditions on 6d forms
- for f, h and $\Phi_{ \pm}$

$$
\begin{aligned}
& \mathrm{d}_{h}\left(q e^{A_{1}-\phi} \frac{1}{\left\|\eta_{+}\right\|^{2}} \operatorname{Im} \Phi_{+}\right)=0 \\
& \mathrm{~d}_{h}\left(q e^{A_{1}+2 A_{2}-\phi} \frac{1}{\left\|\eta_{+}\right\|^{2}} \operatorname{Re} \Phi_{+}\right)=\frac{q}{8} e^{A_{1}+2 A_{2}} * \lambda(f) \\
& \mathrm{d}_{h}\left(q e^{A_{1}+A_{2}-\phi} \frac{1}{\left\|\eta_{+}\right\|^{2}} \Phi_{-}\right)=0 \\
& \quad \mathrm{~d}_{h} f=\mathrm{d} h=0 \\
& \quad \mathrm{~d}_{h}\left(q e^{A_{1}+2 A_{2}} * \lambda(f)\right)=0 \\
& \quad \mathrm{~d}\left(q e^{A_{1}+2 A_{2}-2 \phi} * h\right)=\left.q e^{A_{1}+2 A_{2}} f * f\right|_{4},
\end{aligned}
$$

- for the forms α and w
- plus a differential equation for q

$$
* \mathrm{~d}\left(q e^{2 A_{2}+A_{1}-2 \phi} * \mathrm{~d}\left(q e^{-A_{1}}\right)\right)=e^{2 A_{2}}\left(e^{-2 \phi}|\alpha|^{2}+|w|^{2}\right) .
$$

From IIB to IIA

- Setting

$$
e^{A_{1}}=\frac{e^{2 A_{2}}}{q}
$$

the equations for (f, h, ϕ) become equations for a type IIB SUSY vacuum with 4 d Poincaré invariance

$$
\begin{aligned}
& \mathrm{d}\left(e^{3 A} \Phi_{-}\right)=0 \\
& \mathrm{~d}\left(e^{2 A} \operatorname{Im} \Phi_{+}\right)=0 \\
& \mathrm{~d}\left(e^{4 A} \operatorname{Re} \Phi_{+}\right)=e^{4 A} e^{-B} * \lambda(F)
\end{aligned}
$$

- Main result
- for a 4d SUSY vacuum in type IIB

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=e^{2 A}\left(\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}\right)^{2}+\mathrm{d} s_{6}^{2}, \quad \mu=0, \cdots, 3 \\
& H_{I I B}=h \quad F_{I I B}=f+e^{0 x y z} * \lambda(f)
\end{aligned}
$$

- we can construct a non-relativistic SUSY solution in type IIA

$$
\begin{aligned}
& \mathrm{d} s_{10}^{2}=-e^{2 A_{1}} \mathrm{~d} t^{2}+e^{2 A_{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)+\left(e^{1}\right)^{2}+\mathrm{d} s_{6}^{2} \\
& H^{I I A}=h+\mathrm{d}\left(e^{01}\right) \\
& F^{I I A}=-q\left(e^{1} f+e^{0 x y} * \lambda(f)\right)+\left(1+e^{01}\right)\left(w+e^{x y} * \lambda(w)\right)
\end{aligned}
$$

with

$$
e^{A_{1}}=\frac{e^{2 A}}{q} \quad e^{A_{2}}=e^{A} \quad e^{\phi_{A}}=\frac{e^{\phi}}{q}
$$

provided \exists on $M_{6} \alpha$ and $w=\sum_{k=0}^{3} w_{2 k}$ satisfying the constraints above.

$L i f_{4}$ from $A d S_{5}$ solutions

- type IIB : conformal Calabi-Yau cone over the SE with

$$
\phi=0 \quad h=0 \quad * f=4 \frac{\mathrm{~d} r}{r}
$$

$$
\begin{aligned}
& B=\frac{r^{2}}{q^{2}} \mathrm{~d} t \wedge(\mathrm{~d} \varphi+\mu) \\
& F_{2}=w_{2} \\
& F_{4}=-4 r^{3} \mathrm{~d} t \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} r+\frac{r^{2}}{q^{2}} \mathrm{~d} t \wedge(\mathrm{~d} \varphi+\mu) \wedge w_{2} \\
& e^{-2 \phi}=q^{2} \quad\left(4 q^{2}-\square_{Y} q^{2}=|\alpha|^{2}+\left|w_{2}\right|^{2}\right)
\end{aligned}
$$

with $\alpha, w=w_{2}$ type $(1,1)$, primitive and harmonic on Y

- Explicit solutions for q for $T^{1,1}(q=\cos t)$ and some $Y^{p, q}$

More general solutions

- Asymptotically $L i f_{4}$ solutions
- Supersymmetric domain walls in type IIB (M_{6} is a conformal Calabi-Yau)
- first example ${ }_{\text {kebanovo, murugan or] }}$

$$
\mathrm{AdS}_{5} \times \mathrm{T}^{(1,1)} \quad \rightarrow \quad \mathrm{AdS}_{5} \times \mathrm{S}^{5}
$$

Similar solutions for all resolved $C Y_{6}$ [marelil, sparks o8]

- non-relativistic type IIA solution solutions interpolating between $L i f_{4}$ vacua
- Solutions with hyperscaling violation [dong, harisison, kachru, torroba, wang 12]

$$
\mathrm{d} s^{2} \rightarrow \lambda^{2 \theta / D} \mathrm{~d} s^{2} \quad t \rightarrow \lambda^{z} t \quad x^{i} \rightarrow \lambda x^{i} \quad u \rightarrow \lambda u
$$

- IIB vacuum on a conic Calabi-Yau manifold
- IIA solution with $z=3 D=2$ and $\theta=2 \quad$ [narayan 12; dey, roy 12]

$$
\begin{gathered}
e^{\phi_{A}}=r \quad q=e^{-A}=1 / r \\
H^{I I A}=\mathrm{d}\left(r^{4} \mathrm{~d} t \wedge \mathrm{~d} \varphi\right), \quad F_{4}=-4 r^{3} \mathrm{~d} t \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} r \quad \alpha=w=0
\end{gathered}
$$

D1-D5-P MICROSTATES

- Construct regular, horizonless solutions with the same asymptotic as the SV black-hole

	\mathbb{R}	S^{1}	\mathbb{R}^{4}	T^{4}
P	x	x		
D 1	x	x		
D 5	x	x		x

- Known regular three charge solutions
- $5 d$ supergravity [bena, warner, 05; berglund, gimon, levi 0]
- $1 / 8$ BPS solutions smeared over the compact space $S^{1} \times T^{4}$
- Minimal $6 d$ supergravity plus (at most) one tensor multiplet [bena, gisto, stigemori, waner, 1]
- no smearing in the S^{1}
- The generic microstate geometries should be more general
- no smearing in S^{1}
- all type IIB fields are turned on
- hints from
- entropy counting Ibena, wang, warner, 08; de Eoer, elshowk, messamah, van den bleeken, 08, o9]
- worldsheet analysis [giust, russo, 12]
- dual CFT ${ }_{\text {kanitscheider, senendeis, tayor, 07] }}$
- Use GCG to find solutions directly in ten dimensions

P-D1-D5 GEOMETRIES

- Conditions for SUSY bounds states of P-D1-D5
- existence of a null Killing vector

$$
K=\frac{\partial}{\partial u} \quad u=\frac{1}{\sqrt{2}}(t-y) \quad v=\frac{1}{\sqrt{2}}(t+y)
$$

- fix the polyform

$$
\Phi=\frac{1}{\sqrt{2}}\left(1+e^{4 G} \operatorname{vol}_{4}+e^{4 \hat{G}} \hat{\operatorname{vol}}_{4}-e^{2 G+2 \hat{G}} \sum_{A=1}^{3} J_{A} \wedge \hat{J}_{A} \cdot+e^{4 G+4 \hat{G}} \operatorname{vol}_{4} \wedge \hat{\operatorname{vol}}_{4}\right)
$$

where

$$
J_{A}, \hat{J}_{A} \rightarrow \mathrm{SU}(2) \text { structures on } Y^{4} \text { and } T^{4}
$$

SOLUTION

- Assume that T^{4} is rigid and all fields are isotropic along T^{4}
- General form of the solution
- metric

$$
\mathrm{d} s_{(10)}^{2}=-\frac{2 \alpha}{\sqrt{Z \tilde{Z}}}(\mathrm{~d} v+\beta)[\mathrm{d} u+\omega+W(\mathrm{~d} v+\beta)]+\sqrt{Z \tilde{Z}} \mathrm{~d} s_{4}^{2}+\sqrt{\frac{Z}{\tilde{Z}}} \mathrm{~d} \hat{s}_{4}^{2} .
$$

- dilaton

$$
e^{2 \phi}=\alpha \frac{Z}{\tilde{Z}} .
$$

- NS and RR fields are completely determined as functions of

$$
\omega, \beta, \mathcal{W}, Z, \tilde{Z}, Z_{b}, \Theta, \tilde{\Theta}, \Theta_{b}
$$

- the functions and forms above must satisfy the constraints

$$
\begin{gathered}
*_{4} \mathcal{D} \beta=\mathcal{D} \beta \\
\mathcal{D} J_{A}-\dot{\beta} \wedge J_{A}=0 \\
\mathcal{D} \omega+*_{4} \mathcal{D} \omega=Z *_{4} \Theta+\tilde{Z} \tilde{\Theta}-Z_{b}\left(\Theta_{b}+*_{4} \Theta_{b}\right)-2 W \mathcal{D} \beta \\
\mathcal{D} \Theta-\dot{\beta} \wedge \Theta=\frac{\mathrm{d}}{\mathrm{~d} v} *_{4}(\mathcal{D} \tilde{Z}+\tilde{Z} \dot{\beta}) \\
\mathcal{D} \tilde{\Theta}-\dot{\beta} \wedge \tilde{\Theta}=\frac{\mathrm{d}}{\mathrm{~d} v} *_{4}(\mathcal{D} Z+Z \dot{\beta}) \\
\mathcal{D} \Theta_{b}-\dot{\beta} \wedge \Theta_{b}=\frac{\mathrm{d}}{\mathrm{~d} v} *_{4}\left(\mathcal{D} Z_{b}+Z_{b} \dot{\beta}\right) \\
\mathcal{D} *_{4}(\mathcal{D} Z+\dot{\beta} Z)=-\tilde{\Theta} \wedge \mathcal{D} \beta \\
\mathcal{D} *_{4}(\mathcal{D} \tilde{Z}+\dot{\beta} \tilde{Z})=-\Theta \wedge \mathcal{D} \beta \\
\mathcal{D} *_{4}\left(\mathcal{D} Z_{b}+\dot{\beta} Z_{b}\right)=-\Theta_{b} \wedge \mathcal{D} \beta
\end{gathered}
$$

and Einstein equation in $v v$ direction

EXAMPLE

- Start from Mathur, Saxena and Srivastava solution
- first example of a microstate geometry for the three-charge black hole
- deformation of the D1-D5 geometry corresponding to a RR state in the dual CFT carrying one unit of momentum
- embedding it in our 10d ansatz
- determine the non linear completion
- extend it to the asymptotically flat region

CONCLUSIONS AND OUTLOOK

- GCG can be used to study fully $10 d$ geometries
- less insight into the geometric structure of the solutions
- powerful tool to compute explicit solutions
- non relativistic solutions and black hole microstate
- Study more formal properties
\rightarrow role of symmetries
\rightarrow solution generating techniques
\rightarrow relation to gauge supergravity and effectve actions Extend the analysis to more general backgrounds

SPINOR vs METRIC AND B-FIELD

- G-structures and metric
- a metric defines an $O(d)$ structure
- a G-structure determines the metric if $G \subset O(d)$
- Same argument on $T \oplus T^{*}$
- the metric plus B-field define

$$
O(9,1) \times O(9,1) \text { structure } \quad \rightarrow \quad\left\{\vec{\Gamma}_{M N}, \overleftarrow{\Gamma}_{M N}\right\}
$$

- Φ defines

$$
\begin{gathered}
(\operatorname{Spin}(7))^{2} \times S L(2, \mathbb{R}) \ltimes \mathbb{H}_{33} \\
\text { structure }
\end{gathered} \rightarrow\left\{\begin{array}{c}
\omega_{21}^{I_{1} J_{1}} \vec{\Gamma}_{I_{1} J_{1}}, \omega_{21}^{I_{2} J_{2}} \overleftarrow{\Gamma}_{I_{2} J_{2}}, \\
\vec{\Gamma}_{-1 I_{1}}, \overleftarrow{\Gamma}_{-2 I_{2}}, \vec{\Gamma}_{+1-1}+\overleftarrow{\Gamma}_{+2-2} \\
\vec{\Gamma}_{-1} \overleftarrow{\Gamma}_{I_{2}}, \vec{\Gamma}_{I_{1}} \overleftarrow{\Gamma}_{-2} \\
\vec{\Gamma}_{-1} \overleftarrow{\Gamma}_{+2}, \vec{\Gamma}_{+1} \overleftarrow{\Gamma}_{-2}, \vec{\Gamma}_{-1} \overleftarrow{\Gamma}_{-2}
\end{array}\right\}
$$

- Since $G \supset O(9,1) \times O(9,1)$, we need extra objects not invariant under $\vec{\Gamma}_{M} \overleftarrow{\Gamma}_{N}$

$$
\left(\Phi, \vec{\Gamma}_{+1}, \overleftarrow{\Gamma}_{+2}\right)
$$

Then

$$
\operatorname{Ann}\left(\Phi, \vec{\Gamma}_{+1}, \overleftarrow{\Gamma}_{+2}\right)=\operatorname{Spin}(7) \times \operatorname{Spin}(7) \subset O(9,1) \times O(9,1)
$$

- Not such a problem in $d=6$

$$
S U(3) \times S U(3) \subset O(6) \times O(6)
$$

