Quantum black hole entropy and the holomorphic prepotential

Sameer Murthy
 Nikhef

Swansea Strings Conference
July 19, 2013

Black hole entropy is a precious clue to understand quantum gravity

Black holes in string theory are an ensemble of microscopic excitations

Microscopic

Strominger-Vafa '96

Macroscopic

Bekenstein-Hawking '74

$$
\frac{A_{\mathrm{H}}(\mathrm{~N})}{4}=\pi \sqrt{\mathrm{N}}
$$

$$
\log d_{\text {micro }}=S_{\mathrm{BH}}^{\text {class }}+\cdots \rightarrow \underset{\text { BH }}{S_{\text {(finite N }} \text {) }}
$$

What is new? Finite size quantum effects!

$$
\begin{array}{r}
S_{\mathrm{BH}}^{\text {quant }}=\frac{1}{4} A+a_{0} \log (A)+a_{1} \frac{1}{A}+a_{2} \frac{1}{A^{2}}+\cdots \\
+b_{1}(A) e^{-A}+\cdots
\end{array}
$$

Questions

Exact AdS/CFT

1. What is the physics of these corrections?
2. How to compute them in a concrete model?
3. Can we compare them to a similar expansion in the microscopic theory?

Mock modular forms

Finite size corrections arise from quantum fluctuations in the black hole

Wald Entropy formalism

- Obeys the first law of thermodynamics
- Extends Bekenstein-Hawking area law in GR
- Applicable to any local effective action of gravity

We still need a good formalism to study Quantum BH entropy including non-analytic and non-local effects.

Supersymmetric black holes and AdS_{2}

4d charged extremal BH (Reissner-Nordstrom)
near-horizon attractor

$$
A d S_{2} \times S^{2}
$$

Euclidean $\mathbf{A d S}_{\mathbf{2}} \times \mathbf{S}^{\mathbf{2}}$

Wald entropy of BPS BHs is found by extremizing the Lagrangian on the attractor $A d S_{2} \times S^{2}$ solution.
(Entropy function, Sen '05).

Quantum BH entropy is a functional integral over AdS_{2} configurations (Sen '08)

$$
\exp \left(S_{B H}^{\mathrm{qu}}\left(q_{I}\right)\right) \equiv Z_{A d S_{2}}\left(q_{I}\right)=\left\langle\exp \left[-i q_{I} \oint A^{I}\right]\right\rangle_{\mathrm{AdS}_{2}}^{\mathrm{reg}}
$$

- $A d S_{2} \Rightarrow$ microcanonical ensemble with fixed charges (c.f. classical attractor mechanism).
- Saddle point evaluation gives $Z_{A d S_{2}}\left(q_{I}\right)=\exp \left(S^{\text {Wald }}\left(q_{I}\right)\right)$.
- First quantum corrections have computed by a one-loop computation around classical background. (Sen et al '12-13)

AdS/CFT beyond the large \mathbf{N} limit?

The planar $(\mathrm{N} \rightarrow \infty)$ spectral problem in $\mathrm{SU}(\mathrm{N}) \mathcal{N}=4$ SYM theory in $\mathrm{d}=4$ is completely solved.

Impressive progress in the last few years on computing exact quantities in supersymmetric field theory.
(Pestun; c.f. talks of Mariño, Martelli, Russo)

Dual theory for BPS BH is a collection of supersymmetric ground states

Dual $\mathbf{C F T}_{1}$ obtained as IR limit of brane configuration that makes up the black hole.

In d=0+1, no space for long-wavelength fluctuations.

$$
Z_{\mathrm{CFT}_{1}}(q)=\operatorname{Tr}_{\mathcal{H}(q)} 1=d_{\text {micro }}(q)
$$

Prototype: N=8 string theory in 4d (macro)

$\mathrm{d}=4$ graviton coupled to $28 \mathrm{U}(1)$ gauge fields + superpartner scalars + fermions.

1/8 BPS dyonic BH solutions.
(Cvetic, Youm '96)
Charges $\left(q_{I}, p^{I}\right), I=1, \ldots, 28$,
U-duality $\quad E_{7,7}(\mathbb{Z})$
Quartic invariant $N=q^{2} p^{2}-(q \cdot p)^{2}$.

$$
\text { BH Entropy } S_{B H}=\pi \sqrt{N}+\cdots
$$

Prototype: $\mathbf{N = 8}$ string theory in 4d (micro)

Type II string theory compactified on T^{6}.
Microscopic degeneracies $d_{\text {micro }}(\mathrm{N})$ computed using representation as D1-D5-P-K system.
(Maldacena, Moore, Strominger '99)
With $q=e^{2 \pi i \tau}$,

$$
\begin{aligned}
\sum_{\mathrm{N}} d_{\text {micro }}(\mathrm{N}) e^{2 \pi i \mathrm{~N} \tau} & =\theta(\tau) / \eta(\tau)^{6} \\
& =q^{-1}+2+8 q^{3}+12 q^{4}+39 q^{7}+56 q^{8}+\cdots
\end{aligned}
$$

Supersymmetric Localization

Witten '88, Duistermaat-Heckmann '82, Atiyah-Bott '84, Pestun '07

Consider a supermanifold \mathcal{M} with an odd vector field Q and an off-shell algebra $Q^{2}=H$ with H a compact $U(1)$.

We would like to evaluate an integral of a Q-invariant operator \mathcal{O}

$$
I:=\int_{\mathcal{M}} d \mu \mathcal{O} e^{-\mathcal{S}} .
$$

The functional integral localizes onto the submanifold \mathcal{M}_{Q} of solutions of the off-shell BPS equations $Q \Psi=0$

$$
I=\int_{\mathcal{M}_{Q}} d \mu_{Q} \mathcal{O} e^{-\mathcal{S}}
$$

BPS quantum black hole entropy

$$
\exp \left(S_{B H}^{\mathrm{qu}}\left(q_{I}\right)\right) \equiv Z_{A d S_{2}}\left(q_{I}\right)=\left\langle\exp \left[-i q_{I} \oint A^{I}\right]\right\rangle_{\mathrm{AdS}}^{2} 2,
$$

Supercharge Q with $Q^{2}=L_{0}-J_{0}$
\mathcal{M} : Field space of supergravity.

Euclidean $\mathrm{AdS}_{2} \times \mathbf{S}^{\mathbf{2}}$ $d \mu$: Measure on this field space.
\mathcal{O} : Wilson line.
\mathcal{S} : Supergravity action.

How to compute the BH functional integral

1. Formalism: conformal $\mathrm{N}=2$ supergravity (de Wit, van Holten, Off-shell algebra $Q^{2}=L_{0}-J_{0}$. Van Proeyen '80)
2. Find all solutions of localization equations $Q \Psi=0$, subject to $A d S_{2} \times S^{2}$ boundary conditions.
3. Evaluate action on these solutions.

Compute the measure.

Off-shell conformal $\mathbf{N}=2$ supergravity

The susy transformations are specified once and for all.
They do not need to be modified as one modifies the action e.g. with higher derivative terms .

Gravity multiplet + n_{v} vector multiplets.

$$
\begin{aligned}
& \delta \psi_{\mu}^{i}=2 \mathcal{D}_{\mu} \epsilon^{i}+\mathcal{V}_{\mu j}^{i} \epsilon^{j}-\frac{1}{4} \sigma^{\rho \nu} T_{\rho \nu}^{i j} \gamma_{\mu} \epsilon_{j}-\gamma_{\mu} \eta^{i}, \\
& \delta \Omega_{i}^{I}=2 \gamma^{\mu} D_{\mu} X^{I} \epsilon_{i}+Y_{i j}^{I} \epsilon^{j}+\sigma^{\mu \nu} \mathcal{F}_{\mu \nu}^{I-} \varepsilon_{i j} \epsilon^{j}+2 X^{I} \eta_{i}
\end{aligned}
$$

Non-trivial problem since we do not know the metric and other background fields.

All BPS configurations of $\mathrm{N}=2$ supergravity

Technique well-established in on-shell problems.
(Tod '88; de Wit-Nicolai, Candelas-Horowitz-Strominger-Witten,...,Gauntlett-Gutowski-Hull-Pakis-Reall '02, Meessen-Ortin '06, c.f.Talk of Martelli.)

Construct spinor bilinears $f_{\mu \nu \ldots} \equiv \bar{\psi} \gamma_{\mu \nu \ldots \psi}$ BPS equations for $\psi \Rightarrow$ first order equations for $f_{\mu \nu}$. Identify with spacetime quantities (Killing vector etc).

BPS equations + Euclidean $A d S_{2}$ boundary conditions extremely constraining.

All BPS configurations of $\mathrm{N}=2$ supergravity

In the gravity multiplet sector, the only solution is $A d S_{2} \times S^{2}$. Can solve for the Killing spinor ϵ_{i} and plug into vector multiplet equations.

Most general solution 1/2 BPS, scalar fields go off-shell:

$$
X^{I}=X_{*}^{I}+\frac{C^{I}}{r}, \quad \bar{X}^{I}=\bar{X}_{*}^{I}+\frac{C^{I}}{r}, \quad Y_{1}^{I 1}=-Y_{2}^{I 2}=\frac{2 C^{I}}{r^{2}} .
$$

Localization manifold labelled by one parameter $\phi^{I} \equiv X^{I}(0)$ for each vector multiplet X.
(R.Gupta, S.M., "All solutions to the localization equations for quantum black hole entropy," arXiv:1208.6221)

Evaluation of Wilson line

The Wilson line expectation value in supergravity localizes to the finite integral:

$$
Z_{A d S_{2}}(q, p)=\int_{\mathcal{M}_{Q}} \exp \left(\mathcal{S}_{\text {ren }}(\phi, p, q)\right)\left[d \phi^{I}\right] .
$$

- $\mathcal{S}_{\text {ren }}$ is the renormalized action of $\mathrm{N}=2$ supergravity evaluated on the localizing manifold.
- The measure $\left[d \phi^{I}\right]$ is that of the supergravity scalar field space.

$\mathrm{N}=2$ supergravity action (effective theory)

Holomorphic prepotential function $F\left(\mathbf{X}^{\mathbf{I}}, \mathbf{W}^{\mathbf{2}}\right)$

Computed by topological string on CY

$$
F\left(X^{I}, W^{2}\right)=\sum_{n=0}^{\infty} F_{g}\left(X^{I}\right)\left(W^{2}\right)^{g}
$$

Action governed by F

(de Wit, van Holten, Van Proeyen '80)

$$
\begin{aligned}
S & =\left(-i\left(X^{I} \bar{F}_{I}-F_{I} \bar{X}^{I}\right)\right) \cdot\left(-\frac{1}{2} R\right)+\left[i \nabla_{\mu} F_{I} \nabla^{\mu} \bar{X}^{I}\right. \\
& +\frac{1}{4} i F_{I J}\left(F_{a b}^{-I}-\frac{1}{4} \bar{X}^{I} T_{a b}^{i j} \varepsilon_{i j}\right)\left(F^{-a b J}-\frac{1}{4} \bar{X}^{J} T_{a b}^{i j} \varepsilon_{i j}\right) \\
& -\frac{1}{8} i F_{I}\left(F_{a b}^{+I}-\frac{1}{4} X^{I} T_{a b i j} \varepsilon^{i j}\right) T_{a b}^{i j} \varepsilon_{i j}-\frac{1}{8} i F_{I J} Y_{i j}^{I} Y^{J i j}-\frac{i}{32} F\left(T_{a b i j} \varepsilon^{i j}\right)^{2} \\
& +\frac{1}{2} i F_{\widehat{A}} \widehat{C}-\frac{1}{8} i F_{\widehat{A} \widehat{A}}\left(\varepsilon^{i k} \varepsilon^{j l} \widehat{B}_{i j} \widehat{B}_{k l}-2 \widehat{F}_{a b}^{-} \widehat{F}_{a b}^{-}\right) \\
& \left.+\frac{1}{2} i \widehat{F}^{-a b} F_{\widehat{A} I}\left(F_{a b}^{-I}-\frac{1}{4} \bar{X}^{I} T_{a b}^{i j} \varepsilon_{i j}\right)-\frac{1}{4} i \widehat{B}_{i j} F_{\widehat{A} I} Y^{I i j}+\text { h.c. }\right] \\
& -i\left(X^{I} \bar{F}_{I}-F_{I} \bar{X}^{I}\right) \cdot\left(\nabla^{a} V_{a}-\frac{1}{2} V^{a} V_{a}-\frac{1}{4}\left|M_{i j}\right|^{2}+D^{a} \Phi_{\alpha}^{i} D_{a} \Phi_{i}^{\alpha}\right)
\end{aligned}
$$

Simple formula for exact BH entropy

Assuming that only F-terms contribute to the action, we get a simple formula for any $\mathrm{N}=2$ theory:
(A.Dabholkar, J.Gomes, S.M. '10)

$$
\begin{aligned}
Z_{A d S_{2}}(q, p) & =\int_{\mathcal{M}_{Q}} \exp \left(\mathcal{S}_{\text {ren }}(\phi, p, q)\right)\left[d \phi^{I}\right] . \\
\mathcal{S}_{\text {ren }} & =-\pi q_{I} \phi^{I}+\operatorname{Im} F\left(\phi^{I}+i p^{I}\right) .
\end{aligned}
$$

Kinetic term for one of the modes (conformal mode of metric) has wrong sign and leads to a divergent integral. Necessary to analytically continue the contour of integration in field space.
(Gibbons-Hawking '76)

Exact BH entropy in $\mathbf{N}=8$ theory

(A.Dabholkar, J.Gomes, S.M. '11)

We drop the gravitini multiplets and the hypermultiplets to get a reduced $\mathrm{N}=2$ theory \Rightarrow
8 vector multiplets coupled to supergravity.
The exact prepotential is (with $C_{a b}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes \mathbf{1}_{3 \times 3}$)

$$
F(X)=-\frac{1}{2} \frac{X^{1} C_{a b} X^{a} X^{b}}{X^{0}}, \quad a, b=2, \ldots, 7 .
$$

$e^{S_{B H}^{\text {qu }}}(N)=\int \frac{d \sigma}{\sigma^{9 / 2}} \exp \left(\sigma+\pi^{2} N / 4 \sigma\right)=\widetilde{I}_{7 / 2}(\pi \sqrt{N})$

Comparison: micro/macro

N	$d_{\text {micro }}(\mathrm{N})$	$\exp \left(S^{\text {cl }}(\mathrm{N})\right)$
3	8	230.76
4	12	535.49
7	39	4071.93
8	56	7228.35
11	152	33506.14
12	208	53252.29
15	513	192400.81
...
10^{5}	$\exp (295.7)$	$\exp (314.2)$
$\log \left(d_{\text {micro }}\right) \xrightarrow{N \rightarrow \infty} S_{B H}^{\mathrm{cl}}$.		

Comparison: micro/macro (A.Dabholkar, J.Gomes, S.M. '11)

N	$d_{\text {micro }}(\mathrm{N})$	$\exp \left(S^{\mathrm{qu}}(\mathrm{N})\right)$	$\exp \left(S^{\mathrm{Cl}}(\mathrm{N})\right)$
3	8	7.97	230.76
4	12	12.20	535.49
7	39	38.99	407 I .93
8	56	55.72	7228.35
II	152	152.04	33506.14
12	208	208.45	53252.29
I 5	513	512.96	192400.8 I
\ldots	\ldots	\ldots	\ldots
10^{5}	$\exp (295.7)$	$\exp (295.7)$	$\exp (3 \mathrm{I} 4.2)$
$d_{\text {micro }}(N)=e^{S_{B H}^{\text {Gu }}(N)}\left(1+O\left(e^{-\pi \sqrt{N} / 2}\right)\right)$			

What about non-F-terms in the action?

Does the holomorphic prepotential F capture the full perturbative quantum BH entropy in any $\mathrm{N}=2$ theory?

Non-renormalization of classical entropy
(Maldacena-Strominger-Witten '97)

- Recall that classical Wald entropy is found by extremizing the Lagrangian on the full-BPS attractor solution.
- Full BPS solution is a constant superfield configuration. Any full superspace integral and its first derivative vanish on this solution.

Localization and holomorphic prepotential

Off-shell formalism: BPS equations do not change when the action is changed.

The set of BPS solutions \mathcal{M}_{Q} is thus also universal!

$$
Z_{A d S_{2}}(q, p)=\int_{\mathcal{M}_{Q}} \exp \left(\mathcal{S}_{\text {ren }}(\phi, p, q)\right)\left[d \phi^{I}\right]
$$

A full-superspace integral can:
(a) Change the value of the renormalized action $\mathcal{S}_{\text {ren }}$.
(b) Change the definition of electric charges.
(c) Change the induced measure on the localizing manifold.

Generically, the full-superspace integrals do not vanish on non-constant configurations (even 1/2-BPS).

In our case, the $A d S_{2}$ boundary conditions force the solutions to have a one-dimensional nature.

A large class of full-superspace integrals (based on kinetic multiplets) vanish on the localizing manifold.
(V. Reys, S.M. arXiv:1306.3796)
$\mathcal{S}_{\text {ren }}$ is invariant \Rightarrow measure and charges also invariant.

Comparison: micro/macro (A.Dabholkar, J.Gomes, S.M. '11)

N	$d_{\text {micro }}(\mathrm{N})$	$\exp \left(S^{\mathrm{qu}}(\mathrm{N})\right)$	$\exp \left(S^{\mathrm{Cl}}(\mathrm{N})\right)$
3	8	7.97	230.76
4	12	12.20	535.49
7	39	38.99	407 I .93
8	56	55.72	7228.35
II	152	152.04	33506.14
12	208	208.45	53252.29
I 5	513	512.96	192400.8 I
\ldots	\ldots	\ldots	\ldots
10^{5}	$\exp (295.7)$	$\exp (295.7)$	$\exp (3 \mathrm{I} 4.2)$
$d_{\text {micro }}(N)=e^{S_{B H}^{\text {Gu }}(N)}\left(1+O\left(e^{-\pi \sqrt{N} / 2}\right)\right)$			

Why does this work so well?

The microscopic partition function is a modular form

$$
Z_{\text {micro }}(\tau) \equiv \sum_{N} d_{\text {micro }}(N) e^{2 \pi i N \tau}=\frac{\theta(\tau)}{\eta(\tau)^{6}}
$$

Strong-weak coupling symmetry:

$$
Z_{\text {micro }}(-1 / \tau)=\tau^{5 / 2} Z_{\text {micro }}(\tau)
$$

Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion

Wall-crossing and BH phase transitions

Mock modular forms provide the solution

List of examples by Ramanujan (1920), but no definition!

Definition and structural properties now finally understood.
S. Zwegers (2000)

Exactly what we need to solve the black hole wall-crossing problem.

For $\mathrm{N}=4$ string theory, we could solve it fully, and explicitly compute the partition function of a single BH .

This resolves the tension between modular symmetry and wall-crossing.

Canonical decomposition of the partition function:

Many new quantitative explorations now within reach. e.g. Large discrete symmetry groups (moonshine) of BHs in string theory
(J. Harvey, S.M., in prep.)

Quantum black hole thermodynamics opens a new window into quantum gravity

- Finite size effects in BH thermodynamics.
- Convergent perturbation expansions in quantum gravity via localization.
- A concrete example of exact finite N holography.
- Mathematical structures: New mock modular symmetries play a key role. Interaction both ways!

Comments and/or questions?

Mock modular forms

Mock modular form $f(\tau)$
Shadow $g(\tau)$
Completion $\widehat{f}(\tau, \bar{\tau}):=f(\tau)+g^{*}(\tau, \bar{\tau})$

Holomorphic anomaly equation

$$
\left(4 \pi \tau_{2}\right)^{k} \frac{\partial \widehat{f}(\tau, \bar{\tau})}{\partial \bar{\tau}}=-2 \pi i \overline{g(\tau)}
$$

