A New Class of Qris

From D-branes to on-shell diagrams

Sebastián Franco
 IPPP Durham University

Based on: arXiv:1207.0807, S. Franco

arXiv:1211.5139, S.Franco, D. Galloni and R.-K. Seong
arXiv:1301.0316, S.Franco
arXiv:1306.6331, S.Franco and A. Uranga
S. Franco, D. Galloni, A Mariotti (in progress)

Outline

○ Introduction and Motivation

○ A new class of gauge theories: Bipartite Field Theories (BFTs)

O BFTs Everywhere
> D3-Branes over CY 3-folds
> Cluster Integrable Systems
> On-Shell Diagrams

○ BFTs and Calabi-Yau Manifolds
© String Theory Embedding
© Conclusions and Future Directions

Introduction and Motivation

O Over the last decade, we have witnessed remarkable progress in our understanding of Quantum Field Theory in various dimensions

○ Most celebrated example: Gauge/Gravity Correspondence

QFT $\mathrm{SCFT}_{\mathrm{d}}$
 String Theory
 $\mathrm{AdS}_{\mathrm{d}+1} \times \mathrm{X}^{9-\mathrm{d}}$

More generally, SUSY gauge theories and geometry are intimately related (e.g. moduli spaces, Seiberg-Witten theory, etc)

Many other directions:

* Duality
* Integrability
* Scattering amplitudes
* RG flows and degrees of freedom
* Superconformal index
* Conformal bootstrap

O General trend: defining SUSY gauge theories in terms of geometric or combinatorial objects such as bipartite graphs on a 2-torus, Riemann surfaces (Gaiotto and Sicilian theories) or 3-manifolds

* Complicated theories are engineered by sewing or gluing elementary building blocks
* QFT dualities correspond to rearrangements of the underlying geometric object

O Today we will discuss a new class of quiver gauge theories, whose Lagrangian are specified by bipartite graphs on bordered Riemann surfaces

O These theories are related to a variety of interesting physical systems, such as D3-branes on CY3-folds, cluster integrable systems and scattering amplitudes

O Furthermore, they combine several interesting ideas in the modern approach to QFTs

Bipartite Field Theories

Bipartite Field Theory (BFT)
a $4 \mathrm{~d} N=1$ gauge theory whose Lagrangian is defined by a bipartite graph on a Riemann surface (with boundaries)

○ Bipartite Graph:

- Every edge connects nodes of different color
- Every boundary node is connected to a single edge

Face: $U(N)$ group

Riemann surface

No superpotential term
Node: superpotential term

- Node color:
[\quad Sign of corresponding superpotential term
- Chirality of bifundamental fields

Gauge and Global Symmetries

O There are two types of faces in the graph:

Internal

External

O This is a rather natural choice in cases in which the graph has a brane interpretation

The Dictionary

O The BFT is given by a quiver dual to the bipartite graph

Graph	BFT
Internal face (2n-sided)	Gauge group with n flavors
External face	Global symmetry group
Edge between two faces	Chiral multiplet in the bifundamental representation
k-valent node	Monomial in the superpotential involving k chiral multiplets, with (+/-) for (white/black) nodes

BFTs Everywhere

BFTs Everywhere

1. D3-Branes over CY 3-folds

- The $4 \mathrm{~d}, \mathrm{~N}=1 \mathrm{SCFT}$ on a stack of D3-branes probing a toric CY_{3} is a BFT on a 2 -torus Franco, Hanany, Kennaway, Vegh, Wecht

Example: cone over F_{0}
$\mathrm{U}(1)^{2}$ global symmetry

Cluster Algebras and CYs © Eager, SF

Mirror Symmetry

- Local constructions
of MSSM + CKM
Quevedo et. al. Feng, He, Kennaway, Vafa

Toric/Seiberg Duality ©

- AdS/CFT Correspondence SF, Hanany, Kennaway, Vegh, Wecht ○ in 3+1 and 2+1 dimensions

D-brane Instantons SF, Hanany, Krefl, Park, Uranga

SF, Hanany, Martelli, Sparks, Vegh, Wecht
SF, Hanany, Park, Rodriguez-Gomez SF, Klebanov, Rodriguez-Gomez

○ Mirror symmetry relates this configuration to a system of D6-branes that is encoded by another BFT on an higher genus Riemann surface Σ

2. Integrable Systems

O Bipartite graphs on a 2-torus are also in one-to-one correspondence with an infinite class of integrable systems in $(0+1)$ dimensions: Cluster Integrable Systems Goncharov, Kenyon

- Constructing all integrals of motion is straightforward and combinatorial

O Rich connections to other scenarios in which these integrable systems appear, such as 5d $\mathrm{N}=1\left(\right.$ on $\left.\mathrm{S}^{1}\right)$ and $4 \mathrm{~d} \mathrm{~N}=2$ gauge theories avatars of the spectral curve Σ

O Recently, a connection between scattering amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$, the Grassmannian and bipartite graphs has been established

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

- The central idea is to focus on on-shell diagrams. They are constructed by combining 3-point MHV and MHV amplitudes

O The Grassmannian $\mathbf{G}(\mathbf{k}, \mathbf{n})$: space of k -dimensional planes in n dimensions

Points in $G(k, n)$:

Rows: n-dimensional vectors spanning the planes
$\mathrm{n}=$ \# scattered particles
$\mathrm{k}=$ \# negative helicity

O Leading singularities are in one-to-one correspondence with certain subspaces, also denoted cells, of $G(k, n)$ parametrized by a constrained matrix C

○ Scattering amplitudes can be determined in terms of on-shell diagrams

○ All necessary information for determining leading singularities (equivalently cells in the Grassmannian) is contained in certain minimal or reduced graphs

The additional data in reducible graphs is necessary for determining the loop integrand

$$
\text { Loop Integrand }=\prod d \log f_{i} \times(\text { Reduced Graph })
$$

O The on-shell approach is equivalent to a $\mathrm{U}(1)$ gauge theory on the graph which, in turn, is equivalent to an Abelian BFT
Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

BFT Dynamics

Graphical Gauge Theory Dynamics

Gauge Theory Dynamics

- Let us first focus on IR equivalences

Massive Fields

© 2-valent nodes map to mass terms in the BFT. Integrating out the corresponding massive fields results in the condensation of the two nearest nodes

$$
\mathrm{W}=\mathrm{X}_{1} \mathrm{P}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)+\mathrm{X}_{2} \mathrm{P}_{2}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{X}_{1} \mathrm{X}_{2}+\cdots
$$

The equations of motion of the massive fields become:

$$
\left.\begin{array}{l}
\partial_{X_{1}} \mathrm{~W}=0 \Leftrightarrow \mathrm{X}_{2}=\mathrm{P}_{1}\left(\mathrm{X}_{\mathrm{i}}\right) \\
\partial_{X_{2}} \mathrm{~W}=0 \Leftrightarrow \mathrm{X}_{1}=\mathrm{P}_{2}\left(\mathrm{X}_{\mathrm{i}}\right)
\end{array}\right\} \quad \mathrm{W}=\mathrm{P}_{1}\left(\mathrm{X}_{\mathrm{i}}\right) \mathrm{P}_{2}\left(\mathrm{X}_{\mathrm{i}}\right)+\cdots
$$

- Seiberg duality of an $N_{f}=2 N_{c}$ gauge group translated into a "square move"

This transformation:

1) Replaces electric quarks by magnetic quarks
2) Introduces mesons: $M_{i j}=\tilde{Q}_{i} Q_{j}$
3) Cubic superpotential couplings: $\Delta W=\sum_{i j} q_{i} M_{i j} \tilde{q}_{j}$

Confinement

- When an $N_{f}=N_{c}$ gauge group confines, the corresponding face is eliminated

O Other gauge theory transformations also have a natural graphic implementation

Higgsing

O Removing an edge and combining two faces into a single one

© This corresponds to a non-zero VEV for the scalar component of the removed edge

- More generally, Higgsing translates into:
* The boundary operator on cells in the positive Grassmannian
* BCF bridges in on-shell diagrams

Reduced Graphs

 connected by moves and reductions

○ Only defined up to equivalence moves
\longrightarrow not unique

Example: 1) Seiberg dualize an $N_{f}=2 N_{c}$ gauge group
2) Integrate out massive fields
3) Confine $N_{f}=N_{c}$ gauge groups

○ Reduced graphs play a central role in scattering amplitudes \longleftrightarrow Leading Singularities Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

- Two important questions: $>$ How to determine whether two graphs are connected by mergers and moves? And reductions?
$>$ How to identify reduced graphs

Perfect Matchings

O Perfect matchings play a central role in connecting BFTs to geometry
O (Almost) Perfect Matching: p is a subset of the edges in the graph such that:
$>$ Every internal node is the endpoint of exactly on edge in p
$>$ Every external node belongs to either one or zero edges in p

p_{5}

p_{6}

p_{7}

O Finding the perfect matchings reduces to calculating the determinant of an adjacency matrix of the graph (Kasteleyn matrix), and some generalizations

O Map between chiral fields in the quiver X_{i} and perfect matchings p_{m} :

$$
\mathrm{X}_{\mathrm{i}}=\prod_{\mu} \mathrm{p}_{\mu}{ }^{\mathrm{P}_{\mathrm{i} \mu}} \quad \mathrm{P}_{\mathrm{i} \mu}=\left\{\begin{array}{l}
1 \text { if } \mathrm{X}_{\mathrm{i}} \in \mathrm{p}_{\mu} \\
0 \text { if } \mathrm{X}_{\mathrm{i}} \notin \mathrm{p}_{\mu}
\end{array}\right.
$$

BFTs and Calabi-Yau Manifolds

O BFTs are naturally associated to certain geometries via their moduli spaces

- The moduli space of any BFT is automatically a toric CY and perfect matchings simplify its computation. We can identify them with GLSM fields in their toric description

F-Flatness and Perfect Matchings

- For any bifundamental field X_{0} associated to an internal edge:

$$
\mathrm{W}=\mathrm{X}_{0} \mathrm{P}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)-\mathrm{X}_{0} \mathrm{P}_{2}\left(\mathrm{X}_{\mathrm{i}}\right)+\cdots \quad \partial_{X_{0}} \mathrm{~W}=0 \Leftrightarrow \mathrm{P}_{1}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{P}_{2}\left(\mathrm{X}_{\mathrm{i}}\right)
$$

Graphically:

- The parametrization of bifundamental fields in terms of perfect matchings given by the matrix P , automatically satisfies F-term equations of internal edges

$$
\begin{aligned}
& P_{i \mu}= \begin{cases}1 & \text { if } X_{i} \in p_{\mu} \\
0 & \text { if } X_{i} \notin p_{\mu}\end{cases}
\end{aligned}
$$

The Master Space

\rightarrow space of solutions to F-term equations
parametrized in terms of perfect matchings (GLSM fields) and toric

Example:

- 7 perfect matchings
- 5d toric CY

The Moduli Space

Moduli Space

$\left\{\begin{array}{l}>\text { Space of solutions to vanishing F and D-terms } \\ >\text { Projection of the Master Space onto vanishing D-terms }\end{array}\right.$

○ One D-term contribution for every gauge group \longleftrightarrow internal face of the graph

- Example:

$$
\mathrm{Q}_{1}=\left(\begin{array}{ccccccc}
\mathrm{p}_{1} & \mathrm{p}_{2} & \mathrm{p}_{3} & \mathrm{p}_{4} & \mathrm{p}_{5} & \mathrm{p}_{6} & \mathrm{p}_{7} \\
\hline 0 & 1 & 1 & 0 & -1 & -1 & 0
\end{array}\right)
$$

O The moduli space is invariant under all equivalence moves (integrating out massive fields, Seiberg duality, etc) \longrightarrow Ideal diagnostic for identifying graphs related by them

O It applies to completely general BFTs. Other methods, e.g. permutations, exist for planar graphs

Useful for:

Grassmanian:

Higgsing
(Edge removal)

Matching Polytope

IR Equivalences

(Moves and reductions)

Matroid Polytope

O Remarkably, when restricting to planar graphs, precisely these two structures arise in the classification of cells in the positive Grassmannian

Franco
Franco, Galloni, Seong

BFTs thus provide natural generalizations of these objects beyond planar graphs

IR fixed points

Higgsing

Cells in the Grassmannian Leading Singularities

Boundary operator BCF bridges

String Theory Embedding

Stringy Embedding of BFTs

○ It is possible to engineer generic planar BFTs using D-branes over toric CY 3-folds

Franco, Uranga
Heckman, Vafa, Yamazaki, Xie (sub-classes)

O D3-branes on toric CY 3-folds correspond to bipartite graphs on T^{2}
Franco, Hanany, Kennaway, Vegh, Wecht
© We developed a general framework for computing the spectrum and superpotential interactions for a general D-brane configuration over toric singularities

O Mirror Geometry: $\left\{\begin{aligned} P(x, y) & =w \\ u v & =w\end{aligned}\right.$

$$
\Sigma: \quad P(x, y)=0
$$

O The bipartite graph is mapped from T^{2} to the Riemann surface Σ, which controls the physics

Example: C^{3} / Z_{3}

Feng, He, Kennaway, Vafa Franco, Uranga

D6-branes over 3-cycles (1-cycles on Σ)

D3-branes	compact
D7-branes	non-compact

| pair of punctures | |
| :---: | :---: | :---: |
| full trajectory | \longleftrightarrow4-cycle
 "Chan-Paton"
 degrees of freedom |

O The spectrum and interactions can be straightforwardly determined from the mirror configuration. E.g.: non-compact 1-cycles sharing a puncture lead to D7-D7' states
© Infinite families of planar and non-planar BFTs can be explicitly engineered in terms of D-branes using these tools

Conclusions

O We introduced BFTs, a new class of $4 \mathrm{~d}, \mathrm{~N}=1$ gauge theories defined by bipartite graphs on Riemann surfaces. We also developed efficient tools for studying them.

* Gauge theory dynamics is captured by simple graph transformations
* CY manifolds emerge as moduli spaces
* BFTs provide natural generalizations, based on standard $\mathrm{N}=1$ gauge theory knowledge, of Grassmannian objects (e.g. matching and matroid polytopes) beyond the planar case Franco

Postnikov, Speyer, Williams Franco, Galloni, Seong Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

* For planar graphs, global classification of IR fixed points by cells in the Grassmannian
- We developed a full understanding of D3-D7 systems on toric CYs. This provides a Dbrane embedding of BFTs but has many other applications
- BFTs provide an alternative perspective on various equivalent systems: D-brane probes, integrable systems and on-shell diagrams

Other Topics

- Field theory interpretation of cluster transformations
© Non-planar \rightarrow planar reductions

The Future

- Explore the role of moduli space CYs for scattering amplitudes beyond the planar case

○ BFTs generate ideal triangulations of Riemann surfaces (Seiberg-Witten and Gaiotto curves of $4 \mathrm{~d}, \mathrm{~N}=2$ theories)

O New approaches to the positroid and matroid stratification of the Grassmannian

- Reducibility and Gauge Theory Dynamics

The Future

$>$ RG flow interpretation of graph reductions?
$>$ Field theoretic criterion for graph reducibility?
$>$ If so, can we map the classification of leading singularities to a classification of IR fixed points?

- Deconstruction

BFTs might provide the natural framework for studying 6d gauge theories via deconstruction. This could result in a more physical understanding of the emergence of certain mathematical structures such as the Grassmannian and cluster algebras Arkani-Hamed, Cohen, Georgi

Two data points: the $6 \mathrm{~d}(2,0)$ and little string theories on T^{2} are deconstructed by BFTs on T^{2}

Arkani-Hamed, Cohen, Kaplan, Karch, Motl

THANK YOU!

