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Introduction

We are interested in QCD at small
quark-number chemical potential µ and
temperature. In particular, we are look-
ing for the critical end-point.

QCD at finite isospin chemical po-
tential µI has some similarities to QCD
at finite µ, but lacks the sign problem.
In particular, Tc for the finite-temperature
transition at small µI appears to be the
same as for small µ provided µI = 2µ.
We conjecture that the critical endpoints
might be coincident.

De Forcrand, Kim and Takaishi have
noted that QCD at small µI is a better
candidate for reweighting approaches to
QCD at small µ, than QCD at µ =
0. This is a further indication that the
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physics at (β, µ) and at (β, µI = 2µ) is
similar. When the phase of the fermion
determinant is under control, this is per-
haps not so surprising.

We are simulating 3-flavour lattice
QCD (staggered fermions) at small µI
and at T close to Tc on 83×4 and 123×
4 lattices. Binder cumulants (B4) for
ψ̄ψ are used to study the nature of the
transition.

We are studying the dependence of
B4 on dt in hybrid molecular-dynamics
simulations. B4 and χψ̄ψ show consid-
erable dt dependence.
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Lattice QCD at finite isospin density

The staggered quark action for lat-
tice QCD at finite µI is

Sf =
∑

sites
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The explicit symmetry breaking term
proportional to λ is only needed for µI ≥
mπ where, in the low temperature phase,
I3 is broken spontaneously by a charged
pion condensate. The fermion determi-
nant is
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which is positive.
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3-flavour QCD at finite isospin density
and temperature — finite dt effects

For Nt = 4 the finite temperature
transition for 3 flavours of staggered quarks
changes from first order to a crossover
at mc ≈ 0.033 (Karsch, Laermann and
Schmidt) for µ, µI = 0.

It is believed that for µ > 0 or µI >
0, mc increases and becomes the critical
end point.

We are simulating 3-flavour lattice
QCD at 0 ≤ µI < mπ for 0.25 ≤ m ≤
0.4 on 83× 4 and 123× 4 lattices, using
Binder cumulants (B4) for ψ̄ψ to de-
termine the position and nature of the
transition. 5 stochastic estimates of ψ̄ψ
(and j30) are made at the end of each
trajectory. This gives us unbiased esti-
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mators for B4(ψ̄ψ) and χψ̄ψ.

B4(ψ̄ψ) =
〈(ψ̄ψ − 〈ψ̄ψ〉)4〉

〈(ψ̄ψ − 〈ψ̄ψ〉)2〉2

and

χψ̄ψ = V 〈(ψ̄ψ − 〈ψ̄ψ〉)2〉.

where the overline is the space-time av-
erage and V is the space-time volume.

The graphs of B4 at the transition
versus m or µI for different spatial vol-
umes should cross at a critical point.
For the critical end-point this should
occur at B4 = 1.604(1) (Ising). We
graph B4 as a function of m at µI = 0
and as a function of µI for fixed m for
0.02 ≤ dt ≤ 0.0625. The expectation
values which contribute to B4 at fixed
m and µI are calculated at each of 4
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βs close to the transition and extrapo-
lated to the transition using Ferrenberg-
Swendsen reweighting. The position βc
of the transition is determined from the
minimum ofB4 which is consistent with
that obtained from the maximum of χ.
The length of the runs at each (m,µI , β)
is (will be) 160,000 ∆t = 1 trajectories.
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Figure 1: Mass dependence of B4(ψ̄ψ)
for various values of the updating incre-
ment dt.
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Figure 2: µI dependence of B4(ψ̄ψ)
for various values of the updating in-
crement dt at m = 0.035.
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Figure 3: dt dependence of B4(ψ̄ψ) at
m = 0.035 and µI = 0
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Figure 4: dt dependence of B4(ψ̄ψ) at
m = 0.035 and µI = 0.2
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Figure 5: dt dependence of B4(ψ̄ψ) at
m = 0.035 and µI = 0.3
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Figure 6: dt dependence of B4(ψ̄ψ) at
m = 0.03 and µI = 0
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The dt = 0.05 ‘data’ predicts mc ≈
0.0335. By dt = 0.02 this has dropped
to mc ≈ 0.027, i.e. by ≈ 20%. B4
increases with decreasing dt – does this
continue to lower dt ?

For m = 0.035, the µI dependence
diminishes as dt→ 0. Is there a critical
endpoint?

One can understand whyB4 increases
with decreasing dt, since

∆β = β − βeffective

is much larger below the transition than
above, and ∆β → 0 as dt → 0. This
reduces tunneling and makes the tran-
sition appear more first order.

This effect is also seen in the sus-
ceptibilities as seen in the figure after
next.
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Figure 7: ∆β as a function of β close to
the transition on an 83 × 4 lattice with
m = 0.035 and dt = 0.05.
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Figure 8: dt dependence of χψ̄ψ atm =
0.035 and µI = 0.
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The transition moves to lower β as
µI is increased as can be seen in the fol-
lowing plot of the Wilson Lines as func-
tions of β for different values of µI . The
µI dependence of βc for the lowest dt
values is shown in the next graph. This
dependence is reasonably close to that
predicted by de Forcrand and Philipsen
for finite µ if we take µI = 2µ. The
straight line is:

βc = 5.15195 − 0.1781µ2
I
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Figure 9: The Wilson Lines as a func-
tions of β for values of µI in the range
0 ≤ µI ≤ 0.375 on an 83 × 4 lattice.
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Figure 10: Graph of the µI dependence
of βc for m = 0.035 on a 123×4 lattice.
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From finite µI to finite µ ?

Speculation.

The strong dependence of B4 on dt
suggests that we should replace the hy-
brid molecular-dynamics algorithm with
one of the newer exact methods. Our
choice should be governed by the fact
that we wish to use the simulations at
small µI and finite T as a basis for reweight-
ing to finite µ. This suggests that we
should use methods which use polyno-
mial approximations to the inverse Dirac
operator — multiboson or PHMC, where
we can write formal expressions for a
stochastic estimator for the fermion de-
terminant, which suggests we might be
able to get closed expressions for an es-
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timator for the fermion phase.
These multiboson methods have the

important property of locality. This gives
the possibility of performing indepen-
dent and simultaneous multiple updates
of appropriately separated parts of the
lattice, providing (some of) the expo-
nential statistics needed to overcome the
sign problem. Here 2 methods are wor-
thy of consideration. The first is to ex-
pand around the finite µI theory. Here
we need to contend with the fact that
the quadratic Dirac operator in the ac-
tion is not as local as one might like,
so we would probably need to divide
the lattice into relatively large domains.
Thus this is probably only of use for rel-
atively large lattices with a fine mesh.

21



The second is to include the whole fermion
contribution in the measurements, al-
lowing us to use the more local Dirac op-
erator itself. This means using the ex-
ponential statistics to estimate the de-
terminant of the Dirac operator, even at
µ = 0. Such a method could be tested
by applying it to this case.
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Discussion and conclusions

• QCD at small isospin chemical po-
tential and QCD at small quark-number
chemical potential appear to behave
similarly close to the finite tempera-
ture transition.

• The Binder cumulant which is used
to determine the nature of the finite
temperature transititon shows large
dt dependence, as does the chiral sus-
ceptibility.

• At zero µI and µ, the critical mass
mc is ∼ 20% lower than previously
thought.

• We have yet to see evidence for a crit-
ical endpoint. More simulations are
in progress.
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• Exact algorithms should be imple-
mented to avoid dt errors.

• QCD at finite µI shows promise for
reweighting to finite µ.

• Polynomial methods (Multiboson, PHMC,
etc.) show promise for avoiding ex-
act determinant calculations.

• Locality of polynomial methods might
provide ways of reducing QCD at fi-
nite µ from an exponential- to a polynomial-
time problem.
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These simulations are being run on
the Jazz cluster at Argonne’s LCRC,
the Tungsten and Cobalt clusters at NCSA,
and the Jacquard cluster at NERSC.
Some of the small lattice runs were done
on Linux PCs in the HEP division at
Argonne.
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