Thermodynamics of strongly interacting matter from Lattice QCD

Frithjof Karsch, BNL

Phase diagram of strongly interacting matter

From Hadron Gas to Quark Gluon Plasma

Strongly interacting (coupled) QGP

Iarge number of heavy colored bound states that could exist for $T_c \leq T \leq (2-3)T_c \text{ due to a strong (Coulomb) interaction}$ among quarks above T_c ; E. Shuryak, I. Zahed, 2004
Extreme QCD, Swansea 07/05 - p.3/30

...a contribution to the discussion of the strongly coupled QGP (sQGP) scenario:

Deconfinement:

Heavy quark free energies; asymptotic freedom & screening; the running of the QCD coupling constant at short and large distances

Equation of State:

the QCD transition; non-perturbative structure of the EoS at high temperature;

finite density QCD and fluctuations in the QGP: Do they rule out the sQGP model?

Deconfinement and asymptotic freedom

asymptotic freedom \Rightarrow deconfinement (the original concept):

- N. Cabibbo, G. Parisi, Exponential Hadronic Spectrum and Quark Liberation, PL B59 (1975) 67;
 J.C. Collins, M.J. Perry, Superdense Matter: Neutrons and asymptotically free quarks? PRL 34 (1975) 1353
 - deconfinement is a consequence of asymptotic freedom
 - deconfinement \Leftrightarrow liberation of many new degrees of freedom, asymptotically free $q\bar{q} + g$ gas
 - deconfinement is density driven

↑ evidence from LGT

Confinement and deconfinement

confinement

- stick together, find a comfortable separation
- controlled by confinement potential

 $V(r)=-rac{4}{3}rac{lpha(r)}{r}+\sigma r$

deconfinement

- free floating in the croud
- average distance always smaller than r_{af} :

$$r_{af} = \sqrt{rac{4}{3} rac{lpha(r)}{\sigma}} ~\simeq~ 0.25\,{
m fm}$$

Density driven transition: Critical temperature & EoS

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$ $m_{GB} \simeq 1.5 \; GeV: \; T_c \simeq 265 \; MeV$ $(m_{PS} = \infty)$

lightest masses apparently do not control the transition

Density driven transition: Critical temperature & EoS

 $m_{PS} \simeq 140 \; MeV: \; T_c \simeq 175 \; MeV$ $m_{GB} \simeq 1.5 \; GeV: \; T_c \simeq 265 \; MeV$ $(m_{PS} = \infty)$

lightest masses apparently do not control the transition

change in ϵ_c/T_c^4 compensated by shift in T_c transition sets in at similar energy (or parton) densities \Rightarrow percolation

Heavy quark free energies: Testing $\bar{q}q$ interactions in matter

Static quark and anti-quark sources in a thermal heat bath

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} \;=\; rac{1}{9} \langle \mathrm{Tr} L_{ec{x}} \mathrm{Tr} L_{ec{0}}^{\dagger}
angle$$

asymptotic freedom, screening, string breaking

singlet free energy 3 in 2-flavor QCD 2.5 2 $(m_q/T = 0.4)$ 1.98 1.5 O.Kaczmarek, F. Zantow; 1 hep-lat/0503017 0.5 similar: 0 -0.5 P.Petreczky, K. Petrov -1 hep-lat/0405009 0.5

Heavy quark free energies: Testing $\bar{q}q$ interactions in matter

Static quark and anti-quark sources in a thermal heat bath

change in free energy due to presence of external sources

L.G. McLerran, B. Svetitsky, Phys. Rev. D24 (1981) 450

$$\mathrm{e}^{-F_{ar{q}q}(r,T)/T} \;=\; rac{1}{9} \langle \mathrm{Tr} L_{ec{x}} \mathrm{Tr} L_{ec{0}}^{\dagger}
angle$$

asymptotic freedom, screening, string breaking

Singlet free energy – remnant of confinement vs. sQCD –

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/0406036 2-flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/0503017

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/0406036 2-flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/0503017

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/0406036 2-flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/0503017

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, hep-lat/0406036 2-flavor QCD: O.Kaczmarek, F. Zantow, hep-lat/0503017

singlet free energy defines a running coupling:

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \leq 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag(T)T, \ A \simeq 1.5$
- perturbative limit is reached very slowly 10^{100} 10^{10} 10 1 0.5 4.0(logarithms at work!!) T/Λ \overline{MS} SU(3) m_D/T m/gT4 $N_{f}=0$ — $N_{c}=2$ — 3.0 $m_D/T = Ag(T)$ 3 A=1.42(2)2.0 2 $\bigcirc \beta_{G}$ =144 32 1.0 1 T/T_c х 0 0.0 10^{-3} 10^{-2} 10^{-1} 1 1.5 2 2.5 3 3.5 4 O.Kaczmarek, F.Zantow, PRD 71 (2005) 114510 K.Kajantie et al, PR

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \leq 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag(T)T, \ A \simeq 1.5$
- perturbative limit is reached very slowly 10^{100} 10^{10} 10 1 0.5 4.0(logarithms at work!!) T/Λ \overline{MS} SU(3) m_D/T m/gT $N_{f}=0$ — $N_{c}=2$ — 4 3.0 $m_D/T = Ag(T)$ 3 A=1.42(2)2.0 2 $\bigcirc \beta_{G}$ =144 32 1.0 1 $g(T) \simeq 1.5 \iff lpha(T) \simeq 0.18$ T/T_c х 0 0.0 10^{-3} 10^{-2} 10^{-1} 1 1.5 2 2.5 3 3.5 4 O.Kaczmarek, F.Zantow, PRD 71 (2005) 114510 K.Kajantie et al, PR

QCD equation of state

- Iattice calculations established basic results on the transition at $T \neq 0$, the EoS and properties of the high temperature phase
 - $T_c = (175 \pm 8 \pm sys) \ MeV \ (\text{for } n_f = 2)$ $\epsilon_c = (6 \pm 2)T_c^4 \simeq (0.3 - 1.3) \ GeV/fm^3$

QCD equation of state

- two features of EoS are central in the ongoing discussion of a strongly coupled QGP (sQGP)
 - strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \sim 3T_c$

Velocity of sound

steep EoS:

rapid change of energy density; slow change of pressure

 \Rightarrow reduced velocity of sound \Rightarrow more time for equilibration

QCD equation of state

- two features of EoS are central in the ongoing discussion of strongly coupled QGP (sQGP)
 - deviations from Stefan-Boltzmann limit persist even at high temperature

free energy density in the high temperature limit ($\alpha_s \equiv g^2/4\pi$):

$$\frac{f}{T^4} = -\frac{1}{V}\ln Z = -\frac{d_q \pi^2}{90} \left[1 + f_2 \alpha_s + f_3 \alpha_s^{3/2} + f_4 \alpha_s^2 + f_5 \alpha_s^{5/2} + O(\alpha_s^3) \right]$$

P. Arnold and C. Zhai, Phys. Rev. D50 (1994) 7603; [SU(3)]

- C. Zhai and B. Kastening, Phys. Rev. D52 (1995) 7232; [QCD, $\mu = 0$]
- A. Vuorinen, hep-ph/0305183; [QCD, $\mu > 0$]

free energy density in the high temperature limit:

resummed self-energy; $\frac{f}{T^4} = -\frac{1}{V} \ln Z = -\frac{d_q \pi^2}{90} \left[1 + f_2 \alpha_s + f_3 \alpha_s^{3/2} + + f_4 \alpha_s^2 + f_5 \alpha_s^{5/2} + O(\alpha_s^3) \right]$

free energy density in the high temperature limit:

resummed self-energy; electric screening; $m_e(T) = \sqrt{\frac{N_c}{3} + \frac{n_f}{6}}g(T) T$ $\frac{f}{T^4} = -\frac{1}{V} \ln Z = -\frac{d_q \pi^2}{90} \left[1 + f_2 \alpha_s + f_3 \alpha_s^{3/2} + +f_4 \alpha_s^2 + f_5 \alpha_s^{5/2} + O(\alpha_s^3)\right]$

> loops at all orders contribute non-perturbative magnetic mass

 $m_m(T) \sim \mathcal{O}(g^2 \ T),$ (A.D. Linde, 1980)

free energy density in the high temperature limit:

resummed self-energy; electric screening; $m_e(T) = \sqrt{\frac{N_c}{2} + \frac{n_f}{\epsilon}}g(T) T$ $\frac{f}{T^4} = -\frac{1}{V} \ln Z = -\frac{d_q \pi^2}{90} \left[1 + f_2 \alpha_s + f_3 \alpha_s^{3/2} + f_4 \alpha_s^2 + f_5 \alpha_s^{5/2} + O(\alpha_s^3) \right]$ loops at all orders contribute 1.4 non-perturbative magnetic mass 1.2 $m_m(T) \sim \mathcal{O}(g^2 T),$ 1.0 (A.D. Linde, 1980) 0.8 SU(3) poor convergence properties; g(T) < 1 needed; $\mu = 2\pi T$ 0.6 thermodynamics non-perturbative even at α_{s} 0.00 0.05 0.10 0.15 0.20 0.25 $T>>\Lambda_{QCD}\simeq 200~{\rm MeV}$

HTL quark propagator

E. Braaten, R.D. Pisarski, T.C. Yuan, PRL 64 (1990) 2242

• ϕ^4 : screened perturbation theory shows better convergence

FK, A. Patkos, P. Petreczky, PL B401 (1997) 69

• HTL-resummed perturbation theory for pressure takes into account thermal masses of quark and gluon propagators

$$\rho_{\rm HTL}(\omega,\vec{q}) = \frac{1}{2}\rho_+(\omega,q)(\gamma_0 - i\,\hat{q}\cdot\vec{\gamma}) + \frac{1}{2}\rho_-(\omega,q)(\gamma_0 + i\,\hat{q}\cdot\vec{\gamma})$$

with

$$\rho_{\pm}(\omega,q) = \frac{\omega^2 - q^2}{2m_T^2} [\delta(\omega - \omega_{\pm}) + \delta(\omega + \omega_{\mp})] + \beta_{\pm}(\omega,q)\Theta(q^2 - \omega^2)$$

pole

 $m_T \sim g(T)T$

cut

HTL quark propagator

E. Braaten, R.D. Pisarski, T.C. Yuan, PRL 64 (1990) 2242

• ϕ^4 : screened perturbation theory shows better convergence

FK, A. Patkos, P. Petreczky, PL B401 (1997) 69

• HTL-resummed perturbation theory for pressure takes into account thermal masses of quark and gluon propagators

$$\rho_{\rm HTL}(\omega,\vec{q}) = \frac{1}{2}\rho_+(\omega,q)(\gamma_0 - i\,\hat{q}\cdot\vec{\gamma}) + \frac{1}{2}\rho_-(\omega,q)(\gamma_0 + i\,\hat{q}\cdot\vec{\gamma})$$

lattice quark dispersion relation:

SU(3) Equation of State pressure: LGT vs. HTL

high T part of the pressure calculated on the lattice is in good agreement with HTL-resummed perturbation theory for $T\gtrsim 3T_c$

supports quasi-particle picture/models: A. Peshier et al, PRD54 (96) 2399 P. Lévai and U. Heinz, PR C57 (98); R.A. Schneider and W. Weise, PR C64 (01)

The sQGP model

E.V. Shuryak, I. Zahed, PR D 70 (2004) 054507

heavy colored bound states for $T_c \leq T \lesssim 2T_c$:

 $m_{
m col} pprox 11.5 \, T_c \left((T/3T_c)^{0.5} + 0.1T_c/(T-T_c)
ight)$

- $\sim 200 \ qg$ and $\bar{q}g$ states; $\sim 100 \ qq$ and $\bar{q}\bar{q}$ states ($n_f = 2$)
- contribute to the pressure like in a resonance gas (Boltzmann approximation) with reduced weight factor,

 $R(T) = \frac{1}{1 + \exp[2(T - 2T_c)/T_c]}$

to mimic "melting" of the states

The sQGP model

E.V. Shuryak, I. Zahed, PR D 70 (2004) 054507

heavy colored bound states for $T_c \leq T \lesssim 2T_c$:

 $m_{
m col} pprox 11.5 \, T_c \left((T/3T_c)^{0.5} + 0.1T_c/(T-T_c) \right)$

- $\sim 200 \ qg$ and $\bar{q}g$ states; $\sim 100 \ qq$ and $\bar{q}\bar{q}$ states ($n_f = 2$)
- contribute to the pressure like in a resonance gas (Boltzmann approximation) with reduced weight factor,

$$\begin{split} R(T) &= \frac{1}{1 + \exp[2(T - 2T_c)/T_c]} \\ \text{to mimic "melting" of the states} \\ p/T^4 &\simeq F_q(T) + R(T) \left(F_{qg}(T) + F_{qq}(T)\right) \\ F_x(T) &\sim (d.o.f.)_x \left(\frac{m_{col}}{T}\right)^2 K_2(m_{col}/T) \\ \end{split}$$

The sQGP model

E.V. Shuryak, I. Zahed, PR D 70 (2004) 054507

heavy colored bound states for $T_c \leq T \lesssim 2T_c$:

 $m_{
m col} pprox 11.5 \, T_c \left((T/3T_c)^{0.5} + 0.1T_c/(T-T_c) \right)$

- $\sim 200 \ qg$ and $\bar{q}g$ states; $\sim 100 \ qq$ and $\bar{q}\bar{q}$ states ($n_f = 2$)
- contribute to the pressure like in a resonance gas (Boltzmann approximation) with reduced weight factor,

 $R(T) = rac{1}{1 + \exp[2(T - 2T_c)/T_c]}$

to mimic "melting" of the states

$$\mu_q > 0: p/T^4 = F_q(T) \cosh(\mu_q/T) + R(T) \left(F_{qg}(T) \cosh(\mu_q/T) + F_{qg}(T) \cosh(\mu_q/T)\right)$$

Bulk thermodynamics with non-vanishing chemical potential

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

Bulk thermodynamics with non-vanishing chemical potential

$$Z(V, T, \mu) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(V, T, \mu)}$$

= $\int \mathcal{D}\mathcal{A} \left[det \ M(\mu)\right]^f e^{-S_G(V, T)}$
(complex fermion determinant;
 ψ Taylor expansion;
 $\frac{p}{-L} = \frac{1}{2\pi m^2} \ln Z(V, T, \mu)$

$$T^{4} = VT^{3} \prod \mathcal{L}(\mathbf{v}, \mathbf{1}, \mu)$$

$$\equiv \sum_{n=0}^{\infty} c_{n}(T) \left(\frac{\mu}{T}\right)^{n}$$

$$= c_{0} + c_{2} \left(\frac{\mu}{T}\right)^{2} + c_{4} \left(\frac{\mu}{T}\right)^{4} + c_{6} \left(\frac{\mu}{T}\right)^{6} + \mathcal{O}((\mu/T)^{8})$$

$$\mu = 0 \qquad \Rightarrow \qquad rac{p}{T^4} \equiv c_0(T)$$

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

 $\mu_q = 0$, $16^3 \times 4$ lattice improved staggered fermions; $n_f=2,\ m_\pi\simeq 770\ MeV$ 5 p/T⁴ p_{SB}/T 4 3 0.6 flavou 2 flavour 2 flavour pure gauge 0.4 1 T [MeV] 0 100 200 300 400 500 600

pattern for $\mu_q = 0$ and $\mu_q > 0$ similar; quite large contribution in hadronic phase; $\mathcal{O}((\mu/T)^6)$ correction small for $\mu_q/T \lesssim 1$ PRD71 (2005) 054508

contribution from $\mu_q/T > 0$ NEW: Taylor expansion, $\mathcal{O}((\mu/T)^6)$

Extreme QCD, Swansea 07/05 - p.21/30

Hadronic fluctuations at $\mu_q = 0$ from Taylor expansion coefficients for $\mu_q > 0$

S. Ejiri, FK, K.Redlich, in preparation

quark number and isospin chemical potentials:

$$\mu_q = rac{1}{2}(\mu_u + \mu_d), \;\; \mu_I = rac{1}{2}(\mu_u - \mu_d)$$

expansion coefficients evaluated at $\mu_{q,I} = 0$ are related to hadronic fluctuations at $\mu = 0$:

↑ baryon number, isospin, charge

event-by-event fluctuations at RHIC and LHC

$$egin{aligned} d_2^x &= rac{\partial^2 \ln \mathcal{Z}}{\partial (\mu_x/T)^2} \,=\, rac{1}{VT^3} \langle (\delta N_x)^2
angle_{\mu=0} &= rac{1}{VT^3} \langle N_x^2
angle_{\mu=0} \ d_4^x &= rac{\partial^4 \ln \mathcal{Z}}{\partial (\mu_x/T)^4} \,=\, rac{1}{VT^3} \left(\langle (\delta N_x)^4
angle - 3 \langle (\delta N_x)^2
angle
ight)_{\mu=0} &= rac{1}{VT^3} \left(\langle N_x^4
angle - 3 \langle N_x^2
angle
ight)_{\mu=0} \ ext{with} \quad , \quad x = q, I, Q \quad ext{and} \quad \partial_Q &\equiv rac{2}{3} rac{\partial}{\partial \mu_u/T} - rac{1}{3} rac{\partial}{\partial \mu_d/T} \end{aligned}$$

Quark number and charge fluctuations at $\mu_B = 0$; 2-flavor QCD ($m_\pi \simeq 770~MeV$)

monotonic increase; close to ideal gas value for $T \ge 1.5T_c$

develops cusp at T_c

reaches ideal gas value for $T \gtrsim 1.5T_c$

Cumulant ratios

ratios of cumulants reflect carriers of baryon number and charge

Hadronic resonance gas \Rightarrow Boltzmann approximation

heavy resonances, $T \ll m_H \Rightarrow$ Boltzmann statistics

$$\mu_B \equiv B\mu_q$$

thermodynamics:
$$p(T, \mu_B) = \frac{T}{V} \ln Z(T, \mu_B, V) = \sum_m p_m(T, \mu_B)$$

$$\ln Z(T,\mu_B,V) = \sum_{i \in \text{mesons}} \ln Z^B_{m_i}(T,V) + \sum_{i \in \text{baryons}} \ln Z^F_{m_i}(T,\mu_B,V)$$

contribution of baryons (fermions, -) or mesons (bosons, +) with mass m

$$\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 \sum_{\ell=1}^{\infty} (\pm 1)^{\ell+1} \ell^{-2} K_2(\ell m/T) \cosh(\ell \mu_B/T)$$

$$\uparrow K_2(x) \simeq \sqrt{\pi/2x} \exp(-x) , \ x >> 1$$

• only $\ell = 1$ contributes for $(m_H - \mu_B) \gtrsim T$

 \Rightarrow Boltzmann approximation:

$$\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 K_2(m/T) \cosh(\mu_B/T)$$

Hadronic resonance gas \Rightarrow Boltzmann approximation

 $\mu_B \equiv B\mu_a$ heavy resonances, $T \ll m_H \Rightarrow Boltzmann statistics$ thermodynamics: $p(T, \mu_B) = \frac{T}{V} \ln Z(T, \mu_B, V) = \sum p_m(T, \mu_B)$ baryons: $\mu_3 = 3\mu_a$ diquarks: $\ln Z(T, \mu_B, V) = \sum \ln Z_{m_i}^B(T, V) + \sum \ln Z_{m_i}^F(T, \mu_B, V)$ $i \in \text{mesons}$ $\mu_2 = 2\mu_a$ $i \in \text{baryons}$ contribution of baryons (fermions, -) or mesons (bosons, +) with mass mquasi-part.: $\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 \sum_{\ell=1}^{\infty} (\pm 1)^{\ell+1} \, \ell^{-2} \, K_2(\ell m/T) \, \cosh(\ell \mu_B/T)$ $\mu_1 = \mu_q$ $K_2(x) \simeq \sqrt{\pi/2x} \exp(-x), x \gg 1$

• only $\ell = 1$ contributes for $(m_H - \mu_B) \gtrsim T$

 \Rightarrow Boltzmann approximation:

$$\frac{p_m}{T^4} = \frac{d}{\pi^2} \left(\frac{m}{T}\right)^2 K_2(m/T) \cosh(\mu_B/T)$$

The sQGP model: $\mu > 0$

E.V. Shuryak, I. Zahed, PR D 70 (2004) 054507

heavy colored bound states for $T_c \leq T \lesssim 2T_c$:

 $m_{
m col} pprox 11.5 \, T_c \left((T/3T_c)^{0.5} + 0.1T_c/(T-T_c) \right)$

- $\sim 200 \ qg$ and $\bar{q}g$ states; $\sim 100 \ qq$ and $\bar{q}\bar{q}$ states ($n_f = 2$)
- contribute to the pressure like in a resonance gas (Boltzmann approximation) with reduced weight factor,

 $R(T) = \frac{1}{1 + \exp[2(T - 2T_c)/T_c]}$ that reflects "melting" of the states $\mu_q > 0: p/T^4 = F_q(T) \cosh(\mu_q/T)$ $+R(T) \left(F_{qg}(T) \cosh(\mu_q/T)\right)$ $+F_{qq}(T) \cosh(2\mu_q/T)$

Fluctuations and colored bound states

A hadronic resonance gas: $p/T^4 = F_B(T) \cosh(3\mu_q/T) : d_n^q = 3^n F_B(T) \Rightarrow R_{4,2}^q = 9$

If heavy colored diquarks contribute to fluctuations above T_c :

 $d_2^q = F_q(T) + R(T) ig(F_{qg}(T) + 4F_{qq}(T)ig)$

 $d_4^q = F_q(T) + R(T) (F_{qg}(T) + 16F_{qq}(T))$

increase in baryon number density fluctuations in the QGP due to "doubly charged" diquarks not confirmed by LGT:

sQGP:
$$\Rightarrow R_{4,2}^q = \frac{d_4^q}{d_2^q} \simeq 2.1$$

at $T \simeq 2 \ Tc$

Fluctuations and colored bound states

$$n_f$$
-dependence:

 $d_2^q = F_q(T) + R(T) ig(F_{qg}(T) + 4F_{qq}(T)ig)$

 $d_4^q = F_q(T) + R(T) (F_{qg}(T) + 16F_{qq}(T))$

increase in baryon number density fluctuations in the QGP due to "doubly charged" diquarks not confirmed by LGT:

sQGP:
$$\Rightarrow R^q_{4,2} = \frac{d^q_4}{d^q_2} \simeq 2.1$$

at $T \simeq 2 \ Tc$

Fluctuations and colored bound states

Charge fluctuations and colored bound states

- In hadronic resonance gas: $R_{4,2}^Q \equiv \frac{d_4^Q}{d_2^Q} \rightarrow 1$ for $T \rightarrow 0$
- heavy colored diquarks dominate the fluctuations above T_c : $sQGP: \Rightarrow R_{4,2}^Q \simeq 0.62$ at $T \simeq 2 T_c$
- Iarge charge fluctuations in the QGP not confirmed by LGT

Similar conclusion drawn from baryon-strangeness correlations, V.Koch, A.Majumder, J.Randrup, nucl-th/0505052

Conclusions

- running coupling:
 - T-independent at short distances;
 - $g(T) \simeq 1.5$ describes screening for $rT \gtrsim 1$;
 - free energies above T_c reflect "remnants of confinement"
- equation of state:
 - strong deviations from $\epsilon=3p$ for $T{\lesssim}(2-3)T_c$
 - consistent with HTL-resummation for $T\!\gtrsim\!3T_c$
- hadronic fluctuations above T_c
 - consistent with QCD perturbation theory for $T\!\gtrsim\!2T_c$
 - no evidence for contributions from a large number of colored bound states in terms of a simple, non-interacting resonance gas

... another ingredient in the discussion of the sQCD model or its justification through lattice results

"resonance-like" structures in spectral functions of (light quark) pseudo-scalar and vector mesons

Light quark lattice correlators: pseudo-scalar and vector channel

Light quark lattice correlators: pseudo-scalar and vector channel

vector spectral functions

(Pseudo-)scalar and vector spectral functions above T_c

Lattice and HTL spectral functions

Lattice and HTL spectral functions

Lattice and HTL dilepton rates

