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Introduction and Motivation 

 Over the last decade, we have witnessed remarkable progress in our understanding of 

Quantum Field Theory in various dimensions 

 Duality 

 Integrability 

 Scattering amplitudes 

 RG flows and degrees of freedom 

 Superconformal index 

More generally, SUSY gauge theories and geometry are intimately related (e.g. moduli 

spaces, Seiberg-Witten theory, etc) 

SCFTd AdSd+1 × X9-d 

 Most celebrated example: Gauge/Gravity Correspondence 

 Conformal bootstrap 

Many other directions: 



S
e

b
a

s
ti

a
n

 F
ra

n
c

o
 

4 

 Complicated theories are engineered by sewing or gluing elementary building blocks 

 General trend: defining SUSY gauge theories in terms of geometric or combinatorial  

objects such as bipartite graphs on a 2-torus, Riemann surfaces (Gaiotto and Sicilian 

theories) or 3-manifolds 

 QFT dualities correspond to rearrangements of the underlying geometric object 

 Today we will discuss a new class of quiver gauge theories, whose Lagrangian are 

specified by bipartite graphs on bordered Riemann surfaces 

 These theories are related to a variety of interesting physical systems, such as D3-branes 

on CY3-folds, cluster integrable systems and scattering amplitudes 

SU(2) SU(2) SU(2) 

SU(2) 

SU(2) 

SU(2) 

SU(2) 

SU(2) 

SU(2) 

 Furthermore, they combine several interesting ideas in the modern approach to QFTs  
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Bipartite Field Theories 

a 4d N=1 gauge theory whose Lagrangian is defined by a 

bipartite graph on a Riemann surface (with boundaries) 

 Bipartite Graph: 
 Every edge connects nodes of different color 

 Every boundary node is connected to a single edge 

Bipartite graph 

Edge: chiral bifundamental 

Face: U(N) group 

Riemann surface 

No superpotential term 

Bipartite Field Theory  
(BFT) 

Franco 

See also: Yamazaki, Xie 

Node: superpotential term 
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Internal 

boundary 

External 

 Internal faces: automatically anomaly free 

 This is a rather natural choice in cases in which the graph has a brane interpretation 

 Node color: 

 External faces 

Gauged 

Global 

 There are two types of faces in the graph: 

 Sign of corresponding superpotential term 

 Chirality of bifundamental fields 

Gauge and Global Symmetries 
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Graph BFT 

Internal face (2n-sided) Gauge group with n flavors 

External face Global symmetry group 

Edge between two faces Chiral multiplet in the bifundamental representation 

k-valent node Monomial in the superpotential involving k chiral 

multiplets, with (+/-) for (white/black) nodes 

 The BFT is given by a quiver dual to the bipartite graph 

The Dictionary 
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BFTs Everywhere 

 The 4d, N = 1 SCFT on a stack of D3-branes probing a toric CY3 is a BFT on a 2-torus 

Example: cone over F0 

U(1)2 global symmetry 

4 

1 2 

3 

3 3 

3 4 

2 

Franco, Hanany, Kennaway, Vegh, Wecht 

1. D3-Branes over CY 3-folds 

 Local constructions 
of MSSM + CKM 

 Dynamical SUSY Breaking 

 AdS/CFT Correspondence 
in 3+1 and 2+1 dimensions 

Cluster Algebras and CYs   

Mirror Symmetry   

Toric/Seiberg Duality   

D-brane Instantons 
  

Eager, SF 

SF, Hanany, Kennaway, 
Vegh, Wecht 

SF, Hanany, Krefl, Park, Uranga 

SF, Uranga 

SF, Hanany, Martelli, Sparks, Vegh, Wecht 

SF, Hanany, Park, Rodriguez-Gomez 

SF, Klebanov, Rodriguez-Gomez 

CY3 

D3s 

Quevedo et. al. 

Feng, He, Kennaway, Vafa 
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 Mirror symmetry relates this configuration to a system of D6-branes that is encoded by 

another BFT on an higher genus Riemann surface S 
Feng, He, Kennaway, Vafa 

n 

n+1 n+2 n+3 2n-1 2n 

1 2 3 n-1 

 Bipartite graphs on a 2-torus are also in one-to-one correspondence with an infinite 

class of integrable systems in (0+1) dimensions: Cluster Integrable Systems 

E.g.: n-particle, relativistic, periodic Toda chain 

Goncharov, Kenyon Franco 

Eager, Franco, Schaeffer 

Franco, Galloni, He 

 Constructing all integrals of motion is straightforward and combinatorial 

2. Integrable Systems 

 Rich connections to other scenarios in which these integrable systems appear, such as 5d 

N=1 (on S1) and 4d N=2 gauge theories avatars of the spectral curve S 
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3. Scattering Amplitudes 

 Recently, a connection between scattering amplitudes in planar N = 4 SYM, the 

Grassmannian and bipartite graphs has been established 
Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka 

 The Grassmannian G(k, n): space of k-dimensional planes in n dimensions 

n 

Points in G(k,n): 

C =

∗
∗
∗
  
∗
∗
∗
  
∗
∗
∗
  
∗
∗
∗

  k 
Rows: n-dimensional vectors 

spanning the planes 

n = # scattered particles k = # negative helicity 

 Leading singularities are in one-to-one correspondence with certain subspaces, also 

denoted cells, of G(k,n) parametrized by a constrained matrix C 

 The central idea is to focus on on-shell diagrams. They are constructed by combining 

3-point MHV and MHV amplitudes 

Bipartite graphs 
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 The on-shell approach is equivalent to a U(1) gauge theory on the graph which, in turn, 

is equivalent to an Abelian BFT 

Cells in G(k,n) Bipartite graphs On-shell diagrams 

 All necessary information for determining leading singularities (equivalently cells in 

the Grassmannian) is contained in certain minimal or reduced graphs 

The additional data in reducible graphs is necessary for determining the loop integrand 

Postnikov 

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka Franco 

 Scattering amplitudes can be determined in terms of on-shell diagrams 

Loop Integrand =  𝑑𝑙𝑜𝑔 𝑓𝑖  × (Reduced Graph) 
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Graphical Gauge Theory Dynamics 

P1(Xi) P2(Xi) 

X1 X2 

P1(Xi) × P2(Xi) 

W = X1P1 Xi + X2P2 Xi − X1X2 + ⋯ 

𝜕𝑋1
W = 0  

 
    X2= P1 Xi  

𝜕𝑋2
W = 0  

 
    X1= P2 Xi  

W = P1 Xi P2 Xi + ⋯ 

 2-valent nodes map to mass terms in the BFT. Integrating out the corresponding 

massive fields results in the condensation of the two nearest nodes  

The equations of motion of the massive fields become: 

Franco  

Yamazaki, Xie 

Massive Fields 

 Let us first focus on IR equivalences 

Gauge Theory 
Dynamics 

Graph 
Transformations 
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1)  Replaces electric quarks by magnetic quarks 

2)  Introduces mesons: 𝑀𝑖𝑗 = 𝑄 𝑖𝑄𝑗  

3)  Cubic superpotential couplings: ∆𝑊 =   𝑖𝑗 𝑞𝑖𝑀𝑖𝑗𝑞 𝑗 

This transformation: 

Nf = 2Nc 
gauge group 

𝑞 1 

𝑞 2 

𝑞2 𝑞1 

𝑀11 𝑀12 

𝑀21 𝑀22 

𝑄 1 𝑄 2 

𝑄2 

𝑄1 

 Seiberg duality of an Nf = 2Nc gauge group translated into a “square move” 

 When an Nf = Nc gauge group confines, the corresponding face is eliminated 

Nf = Nc gauge 
group 

Seiberg Duality 

Confinement 
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1 2 1/2 

 Removing an edge and combining two faces into a single one 

U(N) × U(N) 

Higgsing 

 This corresponds to a non-zero VEV for the scalar component of the removed edge 

 Other gauge theory transformations also have a natural graphic implementation 

 BCF bridges in on-shell diagrams 

U(N)d 

mass term 

 More generally, Higgsing translates into: 

 The boundary operator on cells in the positive Grassmannian Franco 

Arkani-Hamed et. al. 
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Reduced Graphs 

 Reduced Graph:  a graph with the minimal number of internal faces within a class 

connected by moves and reductions 

 Only defined up to equivalence moves not unique 

3)  Confine Nf = Nc gauge groups 

2)  Integrate out massive fields 

1)  Seiberg dualize an Nf = 2Nc gauge group 

 Reduced graphs play a central role in scattering amplitudes 

 Two important questions:  How to determine whether two graphs are connected 

by mergers and moves? And reductions? 

 How to identify reduced graphs 

Example: 

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka 

 Reduced Graph:  a BFT with minimal gauge symmetry within an IR equivalence class 

Leading Singularities 
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Perfect Matchings 

 Perfect matchings play a central role in connecting BFTs to geometry 

 (Almost) Perfect Matching: p is a subset of the edges in the graph such that: 

 Every internal node is the endpoint of exactly on edge in p 

 Every external node belongs to either one or zero edges in p 

 Map between chiral fields in the quiver Xi and perfect matchings pm: 

1  if Xi ∈ pμ 

0  if Xi ∉ pμ 
Piμ = Xi =  pμ

μ

 Piμ 

 Finding the perfect matchings reduces to calculating the determinant of an adjacency 

matrix of the graph (Kasteleyn matrix), and some generalizations Franco 

p1 p2 p3 p4 

p5 p6 p7 
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BFTs and Calabi-Yau Manifolds 

 The moduli space of any BFT is automatically a toric CY and perfect matchings simplify 

its computation. We can identify them with GLSM fields in their toric description 

P1(Xi) P2(Xi) 

X0 
= 

W = X0P1 Xi − X0P2 Xi + ⋯ 𝜕𝑋0
W = 0    

 
     P1 Xi = P2 Xi  

 For any bifundamental field X0 associated to an internal edge: 

Graphically: 

 The parametrization of bifundamental fields in terms of perfect matchings given by 

the matrix P, automatically satisfies F-term equations of internal edges 

 BFTs are naturally associated to certain geometries via their moduli spaces 

1  if Xi ∈ pμ 

0  if Xi ∉ pμ 
Piμ = 

F-Flatness and Perfect Matchings 
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The Master Space 

   Master space             space of solutions to F-term equations 

parametrized in terms of perfect matchings (GLSM fields) and toric 

GLSM charges  

Toric Diagram 

1 

2 

3 

4 

5 

Forcella, Hanany, He, Zaffaroni 

Relations 

 7 perfect matchings 

 5d toric CY 

Example: 
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The Moduli Space 

   Moduli Space 
 Space of solutions to vanishing F and D-terms 

 Projection of the Master Space onto vanishing D-terms 

 One D-term contribution for every gauge group internal face of the graph 

2 

 The moduli space is invariant under all equivalence moves (integrating out massive 

fields, Seiberg duality, etc)  Ideal diagnostic for identifying graphs related by them 

Perfect matchings 

whose difference is an 

internal loop  

 Example: 

1 

2 

3 

4 

5 

p1 p2 p3 p4 p5 p6 p7 

0 1 1 0 -1 -1 0 Q1 =   

4d toric CY 

 It applies to completely general BFTs. Other methods, e.g. permutations, exist for 

planar graphs 
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 Remarkably, when restricting to planar graphs, precisely these two structures arise in 

the classification of cells in the positive Grassmannian 

   Master Space 

Higgsing 

(Edge removal) 

  Moduli Space 

IR Equivalences 

(Moves and reductions) 
Useful for: 

BFTs thus provide natural generalizations of these objects beyond 

planar graphs 

Postnikov, Speyer, Williams 

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka 

Matching Polytope Matroid Polytope Grassmanian: 

IR fixed points 
Cells in the Grassmannian 

Leading Singularities 

Higgsing 
Boundary operator 

BCF bridges 

Franco, Galloni, Seong 

Franco 
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Stringy Embedding of BFTs 

D3s 

D7-D7   

D3-D7   

D3-D3   

2-cycle 

D7 D7’ 

4-cycle 

 It is possible to engineer generic planar BFTs using D-branes over toric CY 3-folds 

 Internal faces        Fractional D3-branes 

 External faces        Flavor D7-branes 

Franco, Uranga  

Heckman, Vafa, Yamazaki, Xie  
(sub-classes) 

 We developed a general framework for computing the spectrum and superpotential 

interactions for a general D-brane configuration over toric singularities 

 D3-branes on toric CY 3-folds correspond to bipartite graphs on T2 

D7 

D3 

Franco, Hanany, Kennaway, Vegh, Wecht 
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 Mirror Geometry: 
𝑃 𝑥, 𝑦 = 𝑤 

𝑢 𝑣 = 𝑤 
Σ:     𝑃 𝑥, 𝑦 = 0 

D3-branes 

D7-branes 

compact 

non-compact 

D6-branes over 3-cycles 

(1-cycles on S) 

 Infinite families of planar and non-planar BFTs can be explicitly engineered in terms 

of D-branes using these tools 

 The bipartite graph is mapped from T2 to the Riemann surface S, which controls the 

physics  

Example: C3/Z3 

 The spectrum and interactions can be straightforwardly determined from the mirror 

configuration. E.g.: non-compact 1-cycles sharing a puncture lead to D7-D7’ states 

Feng, He, Kennaway, Vafa 

Franco, Uranga  

pair of punctures 4-cycle 

full trajectory “Chan-Paton” 

degrees of freedom 

D7-D7’ 
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Conclusions 

 We introduced BFTs, a new class of 4d, N = 1 gauge theories defined by bipartite 

graphs on Riemann surfaces. We also developed efficient tools for studying them. 

 Gauge theory dynamics is captured by simple graph transformations 

 CY manifolds emerge as moduli spaces 

 For planar graphs, global classification of IR fixed points by cells in the Grassmannian 

 Field theory interpretation of cluster transformations 

 Non-planar → planar reductions 

Other Topics 

 We developed a full understanding of D3-D7 systems on toric CYs.  This provides a D-

brane embedding of BFTs but has many other applications 

 BFTs provide natural generalizations, based on standard N=1 gauge theory knowledge, 

of Grassmannian objects (e.g. matching and matroid polytopes) beyond the planar case 

 BFTs provide an alternative perspective on various equivalent systems: D-brane probes, 

integrable systems and on-shell diagrams  

Franco, Galloni, Seong 

Franco 

Postnikov, Speyer, Williams 

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka Franco, Galloni, Seong 

Franco 
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 BFTs generate ideal triangulations of Riemann surfaces (Seiberg-Witten and Gaiotto 

curves of 4d, N=2 theories)                         N=2 BPS quivers 

 Explore the role of  moduli space CYs for scattering amplitudes beyond the planar case 

 New approaches to the positroid and matroid stratification of the Grassmannian 

 Reducibility and Gauge Theory Dynamics 

UV 

IR 

Multi-loop 

integrand 

Leading 

singularity 

Franco 

Heckman, Vafa, Yamazaki, Xie 

Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa 

Franco, Galloni, Mariotti (in progress) 
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The Future 
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 RG flow interpretation of graph reductions? 

 Field theoretic criterion for graph reducibility? 

 If so, can we map the classification of leading singularities to a classification of IR fixed 

points? 

 Deconstruction 

Two data points: the 6d (2,0) and little string theories on T2 are deconstructed by BFTs 

on T2 

BFTs might provide the natural framework for studying 6d gauge theories via 

deconstruction. This could result in a more physical understanding of the emergence 

of certain mathematical structures such as the Grassmannian and cluster algebras 

Arkani-Hamed, Cohen, Kaplan, Karch, Motl 

Arkani-Hamed, Cohen, Georgi 

Perhaps theories by Bah, Beem, Bobev, Wecht  
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