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• Type II and M-theory flux backgrounds play a central role in
• compactifications
• gauge/gravity duality

• A lot of effort has been devoted to the study of such backgrounds
• compute the back-reaction of the fluxes to determine the full geometry
• understand the properties of the new spaces

• Considerable progress has been made using techniques of
• G-structures
• Generalised Complex Geometry (GCG)
• Exceptional Generalised Geometry (EGG)



• Major progress has been achieved for SUSY backgrounds with

M10 = M4 ×w M6 −→ ds2
(10) = e2A(y)ds2

(4) + ds2
(6)(y)

describing

• compactifications to four dimensions

M4 = {Minkowski4,dS4?}

• CFT3 and deformations (AdS4)

• CFT4 and deformations

ds2
AdS5

=
dr2

r2
+ r2ds2

4 → e−2Adr2 + e2Ads2
4



• Two main reasons

• under quite general conditions [lüst, tsimpis 04]

10 dimensional
equations of motions

⇔ SUSY variations and
Bianchi id. for the fluxes

• use Generalised Complex Geometry [hitchin, gualtieri, grana, minasian, m.p., tomasiello 05]

10 dimensional SUSY
variations

⇔ differential constraints on
6d forms



• Susy vacua and Generalised Complex Geometry

• decompose the 10d type II SUSY parameters

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

−

ε2 = ζ+ ⊗ η2
∓ + ζ− ⊗ η2

±
→

(ηi+)∗ = ηi− 6d Weyl spinors

ζ∗+ = ζ− 4d Weyl spinors

• build polyforms on M6 as bispinors

Φ± = η1
+ ⊗ η̄2

± =
1

8

∑
p

1

p!

(
η̄2
±γm1...mpη

1
+

)
dxmp...m1

• SUGRA equations of motions are equivalent to

10d SUSY variations + Bianchi identities
d(e3AΦ1) = 0

d(e2AImΦ2) = 0

d(e4AReΦ2) = e4Ae−B ∗ λ(F )

(d−H)F = δ(source)

dH = 0

• unified description of type IIA and IIB



• Consequences

• Geometric characterisation of N = 1 flux vacua

• Φ± are spinors on T (M6)⊕ T ∗(M6)

positive chirality ↔ Φ+ ∈ ΛevenT ∗(M) even forms

negative chirality ↔ Φ− ∈ ΛoddT ∗(M) odd forms

• pure spinors→ vacuum of Cliff(6,6)
• define a SU(3) × SU(3) structure on T ⊕ T ∗

SU(2) on T ∗ η1
+ = aη+ Φ+ = a

8 (c̄1e
−ij − ic̄2ω) ∧ ez∧z̄/2

η2
+ = c1η+ + c2z · η− Φ− = −ia8 (c̄2e

−ij + ic̄1ω) ∧ z

SU(3) on T ∗ η1
+ = aη+ Φ+ = ab̄

8 e
−iJ

η2
+ = bη+ Φ− = −iab8 Ω



• Differential conditions
• one spinor is closed

d(e3AΦ1) = 0→ generalised Calabi Yau

• the RR fields act as torsion

d(e3AΦ2) = e3AdA ∧ Φ̄2 +
i

8
e3A ∗ λ(F )

zero fluxes fluxes

T T ⊕ T ∗

pure spinor η0 Φ

integrability ∇mη0 = 0 dΦ = 0

Calabi Yau Generalised Calabi Yau



• Effective actions on flux backgrounds [grana, louis, waldram 05,06; martucci, koerber 07, 08, ...]

• Moduli counting [tomasiello 07, martucci 09]

• Explicit solutions

• examples of compactifications on GCY manifolds [grana, minasian, m.p. tomasiello 06]

• solutions in gauge/gravity duality
• baryonic branch of Klebanov-Strassler [grana, minasian, m.p. zaffaroni 06]

• massive deformations of type IIA AdS4 duals of CFT3 [m.p, zaffaroni 09, lüst, tsimpis 09]

• geometry of superconformal N = 1 theories [minasian, m.p, zaffaroni 06;

gabella, gauntlett, palti, sparks, waldram 09, ... ]



• Can we apply similar techniques beyond 4d vacua?

• product spaces Md ×M10−d

• black hole solutions

• non-relativistic geometries

• non trivial fibrations

• Case by case examples

• general conditions for N = 1 flux backgrounds in d = 3 and d = 6
[haack, lüst, martucci,
tomasiello 09;
lüst, patalong, tsimpis 11]

• necessary conditions for N = 1 flux backgrounds in d = 1 and even d
[koerber, martucci 07;
lust, patalong, tsimpis 11]

• 10d Generalised Geometry

• generalised connection [coimbra, strickland-constable, waldram 11]

• pure spinor [tomasiello11]

• In this talk

• description of the 10d pure spinor approach

• application of the formalism to Lifshitz solutions and D1-D5-P microstates



GENERALISED GEOMETRY AND SUSY IN d=10 [tomasiello 11]

Same logic as in six-dimensions

• build a polyform out of SUSY parameters

Φ = ε1ε̄2

• rewrite the SUSY variations as differential eqn on Φ

→ e−B Φ must contain the same information as metric and B-field
→ check that this set is equivalent to the SUSY variations



NULL VECTORS

• The SUSY parameters define a pair of null vectors

K(i)M =
1

32
ε̄iΓM εi KM

(i)K(i)M = 0 i = 1, 2

• A null vector defines a natural splitting in 2 + 8 directions

(Ki = e− i, e+ i, eI) ⇒


e± i · e± i = 0

e± i · eI = 0

e− i · e+ i = 1/2

and the metric

ds2
10 = 2e+

i e
−
i +

8∑
I=1

(eI)2

• Define also

K =
1

2
(K1 +K2) K̃ =

1

2
(K1 −K2)



THE POLYFORM

Tensor the 10-d SUSY parameters

Φ = ε1 ⊗ ε̄2

=
1

32

∑
k

1

k!
ε̄2ΓMk...M1

ε1ΓM1...Mk

• Spinor on T (M10)⊕ T ∗(M10) but not pure
• by construction

Kiεi = K(i)MΓM εi = 0 ⇒
−→
Γ− iεi = 0

• annihilator of Φ

Ann(Φ) = span{
−→
Γ −1,

←−
Γ −2}

−→
ΓM = dxM + ιM
←−
ΓM = (−)deg(dxM − ιM )



• The form of Φ depends on the relation between the null vectors K1 and K2

• K1 and K2 proportional

K1 ∼ K2 ∼
−→
Γ − = (iσ2 + σ1)⊗ I8 ⇒ εi =

1

0

⊗ η̂i
• K1 and K2 not proportional

K1 ∼ Γ− = (iσ2 + σ1)⊗ I8
K2 ∼ Γ+ = (iσ2 − σ1)⊗ I8

⇒ ε1 =

1

0

⊗ η̂1 ε2 =

0

1

⊗ η̂2

IIA IIB

K1 ∼ K2 η̂i opposite chirality η̂i same chirality

Φ = K ∧ φG2

η̂1 ∼ η̂2 → Φ = K ∧ φSU(4)

η̂1 ⊥ η̂2 → Φ = K ∧ φSpin(7)

K1 ⊥ K2 η̂i same chirality η̂i opposite chirality

η̂1 ∼ η̂2 → Φ = e−1/2K∧K̃φSpin(7)

η̂1 ⊥ η̂2 → Φ = e−1/2K∧K̃φSU(4)

Φ = e−1/2K∧K̃φG2



SUSY CONDITIONS

• SUSY variations are equivalent to a set of equations on (Φ, e+1, e+2)

dH(e−φ Φ) = −(K̃ ∧+ιK)F

dK̃ = ιKH

(e+1 · Φ · e+2,Γ
MN [±dH(e−φΦ · e+2) + eφd†(e−2φe+2)Φ− F ])

(e+1 · Φ · e+2, [dH(e−φe+1 · Φ)− eφd†(e−2φe+2)Φ− F ]ΓMN )

plus LKg = 0 and

F =
5∑
k=0

F(2k) F = ∗10λ(F )
k integer in IIA

k half-integer in IIB

• extra equations (Φ is not pure)

• the vector K is a symmetry of the full solution



LIFSHITZ SOLUTIONS IN TYPE II SUGRA

• Motivation from AdS/CMT

• study systems (ex strongly correlated electrons) that have critical points with an
anisotropic rescaling

t→ λzt xi → λxi i = 1 . . . D

• according to the holographic dictionary such behaviour is described by a
Lifshitz geometry

ds2 = −r2zdt2 + r2
D∑
i=1

(dxi)2 +
dr2

r2
,

r → holographic energy direction



• Lifshitz solution in string theory

• 4d models of gravity coupled to a topological term or a massive vector
[kachru, liu, mulligan 08;
taylor 08, ...]

• 10d solutions : reductions of deformations of AdS solutions [balasubramanian, narayan 10;
donos, gauntlett 10, ...]

• consistent truncations of d=10 and d = 11 SUGRA with massive vectors
[cassani, faedo 11]

• solutions of N = 2 SUGRA in 4d [halmagyi, m.p. zaffaroni 11]



SUSY LIFSHITZ SOLUTIONS IN IIA THEORY

Look for solutions dual to 3d theories with anisotropic scaling in t and (x, y)

• metric

ds2
10 = −e2A1dt2 + e2A2(dx2 + dy2) + (e1)2 + ds2

6 qe1 = dφ+ µ

• rotation invariance in (x, y)

• fluxes

HIIA = h+ d(e01)

F IIA = −q(e1f + e0xy ∗ λ(f)) + (1 + e01)(w + exy ∗ λ(w))

with
f = f1 + f3 + f5 w = w0 + w2 + w4 + w6



SUSY VARIATIONS

• SUSY selects two directions

K1 · ε1 = K2 · ε2 = 0

• natural choice

K ∼ e0 = eA1dt → Killing vector (static solutions)

K̃ ∼ e1 = 1/q(dϕ+ µ) (dµ = α)

• SUSY conditions

(Γ0 + Γ1)ε1 = 0

(Γ0 − Γ1)ε2 = 0

 ⇒ ε1 =

1

0

 η̂1 ε2 =

0

1

 η̂2

with η̂1,2 positive chiratlity 8-d spinors



• To construct the spinor Φ

Φ = ε1ε̄2 = −1

2
(1 + e01)Φ(8)

• further split the spinors

η̂i =
2
√

2

||η+||
eA1/2

[1

i

 ηi+ +

 1

−i

 ηi−

]
i = 1, 2 ,

• define the 6d pure spinors
Φ± = η1

+η
2 †
±

• so that

Φ(8) =
16

||η+||2
eA1 {Im[(1 + iexy)Φ+]− Re[(ex − iey)Φ−]}



• The SUSY conditions and BI reduce to two independent sets of conditions on 6d
forms

• for f , h and Φ±

dh(q eA1−φ 1

||η+||2
ImΦ+) = 0

dh(q eA1+2A2−φ 1

||η+||2
ReΦ+) =

q

8
eA1+2A2 ∗ λ(f)

dh(q eA1+A2−φ 1

||η+||2
Φ−) = 0

dhf = dh = 0

dh(q eA1+2A2 ∗ λ(f)) = 0

d(qeA1+2A2−2φ ∗ h) = q eA1+2A2f ∗ f |4 ,

• for the forms α and w

• plus a differential equation for q

∗d(qe2A2+A1−2φ ∗ d(qe−A1)) = e2A2(e−2φ|α|2 + |w|2) .



From IIB to IIA

• Setting

eA1 =
e2A2

q

the equations for (f, h, φ) become equations for a type IIB SUSY vacuum with 4d
Poincaré invariance

d(e3AΦ−) = 0

d(e2AImΦ+) = 0

d(e4AReΦ+) = e4Ae−B ∗ λ(F )



• Main result

• for a 4d SUSY vacuum in type IIB

ds2
10 = e2A(ηµνdxµdxν)2 + ds2

6 , µ = 0, · · · , 3

HIIB = h FIIB = f + e0xyz ∗ λ(f)

• we can construct a non-relativistic SUSY solution in type IIA

ds2
10 = −e2A1dt2 + e2A2(dx2 + dy2) + (e1)2 + ds2

6

HIIA = h+ d(e01)

F IIA = −q(e1f + e0xy ∗ λ(f)) + (1 + e01)(w + exy ∗ λ(w))

with

eA1 =
e2A

q
eA2 = eA eφA =

eφ

q

provided ∃ on M6 α and w =
∑3
k=0 w2k satisfying the constraints above.



Lif4 from AdS5 solutions

• type IIB : conformal Calabi-Yau cone over the SE with

φ = 0 h = 0 ∗ f = 4
dr

r

• IIA Lif4 solutions on U(1) fibrations over a 5d Sasaki-Einstein Y with [donos, gauntlett 10]

B =
r2

q2
dt ∧ (dϕ+ µ)

F2 = w2

F4 = −4r3dt ∧ dx1 ∧ dx2 ∧ dr +
r2

q2
dt ∧ (dϕ+ µ) ∧ w2

e−2φ = q2 (4q2 −�Y q
2 = |α|2 + |w2|2)

with α , w = w2 type (1, 1), primitive and harmonic on Y

• Explicit solutions for q for T 1,1 (q = cost) and some Y p,q



More general solutions

• Asymptotically Lif4 solutions

• Supersymmetric domain walls in type IIB ( M6 is a conformal Calabi-Yau )
• first example [klebanov, murugan 07]

AdS5 × T(1,1) → AdS5 × S5

Similar solutions for all resolved CY6 [martelli, sparks 08]

• non-relativistic type IIA solution solutions interpolating between Lif4 vacua

• Solutions with hyperscaling violation [dong, harrison, kachru, torroba, wang 12]

ds2 → λ2θ/Dds2 t→ λzt xi → λxi u→ λu

• IIB vacuum on a conic Calabi-Yau manifold

• IIA solution with z = 3 D = 2 and θ = 2 [narayan 12; dey, roy 12]

eφA = r q = e−A = 1/r

HIIA = d(r4dt ∧ dϕ) , F4 = −4r3dt ∧ dx1 ∧ dx2 ∧ dr α = w = 0



D1-D5-P MICROSTATES

• Construct regular, horizonless solutions with the same asymptotic as the SV
black-hole

R S1 R4 T 4

P x x

D1 x x

D5 x x x

• Known regular three charge solutions

• 5d supergravity [bena, warner, 05; berglund, gimon, levi 0 ]

• 1/8 BPS solutions smeared over the compact space S1 × T 4

• Minimal 6d supergravity plus (at most) one tensor multiplet [bena, giusto, shigemori, warner, 11]

• no smearing in the S1



• The generic microstate geometries should be more general

• no smearing in S1

• all type IIB fields are turned on

• hints from

• entropy counting [bena, wang, warner, 06; de Boer, el-showk, messamah, van den bleeken, 08, 09]

• worldsheet analysis [giusto, russo, 12]

• dual CFT [kanitscheider, skenderis, taylor, 07]

• Use GCG to find solutions directly in ten dimensions



P-D1-D5 GEOMETRIES

• Conditions for SUSY bounds states of P-D1-D5

• existence of a null Killing vector

K =
∂

∂u
u =

1√
2

(t− y) v =
1√
2

(t+ y)

• fix the polyform

Φ =
1√
2

(1 + e4Gvol4 + e4Ĝv̂ol4 − e2G+2Ĝ
3∑

A=1

JA ∧ ĴA .+ e4G+4Ĝvol4 ∧ v̂ol4)

where
JA, ĴA → SU(2) structures on Y 4 and T 4



SOLUTION

• Assume that T 4 is rigid and all fields are isotropic along T 4

• General form of the solution

• metric

ds2
(10) = − 2α√

ZZ̃
(dv + β)

[
du+ ω +W (dv + β)

]
+
√
ZZ̃ ds2

4 +

√
Z

Z̃
dŝ2

4 .

• dilaton

e2φ = α
Z

Z̃
.

• NS and RR fields are completely determined as functions of

ω, β,W, Z, Z̃, Zb,Θ, Θ̃,Θb



• the functions and forms above must satisfy the constraints

∗4Dβ = Dβ

DJA − β̇ ∧ JA = 0

Dω + ∗4Dω = Z ∗4Θ + Z̃ Θ̃− Zb (Θb + ∗4Θb)− 2W Dβ .

DΘ− β̇ ∧Θ =
d

dv
∗4 (DZ̃ + Z̃β̇)

DΘ̃− β̇ ∧ Θ̃ =
d

dv
∗4 (DZ + Zβ̇)

DΘb − β̇ ∧Θb =
d

dv
∗4 (DZb + Zbβ̇)

D ∗4 (DZ + β̇Z) = −Θ̃ ∧ Dβ

D ∗4 (DZ̃ + β̇Z̃) = −Θ ∧ Dβ

D ∗4 (DZb + β̇Zb) = −Θb ∧ Dβ

and Einstein equation in vv direction



EXAMPLE

• Start from Mathur, Saxena and Srivastava solution

• first example of a microstate geometry for the three-charge black hole

• deformation of the D1-D5 geometry corresponding to a RR state in the dual
CFT carrying one unit of momentum

• embedding it in our 10d ansatz

• determine the non linear completion

• extend it to the asymptotically flat region



CONCLUSIONS AND OUTLOOK

• GCG can be used to study fully 10d geometries

• less insight into the geometric structure of the solutions

• powerful tool to compute explicit solutions
• non relativistic solutions and black hole microstate

• Study more formal properties

→ role of symmetries

→ solution generating techniques

→ relation to gauge supergravity and effectve actions Extend the analysis to more
general backgrounds



SPINOR vs METRIC AND B-FIELD

• G-structures and metric

• a metric defines an O(d) structure

• a G-structure determines the metric if G ⊂ O(d)

• Same argument on T ⊕ T ∗

• the metric plus B-field define

O(9, 1)×O(9, 1) structure → {
−→
ΓMN ,

←−
ΓMN}

• Φ defines

(Spin(7))2 × SL(2,R) nH33

structure
→


ωI1J121

−→
Γ I1J1 , ω

I2J2
21

←−
Γ I2J2 ,

−→
Γ −1I1 ,

←−
Γ −2I2 ,

−→
Γ +1−1 +

←−
Γ +2−2,

−→
Γ−1
←−
Γ I2 ,

−→
Γ I1

←−
Γ−2,

−→
Γ −1
←−
Γ +2,

−→
Γ +1
←−
Γ −2,

−→
Γ −1
←−
Γ −2





• Since G ⊃ O(9, 1)×O(9, 1), we need extra objects not invariant under
−→
ΓM
←−
ΓN

(Φ,
−→
Γ +1,

←−
Γ +2)

Then
Ann(Φ,

−→
Γ +1,

←−
Γ +2) = Spin(7)× Spin(7) ⊂ O(9, 1)×O(9, 1)

• Not such a problem in d = 6

SU(3)× SU(3) ⊂ O(6)×O(6)


