Finite density simulations via canonical approach

Manfried Faber, Ivan Horvath, Keh-Fei Liu Andrei Alexandru

hep-lat/0507020

Outline

- Motivation
- Canonical partition function
- Algorithm
- Results
- Outlook

Motivation – Phase diagram

Ц.

Motivation

ц.

Grand canonical partition function

 $\overline{\psi} M[\mu; U] \psi = \sum_{n} (\overline{\psi}_{n} \psi_{n} + k \overline{\psi}_{n+\hat{i}} (1+\gamma_{4}) U_{4}^{+}(n) e^{\mu a} \psi_{n} + k \overline{\psi}_{n} (1-\gamma_{4}) U_{4}(n) e^{-\mu a} \psi_{n+\hat{i}} + \ldots)$

$$Z_{GC}(V, \mu = \mu_{R} + i(\mu_{I} + 2\pi T/3), T) = Z_{GC}(V, \mu = \mu_{R} + i\mu_{I}, T)$$

$$Z_{C}(V, n, T) = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi e^{-in\varphi} Z_{GC}(V, \mu = i\varphi T, T)$$

$$\varphi \to \varphi = \varphi' + \frac{2\pi}{3}$$

$$Z_{C}(V, n, T) = \frac{1}{2\pi} \int_{0}^{2\pi} d\varphi' e^{-in(\varphi' + \frac{2\pi}{3})} Z_{GC}(V, \mu = i(\varphi' + \frac{2\pi}{3})T, T)$$

$$Z_{C}(V, n, T) = e^{-in\frac{2\pi}{3}} Z_{C}(V, n, T) \Longrightarrow Z_{C}(V, n, T) = 0 \text{ if } n \neq 3B$$

Triality

$$Z_{C}(V,n,T) = \int DU \ e^{-S_{G}(U)} \det_{n} M^{2}(U) =$$

$$\int DU \ e^{-S_{G}(U)} \det M^{2}(U,0) \frac{\left|\operatorname{Redet}_{n} M^{2}(U)\right|}{\det M^{2}(U,0)} \frac{\det_{n} M^{2}(U)}{\det M^{2}(U,0)}$$

Phase Accept/Reject Standard HMC For HMC we use the phi algorithm for 2 degenerate flavors.

The HMC proposal is accepted/rejected based on the determinant ratio. Z(3) hopping is performed at the end of each HMC trajectory.

Fluctuations

Using the HMC as a proposal rather than pure gauge update decreases fluctuations and improves the acceptance rate.

Z(3) hopping

- The canonical partition function is Z(3) symmetric
- To preserve this in the discretized version N has to be a multiple of 3
- The proposal mechanism (HMC) breaks this symmetry and can freeze the simulation

$U \rightarrow U(\pm 2\pi/3)$

Run parameters

All runs are on a 4⁴ lattice with Wilson fermions at $\kappa = 0.158$.

T(MeV)	144(1)	153(2)	157(2)	164(1)	173(3)	189(1)	211(2)
$V^{-1}(fm^{-3})$	0.387(7)	0.468(17)	0.510(15)	0.579(6)	0.682(36)	0.889(10)	1.235(32)
$m_{\pi}(\mathrm{MeV})$	926(7)	945(13)	942(11)	945(5)	945(20)	973(9)	959(14)
a(fm)	0.343(2)	0.322(4)	0.313(3)	0.300(1)	0.284(5)	0.260(1)	0.233(2)
β	5.00	5.10	5.15	5.20	5.25	5.30	5.35

We adjusted the length of the HMC trajectories to keep the acceptance rate at about 15-30%.

Run parameters

Phase diagram

For N=12 we have Q=0 for n=0 and n=6. The only non-trivial case is n=3. Below T~170MeV there is almost no mixing.

Sign problem

Polyakov loop

At T~170MeV we observe a sharp increase in |P|.

This signals deconfinement.

To see a shift in the transition temperature we need more data.

Chemical potential

$$\mu_B = F(B+1) - F(B) = -\frac{1}{\beta} \ln \frac{Z_{B+1}}{Z_B} = -\frac{1}{\beta} \ln \left\langle e^{-i3\theta} \right\rangle_{3B}$$

Below $T \sim 170$ MeV we see that the chemical potential is the same for both densities. Above T~170MeV we have a repulsive interaction between quarks.

Transition line

Conclusions and Outlook

- This is an exploratory study. We are mainly interested in the feasibility of the algorithm and to find ways to improve it.
- We are able to simulate at large densities at least in the vicinity of the critical temperature.
- This method can be used to determine the reliability of the reweighting techniques.
- Collect better statistics to determine the phase transition line from the jump in the Polyakov loop.
- Implement an estimator to explore larger lattices, smaller densities.