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Black hole entropy is a precious clue to 
understand quantum gravity
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Universal law in GR

(Bekenstein-Hawking ’74)

Sclass
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1
4

AH

`2P
=

AH c3

4 ~ GN

kB log dmicro = Sclass
BH + · · · (Boltzmann)

Deviations from GR!

Recent progress 
    on this front
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Strominger-Vafa ’96
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Black holes in string theory are an ensemble 
of microscopic excitations
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What is new? Finite size quantum effects!

1. What is the physics of these corrections?

2. How to compute them in a concrete model?

3. Can we compare them to a similar 
    expansion in the microscopic theory?

Questions

Mock modular forms

Exact AdS/CFT

Supersymmetric 
Localization

Squant
BH =

1
4
A + a0 log(A) + a1

1
A

+ a2
1

A2
+ · · ·

+b1(A)e�A + · · ·
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Finite size corrections arise from quantum 
fluctuations in the black hole

•Extends Bekenstein-Hawking area law in GR

We still need a good formalism to study 
Quantum BH entropy including 
non-analytic and non-local effects.

•Obeys the first law of thermodynamics
Wald Entropy formalism

•Applicable to any local effective action of gravity

(Wald; Iyer,Wald; ’94)
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Supersymmetric black holes and AdS2

r

L0

Euclidean AdS2 � S2

J0

near-horizon attractor
AdS2 � S2 .

4d charged extremal BH 
(Reissner-Nordstrom)

Wald entropy of BPS BHs is found by extremizing the 
Lagrangian on the attractor                   solution. 
(Entropy function, Sen ’05).

AdS2 ⇥ S2
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Quantum BH entropy is a functional integral 
over          configurationsAdS2 (Sen ’08)

exp(Squ
BH(qI)) ⇥ ZAdS2(qI) =

⇤
exp

�
� i qI

⇧
AI

⇥⌅reg

AdS2

•              microcanonical ensemble with fixed charges 
  (c.f. classical attractor mechanism).

AdS2 �

• Saddle point evaluation gives                                  ZAdS2(qI) = exp

�
SWald

(qI)
�
.

• First quantum corrections have computed by a one-loop  
   computation around classical background. (Sen et al ’12-13)
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          N = 4The planar                spectral problem in                       
SYM theory in d=4 is completely solved. 

SU(N)(N�⇥)

Quantum gravity = 1/N effectsBut

beyond the large N limit?AdS/CFT

Impressive progress in the last few years on computing 
exact quantities in supersymmetric field theory. 
(Pestun; c.f. talks of Mariño, Martelli, Russo)
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Dual theory for BPS BH is a collection of 
supersymmetric ground states

Dual           obtained as IR limit of brane configuration 
that makes up the black hole.

CFT1

AdS/CFT correspondence 
� ZAdS2(q) = dmicro(q)

In d=0+1, no space for long-wavelength fluctuations.
ZCFT1(q) = TrH(q) 1 = dmicro(q) .
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Prototype: N=8 string theory in 4d (macro)

d=4 graviton coupled to 28 U(1) gauge fields + 
superpartner scalars + fermions.

N = q2p2 � (q.p)2 .Quartic invariant  

Charges (qI , p
I), I = 1, . . . , 28 ,

1/8 BPS dyonic BH solutions. (Cvetic, Youm ’96)

U-duality 

BH Entropy SBH = �
�

N + · · ·
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With q = e2�i⇥ ,

�

N

dmicro(N) e2�iN⇥ = ⇥(⇤)/�(⇤)6

= q�1 + 2 + 8q3 + 12q4 + 39q7 + 56q8 + · · ·

Prototype: N=8 string theory in 4d (micro)

Type II string theory compactified on     .     T 6

Microscopic degeneracies 
computed using representation as D1-D5-P-K system.

dmicro(N)

(Maldacena, Moore, Strominger ’99)
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Supersymmetric Localization
Witten ’88, Duistermaat-Heckmann ’82,  Atiyah-Bott ’84, Pestun ’07

Consider a supermanifold       with an odd vector field     and 
an off-shell algebra               with     a compact         .Q2 = H

Q
H U(1)

M

Q�We would like to evaluate an integral of a       invariant 
operator    O

I :=
�

M
dµO e�S .

The functional integral localizes onto the submanifold         
of solutions of the off-shell BPS equations             

MQ

Q� =0

I =
�

MQ

dµQO e�S .
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 Supercharge    with Q2 = L0 � J0 .Q

BPS quantum black hole entropy

exp(Squ
BH(qI)) ⇥ ZAdS2(qI) =

⇤
exp

�
� i qI

⇧
AI

⇥⌅reg

AdS2

.

L0

Euclidean AdS2 � S2

J0

: Field space of supergravity.M
dµ : Measure on this field space.
O : Wilson line.
S : Supergravity action.
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How to compute the BH functional integral 
(A.Dabholkar, J.Gomes, S.M. ’10, ’11)

3. Evaluate action on these solutions. 
    Compute the measure. 

1. Formalism: conformal N=2 supergravity (de Wit, van Holten, 
Van Proeyen ’80)Off-shell algebra Q2 = L0 � J0 .

2. Find all solutions of localization equations               , 
    subject to                  boundary conditions.AdS2 � S2

Q = 0
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Off-shell conformal N=2 supergravity

The susy transformations are specified once and for all. 
They do not need to be modified as one modifies the action 
e.g. with higher derivative terms .  

Non-trivial problem since we do not know the metric and 
other background fields.

� i
µ = 2Dµ✏

i + Vi
µj ✏

j � 1
4
�⇢⌫ T ij

⇢⌫ �µ✏j � �µ⌘
i ,

�⌦I
i = 2�µDµXI✏i + Y I

ij ✏j + �µ⌫FI�
µ⌫ "ij ✏j + 2XI⌘i .

Gravity multiplet +      vector multiplets.nv

(de Wit, van Holten, Van Proeyen ’80)
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All BPS configurations of N=2 supergravity

Construct spinor bilinears                 
BPS equations for          first order equations for       . 
Identify with spacetime quantities (Killing vector etc).

�
fµ⌫··· ⌘  ̄�µ⌫··· 

fµ⌫ 

BPS equations + Euclidean          boundary conditions 
extremely constraining.

AdS2

Technique well-established in on-shell problems. 
(Tod ’88; de Wit-Nicolai, Candelas-Horowitz-Strominger-Witten,...,Gauntlett-
Gutowski-Hull-Pakis-Reall ’02,  Meessen-Ortin ’06, c.f. Talk of Martelli.)
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All BPS configurations of N=2 supergravity
In the gravity multiplet sector, the only solution is AdS2 � S2 .

Can solve for the Killing spinor    and plug into vector 
multiplet equations. 

✏i

(R.Gupta, S.M., “All solutions to the localization equations 
for quantum black hole entropy,'' arXiv:1208.6221)

Localization manifold labelled by one parameter                        
                   for each vector multiplet     .XI�I ⌘ XI(0)

XI = XI
⇤ +

CI

r
, X̄I = X̄I

⇤ +
CI

r
, Y I1

1 = �Y I2
2 =

2CI

r2
.

Most general solution 1/2 BPS, scalar fields go off-shell:
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Evaluation of Wilson line
The Wilson line expectation value in supergravity 
localizes to the finite integral:

ZAdS2(q, p) =

Z

MQ

exp

�
Sren(�, p, q)

�
[d�I

] .

•        is the renormalized action of N=2 supergravity 
  evaluated on the localizing manifold.
Sren

• The measure         is that of the supergravity scalar 
   field space.

[d�I ]
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Z
d

4
x

Z
d

4
✓ d

4
✓̄ eXX̄

Z
d

4
x

Z
d

4
✓ X

Chiral superspace 
integrals

N=2 supergravity action (effective theory)

Full superspace 
integrals

Holomorphic prepotential 
function F (XI,W2)

Computed by topo-
logical string on CY F (XI , W 2) =

1X

n=0

Fg(XI) (W 2)g
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Action governed by F

S = (�i(XI F̄I � FIX̄
I)) · (�1

2
R) +

⇥
irµFIrµX̄I

+
1
4
iFIJ(F�I

ab �
1
4
X̄IT ij

ab "ij)(F�abJ � 1
4
X̄JT ij

ab "ij)

� 1
8
iFI(F+I

ab �
1
4
XITabij "ij)T ij

ab "ij �
1
8
iFIJY I

ijY
Jij � i

32
F (Tabij "ij)2

+
1
2
iF bA

bC � 1
8
iF bA bA("ik"jl bBij

bBkl � 2 bF�ab
bF�ab)

+
1
2
i bF�abF bAI(F

�I
ab �

1
4
X̄IT ij

ab "ij)�
1
4
i bBijF bAIY

Iij + h.c.
⇤

� i(XI F̄I � FIX̄
I) · (raVa �

1
2
V aVa �

1
4

|Mij |2 + Da�i
↵Da�↵

i) .

(de Wit, van Holten, Van Proeyen ’80)
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Simple formula for exact BH entropy
Assuming that only F-terms contribute to the action, 
we get a simple formula for any N=2 theory:

Sren = �⇡ qI �I + ImF (�I + ipI) .

ZAdS2(q, p) =

Z

MQ

exp

�
Sren(�, p, q)

�
[d�I

] .

Kinetic term for one of the modes (conformal mode of metric) has 
wrong sign and leads to a divergent integral. Necessary to 
analytically continue the contour of integration in field space. 

(Gibbons-Hawking ’76)

(A.Dabholkar, J.Gomes, S.M. ’10)

20/31



Exact BH entropy in N=8 theory

8 vector multiplets coupled to supergravity.

F (X) = �1
2

X1CabXaXb

X0
, a, b = 2, . . . , 7 .

eSqu
BH (N) =

⇤
d⇥

⇥9/2
exp

�
⇥ + �2N/4⇥

⇥
= ⌅I7/2(�

�
N)

We drop the gravitini multiplets and the hypermultiplets 
to get a reduced N=2 theory

The exact prepotential is (with                                )Cab =
�

0 1
1 0

�
⌦ 13⇥3

�

(A.Dabholkar, J.Gomes, S.M. ’11)
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3 8 230.76

4 12 535.49

7 39 4071.93

8 56 7228.35

11 152 33506.14

12 208 53252.29

15 513 192400.81

... ... ...

exp(295.7) exp(314.2)105

Comparison: micro/macro

N dmicro(N) exp
�
Scl(N)

⇥
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log(d
micro

)

N!1�! Scl

BH .



3 8 7.97 230.76

4 12 12.20 535.49

7 39 38.99 4071.93

8 56 55.72 7228.35

11 152 152.04 33506.14

12 208 208.45 53252.29

15 513 512.96 192400.81

... ... ... ...

exp(295.7) exp(295.7) exp(314.2)105

(A.Dabholkar, J.Gomes, S.M. ’11)

N dmicro(N) exp
�
Scl(N)

⇥
exp

�
Squ(N)

⇥

Comparison: micro/macro
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d
micro

(N) = eSqu
BH(N)

�
1 + O(e�⇡

p
N/2)

�



What about non-F-terms in the action? 

Does the holomorphic prepotential F capture the full 
perturbative quantum BH entropy in any N=2 theory? 

•Recall that classical Wald entropy is found by extremizing 
the Lagrangian on the full-BPS attractor solution. 

Non-renormalization of classical entropy

•Full BPS solution is a constant superfield configuration. 
Any full superspace integral and its first derivative 
vanish on this solution. (de Wit-Katmadas-van Zalk ’10)

(Maldacena-Strominger-Witten ’97)
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Localization and holomorphic prepotential
Off-shell formalism: BPS equations do not change when 
the action is changed.

A full-superspace integral can:

(a) Change the value of the renormalized action        . Sren

(b) Change the definition of electric charges.

(c) Change the induced measure on the localizing manifold.

ZAdS2(q, p) =

Z

MQ

exp

�
Sren(�, p, q)

�
[d�I

] .

The set of BPS solutions        is thus also universal!MQ
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Generically, the full-superspace integrals do not vanish 
on non-constant configurations (even 1/2-BPS). 

In our case, the          boundary conditions force the 
solutions to have a one-dimensional nature.

AdS2

A large class of full-superspace integrals (based on 
kinetic multiplets) vanish on the localizing manifold. 

(V. Reys, S.M.  arXiv:1306.3796)

        is invariant       measure and charges also invariant.Sren )
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3 8 7.97 230.76

4 12 12.20 535.49

7 39 38.99 4071.93

8 56 55.72 7228.35

11 152 152.04 33506.14

12 208 208.45 53252.29

15 513 512.96 192400.81

... ... ... ...

exp(295.7) exp(295.7) exp(314.2)105

(A.Dabholkar, J.Gomes, S.M. ’11)

N dmicro(N) exp
�
Scl(N)

⇥
exp

�
Squ(N)

⇥

Comparison: micro/macro
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d
micro

(N) = eSqu
BH(N)

�
1 + O(e�⇡

p
N/2)

�



Why does this work so well?
The microscopic partition function is a modular form

Strong-weak coupling symmetry:

SL2(Z)
� � � + 1
� ⇥ �1/� .

Modular symmetry
          group

Highly constraining

Zmicro(⇤) �
�

N

dmicro(N) e2�iN⇥ =
⇥(⇤)
�(⇤)6

Zmicro(�1/�) = �5/2Zmicro(�)
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= e⇡
p

N
⇣
1� 15

4

log N + O(

1

N
)

⌘
.

Orbifolds of 
AdS2

Bekenstein-
Hawking

One-loop 
corrections

Hardy-Ramanujan-Rademacher expansion 

Exact formula for degeneracies

d
micro

(N) =
1X

c=1

c�9/2 Kc(N) eI
7/2

�⇡
p

N

c

�

= eI
7/2

(⇡
p

N) + O(e�⇡
p

N/2)
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Wall-crossing and BH phase transitions

(Q,P)

(Q,P)

ΔS

Serious problem: throwing out multi-
centered BHs destroys the modular 
symmetry. (Denef-Moore 2007) 

Phase I

+

Q

P

(Q,P)

Phase II
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Mock modular forms provide the solution

List of examples by Ramanujan (1920), but no definition! 

Exactly what we need to solve the black hole 
wall-crossing problem.

For N=4 string theory, we could solve it fully, and 
explicitly compute the partition function of a single BH. 

(A.Dabholkar, S.M., D.Zagier ’12)

Definition and structural properties now finally understood. 
S. Zwegers (2000)
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This resolves the tension between 
modular symmetry and wall-crossing. 

All the wall-crossing
      information.Partition function of the isolated BH 

      is a mock modular form.

Canonical decomposition of the partition function:
Zmicro(�) = ZBH(�) + Zmulti(�)

Many new quantitative explorations now within reach. 
e.g.  Large discrete symmetry groups (moonshine) 
of BHs in string theory (J. Harvey, S.M., in prep.)
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• Finite size effects in BH thermodynamics.

• Convergent perturbation expansions in quantum gravity
   via localization. 

• Mathematical structures: New mock modular symmetries 
   play a key role. Interaction both ways!

Comments and/or questions? 

• A concrete example of exact finite N holography.

Quantum black hole thermodynamics 
opens a new window into quantum gravity
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Mock modular forms

B1

(4�⇥2)k ⇤ �f(⇥, ⇥̄)
⇤⇥̄

= �2�i g(⇥) .

�f(�, �̄) := f(�) + g�(�, �̄)

f(�)

g(�)
Mock modular form

Shadow

Completion

Holomorphic anomaly equation


