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The prospects of extracting transport coefficients from euclidean lattice simulations are discussed. Some general 
comments on the reconstruction of spectral functions using the Maximal Entropy Method are given as well. 

1. In field theory transport coefficients are pro- 
portional to the slope of appropriate spectral 
functions at zero frequency and zero spatial mo- 
mentum (Kubo relation). Examples are the elec- 
trical conductivity, 

(1) 

where pem(x, Y) = ([am,,&,]) is the spec- 
tral function associated with the electromagnetic 
current j& = 7j$$, and the shear viscosity, 

(2) 

where ~~~(5, Y) = ([u(x), W(Y)]) with m the 
traceless part of the spatial energy-momentum 
tensor. 

The euclidean two-point function and the spec- 
tral function (both at zero momentum) are re- 
lated via a dispersion relation and 

G(r) = (3) 

with the kernel 

K(r,w) = ew+nB(w) + emwr [l + no] , (4) 

where rig(w) = l/[eWiT - l] is the Bose distri- 
bution. The first attempt to compute transport 
coefficients on the lattice using Eq. (3) was made 
some time ago by Karsch and Wyld [2], by fitting 
a three-parameter ansatz for the spectral func- 
tion to the euclidean lattice data. This approach 
was pursued more recently in Ref. [3]. A modern 
way to attack this problem would of course be to 
use the Maximal Entropy Method [4]. Once the 

*Talk presented by G. A. Based on Ref. [I]. 

spectral function is reconstructed for all w, the 
transport coefficient is in principle determined. 

Two obvious questions are: What is the spec- 
tral function expected to look like at high tem- 
perature? How does the transport coefficient, or 
in general the low-frequency part of the spectral 
function, show up in the euclidean correlator? 

2. To answer the first question, we calculated 
the spectral function relevant for the shear viscos- 
ity at high temperature in weakly-coupled scalar 
and nonabelian theories [l]. The results for the 
scalar theory are sketched in Fig. 1. The contribu- 
tion at higher frequencies, i.e. w 2 2m where m is 
the thermal mass, arises from (inverse) decay pro- 
cesses. At large enough w the spectral function 
increases as pm(w) = (w4/967r) [l + 2n~(w/2)]. 
The origin of the contribution at lower frequen- 
cies is scattering of fast-moving particles with soft 
bosons in the plasma. The approximate shape of 
the spectral function in this region is given by 

Pm(W) WY -N 
T4 w2 + 47” 

(w << T). (5) 

where y is the thermal damping rate. The par- 
ticular form in Eq. (5) is due to the presence of 
poles in the complex energy-plane that pinch the 
real axis from above and below. The denomina- 
tor indicates the distance between these so-called 
pinching poles. The viscosity is determined by 
the slope at zero frequency and is proportional 
to l/y. A quantitative analytical calculation in 
this regime is complicated since due to the pinch- 
ing poles the loop expansion breaks down and all 
ladder diagrams with uncrossed rungs contribute 
at leading order in the coupling [5]. In the scalar 
theory, the low- and the high-frequency contribu- 
tion match parametrically around the threshold 
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Figure 1. Sketch of the spectral function pK,(w)/T4 versus w in a weakly-coupled scalar Q4 theory (not 
to scale). The shear viscosity is given by the slope at zero frequency. See the main text for discussion. 

for decay, w = 2m. A general ansatz describing 
the low-frequency contribution is 

mzx bl + b2x2 + b3x4 + . . . 
T4 1 + CiZ2 + c224 + QX6 + . . .’ (6) 

where x = w/T and bi = ci = 0, i > n for given n. 
For gauge theories the overall characteristic shape 
remains as in Fig. 1 but the dependence on the 
coupling constant g2 N X differs somewhat [l]. 

3. We now address the second question raised 
in the beginning. At leading order in the cou- 
pling constant the euclidean correlator can be 
computed exactly using Eq. (3), and we find 

Gmr(r.) = g{ (7r-u)[11cosu+cos3u] 

4a2n2 T5 +6sinu+2sin3u + 45 > , (7) 

with u = 2mT. For the scalar theory ai = 
as = 1, while for an SU(N,) theory al = 6as = 
12(N,2 - 1). The r-dependent terms arise entirely 
from the high-frequency part of the spectral func- 
tion. The r-independent term originates from 
the low-frequency part. The fact that the low- 
frequency part of the spectral function leads to a 
constant term in the euclidean correlator is easily 
understood. Since for small frequencies w < T 
the kernel (4) can be expanded as 

K(7-,W) = E + 0 (;) ) 

and the dominating term at small w is r- 
independent, the low-frequency part of the spec- 
tral function corresponds in the euclidean cor- 
relator to a constant term proportional to 
J dw p** (w)/w. This particular constant cannot 
be easily disentangled from the high-frequency 
contribution. This is illustrated in Fig. 2, where 
we plot the analytical result for G,,(r) in the 
case of SU(3). The tiny difference between the 
full and the dashed lines is due to the constant 
term in Eq. (7). Once again, this term originates 
from the low-frequency part of the spectral func- 
tion and reflects s dw pIFn(w)/w, not p,,,(w) itself. 
Therefore, we find that G,,(r) is remarkably in- 
sensitive to details of P?,~(w) when w <( T and we 
conclude that it is extremely difficult to extract 
transport coefficients in weakly-coupled field the- 
ories from the euclidean lattice. 

4. The results described above are generic and 
not specific for the correlators we considered. The 
fact that the low-frequency part of a spectral 
function corresponds to a constant term in the 
euclidean correlator relies solely on the expan- 
sion (8). In our opinion this result is a poten- 
tial problem for the Maximal Entropy Method 
when the reconstruction of low-frequency parts 
of spectral functions is attempted. We empha- 
size that the difficulty is not a numerical one, 
e.g. due to a finite number of lattice points in 
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Figure 2. Logarithm of GKn(~)/T5 versus TT in 
weakly-coupled SU(3) (Eq. (7), full line). The 
dashed line is the result without the constant 
contribution originating from the low-frequency 
part of the spectral function. The inset shows a 
blowup around Q-T = 0.5. 

the imaginary-time direction. Furthermore, it is 
easy to see that at finite temperature the pres- 
ence of pinching poles in correlators of composite 
operators that are bilinear in the fields is quite 
common. From general considerations it follows 
that the effect of pinching poles is a low-frequency 
contribution as in Eqs. (5, 6) and Fig. 1. 

Consider for instance the electromagnetic 
current-current correlator (or any two-point 
function of fermion bilinears) in the decon- 
fined quark-gluon plasma. For large frequen- 
cies a perturbative calculation gives Pi,,, - 
w2 [I - 2nF(w/2)], where no = l/[e”lT + l] 
is the Fermi distribution and the proportional- 
ity factor depends on the number of fermions, 
colours, etc. For this reason it is customary 
to present this kind of spectral functions as 
pem(w)/wa. However, due to pinching poles also 
this spectral function is expected to have a struc- 
ture at small frequencies as in Eqs. (5, 6) and 
Fig. 1, where in this case y is the fermion damp- 
ing rate. For very small frequencies the spectral 
function can be expanded as 

+=&;+d3(;)3+ds(;)5+..., (9) 

tivity. The coefficients di are nonzero at finite 
temperature only and represent repeated scatter- 
ing of the fast-moving on-shell fermions with soft 
gauge bosons in the deconfined phase of the high- 
temperature plasma. Because of this behaviour, 
pe,(w)/w2 diverges as l/w when w -+ 0. Singu- 
lar behaviour at very small frequencies of spectral 
functions of fermion bilinears that are normalized 
with l/w2 has indeed been found [6] although the 
statistical significance of these rPsult,s is still ml- 
certain. 
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where dl is proportional to the electrical conduc- 


