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Black hole entropy is a precious clue to
understand quantum gravity

(Boltzmann)
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Recent progress
on this front

Universal law in GR
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(Bekenstein-Hawking '74)
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Black holes in string theory are an ensemble
of microscopic excitations

Microscopic Macroscopic

Strominger-Vafa 96 Bekenstein-Hawking 74
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What is new? Finite size quantum effects!

uant _ 1 1 1
Spi = 7 A+ aolog(A) + a1 +ay—5 + -+

+b(A)e ™ + - -

Questions (Exact AdS/CFT
1. What is the physics of these corrections?

2. How to compute them in a concrete model? ay
3. Can we compare them to a similar Ifsymmetlrlc

Ization

expansion in the microscopic theory?
CMock modularf@
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Finite size corrections arise from quantum
fluctuations in the black hole

Wald Entropy formalism (Wald; lyer,Wald; '94)
* Obeys the first law of thermodynamics

* Extends Bekenstein-Hawking area law in GR

* Applicable to any /ocal effective action of gravity

We still need a good formalism to study
Quantum BH entropy including
non-analytic and non-local effects.
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Supersymmetric black holes and AdS,

4d charged extremal BH — near-horizon attractor
(Reissner-Nordstrom) AdS, x S? .

Euclidean AdS, x S?

Wald entropy of BPS BHs is found by extremizing the
Lagrangian on the attractor AdS, x S? solution.
(Entropy function, sen ’05).
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Quantum BH entropy is a functional integral
over AdS, configurations (sen0s)

reg

exp(Spp(ar)) = Zaas, (ar) = <eXp - in%AI]>

AdSo

* AdS,; = microcanonical ensemble with fixed charges
(c.f. classical attractor mechanism).

» Saddle point evaluation gives Z4s,(q1) = exp (SV*%(qr)).

* First quantum corrections have computed by a one-loop
computation around classical background. (Sen et al ’12-13)
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AdS/CFT beyond the large N limit?

The planar (N — oo) spectral problem in SU(N) N =4
SYM theory in d=4 is completely solved.

But Quantum gravity = 1/N effects

Impressive progress in the last few years on computing

exact quantities in supersymmetric field theory.
(Pestun; c.f. talks of Marifio, Martelli, Russo)
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Dual theory for BPS BH is a collection of
supersymmetric ground states

Dual CFT; obtained as IR limit of brane configuration
that makes up the black hole.

In d=0+1, no space for long-wavelength fluctuations.
ZCFT1 (Q) — Tr’}-((q) 1 = dmicro(Q) °

AdS/CFT correspondence
—> ZAd82 (Q> — dmicro(Q)
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Prototype: N=8 string theory in 4d (macro)

d=4 graviton coupled to 28 U(1) gauge fields +
superpartner scalars + fermions.

1/8 BPS dyonic BH solutions. (Cvetic, Youm "96)
Charges (q7,p"), I=1,...,28,
U-duality FE- 7(Z)

Quartic invariant N = ¢°p* — (¢.p)*.

BH Entropy Sy = 7V N + - -
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Prototype: N=8 string theory in 4d (micro)

Type Il string theory compactified on 7.

Microscopic degeneracies dumjcro(IN)
computed using representation as D1-D5-P-K system.

(Maldacena, Moore, Strominger '99)

Wlth q — 627‘('7:7'7

S iniero(N) N7 = 9(7) /()

= ¢ ' +248¢% +12¢* +39¢7 + 56¢° + - - -
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Supersymmetric Localization
Witten ’88, Duistermaat-Heckmann ’82, Atiyah-Bott ‘84, Pestun 07

Consider a supermanifold M with an odd vector field () and
an off-shell algebra Q* = H with  a compact U(1).

We would like to evaluate an integral of a ()—invariant

operator O
I ::/ dpuOe .
M

The functional integral localizes onto the submanifold Mg
of solutions of the off-shell BPS equations () ¥ =0

= / dug O e % .
Maq
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BPS quantum black hole entropy

reg

exp (S (ar)) = Zaas, (ar) = <6Xp - @'qu:{AI}>

AdSso

Supercharge Qwith Q% = Ly — Jy.

Euclidean AdS, x S?

~
-
_______

M : Field space of supergravity.
du : Measure on this field space.

O : Wilson line.
S . Supergravity action.
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How to compute the BH functional integral
(A.Dabholkar, J.Gomes, S.M. '10, '11)

1. Formalism: conformal N=2 supergravity (ge wit, van Holten,
Off-shell algebra Q° = Ly — Jj . Van Proeyen '80)

2. Find all solutions of localization equations Q¥ =0 ,
subject to AdS, x S* boundary conditions.

3. Evaluate action on these solutions.
Compute the measure.
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Off-shell conformal N=2 supergravity
(de Wit, van Holten, Van Proeyen '80)

The susy transformations are specified once and for all.
They do not need to be modified as one modifies the action
e.g. with higher derivative terms .

Gravity multiplet + n vector multiplets.

5¢'u — QD'LLE +Vuj e — ZO”O ijy Yu€i — Yull

5&27{ = Q’WDMXI@; + Yz‘; e + J“Vfi_eij e +2X1n,.

| 74

Non-trivial problem since we do not know the metric and
other background fields.
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All BPS configurations of N=2 supergravity

Technique well-established in on-shell problems.

(Tod ’88; de Wit-Nicolai, Candelas-Horowitz-Strominger-Witten,...,Gauntlett-
Gutowski-Hull-Pakis-Reall ’'02, Meessen-Ortin ’06, c.f. Talk of Martelli.)

Construct spinor bilinears fuv-- = VY. 0
BPS equations for ¥ = first order equations for f,. .
ldentify with spacetime quantities (Killing vector etc).

BPS equations + Euclidean AdS> boundary conditions
extremely constraining.
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All BPS configurations of N=2 supergravity

In the gravity multiplet sector, the only solution is AdS, x S=.

Can solve for the Killing spinor ¢; and plug into vector
multiplet equations.

Most general solution 1/2 BPS, scalar fields go off-shell:

XI:XI 017 XI:XI 017 Y1]1:_Y212:E.
* r * r r?

Localization manifold labelled by one parameter
o' = X' (0) for each vector multiplet X!

(R.Gupta, S.M., “All solutions to the localization equations
for quantum black hole entropy," arXiv:1208.6221)
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Evaluation of Wilson line

The Wilson line expectation value in supergravity
localizes to the finite integral:

ZAdSQ (q,p) — / CXP (Sren(¢7pa Q)) [d¢l] '

M@

* Oren IS the renormalized action of N=2 supergravity
evaluated on the localizing manifold.

» The measure [d¢']is that of the supergravity scalar
field space.
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N=2 supergravity action (effective theory)

Chiral superspace /\ Full superspace

inte}’als integrals

/d4 /d49X /d% /d49d4§eXX

Holomorphlc prepotential
function F(X', W?)

Computed by topo-
logical string on CY gy (X, W) = ZF (X1) (W2)?

n=0
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Action governed by F

(de Wit, van Holten, Van Proeyen '80)

S = (—i(X'F - F, X)) (—%R) iV, VR
+ iiFIJ(Fa_bI - iXITé‘Z e (T2 = iXJTé‘Z Eij)
- %iFI(FCEI iX "Tavij )Ty €15 — éZFI VY = 3i2F (Tavis )7
+ %ZFAC — %z A\A\(Sikcfjlﬁijﬁkl — 213(;130},)
R R

— W(X'F; - F X (V*V, — Va |MZ]\2 + D®" D, ®*) .
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Simple formula for exact BH entropy

Assuming that only F-terms contribute to the action,

we get a simple formula for any N=2 theory:
(A.Dabholkar, J.Gomes, S.M. '10)

ZAng (q,p) — / CXP (Sren(¢7p7 Q)) [dqu] '

Mq

Sren = —mqr ¢ +ImF(¢" +ip').

Kinetic term for one of the modes (conformal mode of metric) has
wrong sign and leads to a divergent integral. Necessary to
analytically continue the contour of integration in field space.

(Gibbons-Hawking ’76)
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Exact BH entropy in N=8 theory

(A.Dabholkar, J.Gomes, S.M. 11)

We drop the gravitini multiplets and the hypermultiplets
to get a reduced N=2 theory =

8 vector multiplets coupled to supergravity.

The exact prepotential is (with Cyup = (9 §) ® 13x3)

1 X'CpXeXPb
F(X) =~ )’;,O  ab=2....7T.

do
5972

exp (o + 7" N/4o ) = 77/2(7\/N)
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Comparison: micro/macro

22/31

N dmicro(N) exp (S (N))
3 8 230.76
4 12 535.49
7 39 4071.93
8 56 7228.35
| 152 33506.14
12 208 53252.29
15 513 192400.81
10°  |exp(295.7) exp(314.2)
log(dmicro) = SgH -




Com parison: miCI’OlmacrO (A.Dabholkar, J.Gomes, S.M. '11)

N Amicro(N) [ exp(ST(N))|exp (S (N))
3 8 7.97 230.76

4 12 1220 | 535.49

7 39 38.99 | 4071.93
8 56 55.72 | 7228.35
| 152 152.04 | 33506.14
12 208 208.45 | 53252.29
15 513 512.96 |192400.8\
10°  |exp(295.7)|exp(295.7) |exp(314.2)
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What about non-F-terms in the action?

Does the holomorphic prepotential F capture the full
perturbative quantum BH entropy in any N=2 theory?

Non-renormalization of classical entropy
(Maldacena-Strominger-Witten '97)

* Recall that classical Wald entropy is found by extremizing
the Lagrangian on the full-BPS attractor solution.

* Full BPS solution is a constant superfield configuration.
Any full superspace integral and its first derivative
vanish on this solution. (de Wit-Katmadas-van Zalk ’10)
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Localization and holomorphic prepotential

Off-shell formalism: BPS equations do not change when
the action is changed.

The set of BPS solutions Mg is thus also universal!

Zaas. (0.p) = / exp (Sven (61, 0)) [d6"] .

Mg

A full-superspace integral can:
(a) Change the value of the renormalized action S;.n .
(b) Change the definition of electric charges.

(c) Change the induced measure on the localizing manifold.
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Generically, the full-superspace integrals do not vanish
on non-constant configurations (even 1/2-BPS).

In our case, the AdS> boundary conditions force the
solutions to have a one-dimensional nature.

A large class of full-superspace integrals (based on
kinetic multiplets) vanish on the localizing manifold.

(V. Reys, S.M. arXiv:1306.3796)

Sren is invariant = measure and charges also invariant.
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http://arxiv.org/abs/arXiv:1306.3796
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Com parison: miCI’OlmacrO (A.Dabholkar, J.Gomes, S.M. '11)

N Amicro(N) [ exp(ST(N))|exp (S (N))
3 8 7.97 230.76

4 12 1220 | 535.49

7 39 38.99 | 4071.93
8 56 55.72 | 7228.35
| 152 152.04 | 33506.14
12 208 208.45 | 53252.29
15 513 512.96 |192400.8\
10°  |exp(295.7)|exp(295.7) |exp(314.2)
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Why does this work so well?

The microscopic partition function is a modular form

Z d 27T’L'NT _ (9(7_)
n(7)°

Strong-weak coupling symmetry:

Zmicro(_l/T) — 7-5/QZmicro (7_)

T—T+1

mmdp S, (7) Modular symmetry
group

T— —1/T.

Highly constraining

23/31



Exact formula for degeneracies

Hardy-Ramanujan-Rademacher expansion
= ~ aVvN
Y P K(N) Iz o (

—1 )

- folds of
o) 0 kT

15 1
= e“\/ﬁ(l 0 logN%—O(N)).

Bekenstein- One-loop
Hawking corrections
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Wall-crossing and BH phase transitions

Phase | Phase ||

+
(Q,P)
"®
Serious problem: throwing out multi- kw
centered BHs destroys the modular ‘ P

symmetry. (Denef-Moore 2007)
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Mock modular forms provide the solution
(A.Dabholkar, S.M., D.Zagier '12)

List of examples by Ramanujan (1920), but no definition!

Definition and structural properties now finally understood.
S. Zwegers (2000)

Exactly what we need to solve the black hole
wall-crossing problem.

For N=4 string theory, we could solve it fully, and
explicitly compute the partition function of a single BH.
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This resolves the tension between
modular symmetry and wall-crossing.

Canonical decomposition of the partition function:

All the wall-crossing
information.

Many new quantitative explorations now within reach.
e.g. Large discrete symmetry groups (moonshine)

Partition function of the isolated BH
IS @ mock modular form.
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Quantum black hole thermodynamics
opens a new window into quantum gravity

* Finite size effects in BH thermodynamics.

e Convergent perturbation expansions in quantum gravity
via localization.

* A concrete example of exact finite N holography.

 Mathematical structures: New mock modular symmetries
play a key role. Interaction both ways!

Comments and/or questions?
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Mock modular forms

Mock modular form f(7)
Shadow ¢(T)

AN

Completion f(r,7) := f(r)+ g (7,7T)

Holomorphic anomaly equation

AN

(47’(’7’2)k 5’fé77'_, i) = —2m1 TT) .

Bl



