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There is great potential to apply machine learning in the area of numerical lattice quantum field
theory, but full exploitation of that potential will require new strategies. In this white paper for
the Snowmass community planning process, we discuss the unique requirements of machine learning
for lattice quantum field theory research and outline what is needed to enable exploration and
deployment of this approach in the future.

I. INTRODUCTION

Lattice quantum field theory (LQFT), i.e., QFT discretized on a Euclidean spacetime lattice, is the only framework
presently available to perform ab-initio QFT calculations with fully controlled, systematically improvable uncertainties
when the system of interest exhibits nonperturbative dynamics. Most importantly, this includes quantum chromo-
dynamics (QCD), the component of the Standard Model governing the strong force (see e.g. the recent topical issue
of EPJA for a review [1–7]). This important tool of modern physics continues to have great success in providing
theory inputs necessary to understand and interpret experimental results. Notably, in quark flavor physics, Lattice
QCD (LQCD) provides the hadronic matrix elements necessary to extract the Cabibbo–Kobayashi–Maskawa (CKM)
parameters from experimental measurements and hence is critical to tests of CKM unitarity [8]; in precision Higgs
physics, LQCD provides the most precise determinations of the strong coupling constant and quark masses that enter
in predictions of the branching ratios of the dominant decay modes of the Higgs boson [8]; and lattice studies of QCD
thermodynamics are essential to interpret results from relativistic heavy-ion collisions [9].
However, further progress is required to extend these successes of the LQCD approach to meet the needs of ongoing

and near-future experimental efforts in high-energy (HEP) and nuclear physics. In particular, while the field is
advancing rapidly, for many key applications the necessary LQCD calculations are limited by available computing
power; with improvement in algorithms for LQCD, many more important contributions are on the horizon. For
example, high-statistics, high-precision LQCD calculations of the hadronic vacuum polarization and hadronic light-
by-light scattering contributions to g − 2 of the muon could be critical to resolve tension between Standard Model
predictions and experiments [10]. At the necessary (sub-percent) level of precision, isospin breaking and QED effects
become important, and calculations in the theory with non-degenerate quark masses coupled to electromagnetism
are affected by technical and conceptual problems. In addition, so-called disconnected quark diagrams contribute
significantly at this level of precision. Stochastic methods have advanced sufficiently to provide access to the otherwise-
intractable inverses of Dirac matrices involved in these contributions, but remain expensive and add large additional
statistical uncertainties. Further advances in LQFT algorithms will contribute significantly to this pursuit [11].
Similarly, LQCD has the potential to significantly impact the interpretation of the results of long-baseline neutrino

experiments by providing constraints on nucleon and (together with effective field theory) nuclear matrix elements
involved in neutrino scattering cross sections with heavy nuclei such as 12C, water, and 40Ar. Precise cross-section
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determination from nuclear models is crucial to reduce the final uncertainties of neutrino parameters, but the precision
of these models depends on the uncertainties of their inputs. Many of the relevant matrix elements are difficult to
constrain experimentally; in these cases, LQCD is the only viable approach to reduce their uncertainties and meet
the needs of experiments [3, 12, 13]. However, direct LQCD calculations of nuclei are computationally expensive and
only systems with small atomic numbers are accessible at present. Calculations of larger nuclear systems require new
developments to address increasingly severe signal-to-noise problems, which in some cases arise due to numerical sign
problems [14], as well as the high combinatoric complexity in Wick contractions. Similarly, computational cost is a
significant factor in the computation of nucleon and nuclear matrix elements needed for the interpretation of dark
matter direct detection [4] and neutrinoless double beta decay experiments [15, 16], as well as high-precision LQCD
results for gA needed to resolve the outstanding discrepancy between results obtained from different experimental
approaches to measuring the neutron lifetime [17]. Extending the study of QCD at finite temperature to nonzero
baryon density, as required for nuclear matter, neutron stars, and other phases of dense QCD also leads to a numerical
sign problem, due to the complex nature of the Boltzmann weight in the grand-canonical formulation [18, 19].

More broadly, the past decades have seen applications of LQCD across all aspects of hadronic physics. These efforts
have already yielded important insights, but in many cases further developments in LQFT technology are necessary to
deliver results with the greatest possible impact. For example, the recent development of the quasi- and pseudo-PDF
formalisms [20, 21] has enabled LQCD calculations of parton distribution functions (PDFs) and their generalizations,
but these methods are still limited by available precision and lattice sizes. Alternately, PDFs may in principle be
reconstructed from their moments, which can be computed directly on the lattice; however, issues with power divergent
mixings demand presently impractical levels of statistical precision (or novel approaches [22, 23]) for all but the lowest
moments. Both of these approaches also involve ill-posed inverse problems, which also appear at finite temperature, in
the reconstruction of spectral functions [24], and the extraction of transport coefficients from numerically determined
LQCD correlators [25, 26]. Similarly, the correlation functions relevant to computing masses and matrix elements of
higher excitations, such as resonances, glueballs, and exotic hadrons suffer from an overwhelming level of numerical
noise at the sample sizes accessible with present methods. In some cases, as with nuclear correlation functions, this
noise may arise due to a sign problem. Similar concerns apply for scattering amplitudes, which may be reconstructed
from the spectra of correlation functions using finite-volume formalisms [27]. Besides QCD, LQFT methods have also
been used for direct investigations of strongly coupled models for physics beyond the Standard Model [28–30], such
as supersymmetric gauge theories and models where the Higgs boson and/or dark matter are bound states of a new,
as-yet unobserved confining force. Models with dilatonic Higgs bosons are particularly computationally demanding.
LQFT methods have similarly been applied to address foundational questions in QFT [31–34] and to systems of
interest outside of particle physics [35]. To summarize, in many of the cases described above, new physics results can
be obtained by more efficient algorithms enabling higher statistical precision, while in others, it is clear that new ideas
and novel approaches will be necessary.

From its inception, advancements in LQFT have been achieved by combining increasing computing resources with
formal and algorithmic developments. Such developments make new physics targets accessible to the LQFT framework
not only by allowing more effective use of existing resources, but also by extending the formalism itself when known
approaches are not effective or ill-defined. In this context, emerging machine learning (ML) techniques offer an
unprecedented new avenue for exploration, both in terms of increasing efficiency and for new, innovative formulations.

The past few years has seen promising exploratory applications of ML methods to all aspects of LQFT calculations,
with many more in progress. To organize these efforts and the discussion below, we divide the workflow of an LQFT
calculation into three sequential stages. For concreteness, these stages may be defined by the data types operated
upon.

1. Configuration generation – Samples of the lattice field degrees of freedom (field configurations) are drawn from
the Boltzmann distribution defined by the lattice action. ML applications thus far include novel and/or improved
sampling algorithms [36–63] and path-integral contour deformations for finite-density [64–66].

2. Observable measurement – Quantities like correlation functions are evaluated over ensembles of field configurations.
ML applications thus far include novel methods to extract thermodynamic observables [44], action parameter
regression [67], observable approximation [68–70], design of new observables [58, 71–80], and path-integral contour
deformations for baryonic correlators [81].

3. Analysis – Physically interpretable results are extracted from observable measurements. ML applications thus far
include cross-observable regression [82, 83], action parameter regression [67, 84], and new methods for ill-posed
inverse problems [85–90].

As discussed further in Sec. II, each of these stages involves different hierarchies of computational scale, requiring
different resources and optimizations to apply ML at each stage. Further, each stage has different requirements to
maintain full control over uncertainties.

The computational and formal aspects of each of these stages imply specific requirements on applications of ML to
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LQFT. In the remainder of this white paper, we first detail key prospects for, and challenges of ML for LQFT. From
these, we infer what technical work will be required and discuss what resources the community will need to deploy to
enable successful application of ML to LQFT. We close with an outlook on ML for LQFT.

II. PROSPECTS, CHALLENGES, AND REQUIREMENTS OF ML FOR LQFT

A. Prospects

There are important similarities between standard LQFT and ML methods; hence LQFT is already well-positioned
to make effective use of emerging ML technologies. We organize the discussion below by these common features,
and emphasize how they provide an unusual opportunity for interdisciplinary collaboration and great potential for
cross-cutting impact.

Mathematical toolkit. Statistics and linear algebra underpin the standard toolkits of both LQFT and ML. As
with particle and condensed matter theory, once a common language is established, researchers from LQFT and those
working on other applications of ML find they are concerned with related problems (see e.g. the discussion of symmetry
below). By the same analogy, there are likely methods known to one community that can be straightforwardly adapted
to solve problems in the other, cf. the development of the HMC algorithm [91] in LQCD and its subsequent adoption
in other computational fields, or e.g. using interacting fields as building blocks for neural networks [92]. The potential
for mutual benefit offers an unprecedented opportunity for collaboration between the LQCD community and both
fields outside physics and industry.

Computing requirements. ML and traditional LQFT methods are computationally intensive. The dominant
computational cost in both cases is numerical linear algebra, which is effectively parallelized by GPUs. At present,
LQFT requires more tightly interconnected nodes than typical ML applications, but very large models needing fast
communications are becoming increasingly common. And, while modern LQFT calculations require expensive double
precision (FP64) calculations to avoid unacceptable levels of round-off error, mixed precision algorithms allow efficient
LQFT use of hardware with specific optimizations for low-precision formats (e.g. single (FP32), half (FP16), or ML-
specific formats (BFLOAT16, TF32)). This approach is already used to accelerate LQCD calculations on GPUs [93]
and has been extended to GPU tensor cores [94]; work is ongoing to exploit emerging ML-specialized hardware
(e.g. TPUs, IPUs). Thus, hardware that is well-suited for LQCD is likely to be well-suited for ML (and vice versa,
increasingly), providing obvious benefits for ease of adoption of ML in LQFT. Given these similarities, ML for LQFT
research may lead to faster and better deployment of ML-specialized hardware in traditional LQFT calculations, and
computational science generically.

Symmetry. In an ML context, symmetries amount to constraints on a problem which must be learned unless they
are incorporated explicitly. Symmetries and invariance/equivariance thus provide a generically useful framework for
encoding a priori knowledge about a problem into an ML architecture, which often provides substantially improved
performance. Architectures encoding LQFT-relevant symmetries have already been developed in various other con-
texts. For example, the success of convolutional neural networks in image processing has been substantially driven
by their characteristic feature of encoding translational symmetry, which is also a property of LQFTs. Symmetric
architectures developed for LQFT will likely be useful for other applications, opening up exciting new possibilities for
physics-inspired ML architectures, with a wide range of applications both in academia and industry. For example,
rotationally symmetric ML architectures could be useful for applications including 3D modeling, computer vision, and
autonomous driving. Symmetric architectures are discussed in more generality in another white paper [95].

Software as a community resource. Significant effort in both the ML and LQFT communities has been ded-
icated to developing highly optimized open-source codebases. In particular, under collaborative efforts the lattice
gauge theory community has created several programming packages (e.g. Grid [96], openQCD [97], QUDA [93], and
the SciDAC stack [98]) that enable LQCD calculations to achieve high efficiency on state-of-the-art supercomput-
ers. Similarly, the ML community has developed several independent frameworks, most popularly PyTorch [99],
TensorFlow [100], and Jax [101], which allow users to easily utilize GPUs. Another set of frameworks (including
horovod [102], DeepSpeed [103], PyTorch DDP [104]) were developed for scaling ML applications to multi-node ma-
chines.1 All of these frameworks are freely available and open-source, and thus may be combined to apply ML to

1 These techniques rely on efficient communication between multiple workers, but have already demonstrated high performance sustaining
more than one exaFLOPS in FP16 precision [105]. However, they may be inefficient for some types of models and can be optimized
much further, as in e.g. the DeepSpeed [103] library.
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LQFT without incurring the development cost of fully reimplementing either toolkit. Integration of ML and LQFT
software may also benefit traditional LQFT calculations. In particular, ML software frameworks are maintained
by commercial vendors across a wide range of HPC hardware platforms, which could be leveraged to help address
the problem of efficient portability of LQFT codes. Likewise, an increased interest in ML libraries by the LQFT
community can further accelerate their development.

B. Challenges

Despite these useful commonalities, there are a number of differences that present challenges for applying ML
methods to LQFT problems. By considering them, we can assess what work will be required to bring ML into the
standard LQFT toolkit.

Full control over uncertainties. In many ML applications, formal guarantees of exactness are unnecessary and
high-quality but approximate solutions are sufficient. Errors can be studied empirically on validation datasets, but
characterization of systematic uncertainties may be difficult due to the black-box nature of neural networks.2 In
contrast, LQFT applications demand correctness, i.e., that all sources of statistical and systematic uncertainty can
be estimated reliably. This requirement manifests differently in each stage of the LQFT workflow:

1. Configuration generation requires provably exact sampling from the Boltzmann distribution defined by the
lattice action, or at least sampling which provides sufficient statistical information to fully correct for violations
of exactness. This imposes strict constraints on what ML approaches and architectures are applicable.

2. Observable measurement requires control over any violations of asymptotic unbiasedness induced by computing
approximations of known observables (e.g. by statistical estimation of a bias correction). Model dependence
on training data may present additional concerns for asymptotics. Novel machine-learned observables must be
carefully characterized and interpreted with caution.

3. Analysis more closely resembles typical ML applications. Most uses of ML at this stage will introduce model
dependence, which must be treated as a source of systematic uncertainty and controlled for. This includes
dependence on training data, which may induce important model-data correlations. Models with probabilistic
interpretations may play a useful role. Estimates of uncertainty are often phrased in a Bayesian context, used
in LQFT in e.g. spectral function reconstruction. Many concerns relevant for LQFT applications are discussed
in more detail in another white paper on uncertainty quantification [106].

Differentiability. The modern ML toolkit is designed around optimization with stochastic gradient descent, which
necessitates that all operations be automatically differentiable to enable backpropagation. This is not a typical
requirement of LQFT calculations, which more often implement the necessary derivatives of the action manually to
maximize performance, and so is not incorporated in any of the major LQFT codebases. Especially for applications
to configuration generation and observable measurements, it may be necessary to build automatic differentiation into
existing LQFT software, or reimplement parts of the LQFT toolkit inside ML frameworks.

Data hierarchies and computing models. Typical ML applications operate on large volumes of data points,
each of size ∼ KBs. Although this hierarchy applies in the analysis stage of LQFT calculations, it is very dissimilar
to the relevant scales in state-of-the-art LQCD configuration generation and observable measurements, which involve
processing relatively small volumes of field configurations and propagators of size ∼ GBs – 100s of GBs. These large
data sizes mean applying ML methods at state-of-the-art scale will require a higher degree of model parallelism than
typical for ML, where data parallelism alone is often sufficient, and where the need for model parallelism is more often
due to large model sizes.3 Although the recent successes of very large ML models has led to software support for
model parallelism, this infrastructure is still in its infancy. Engineering will be required to adapt ML software to make
efficient use of high-performance computing resources. Further, problem-specific optimizations are more important
for model parallel schemes, which clashes with the problem-agnostic approach employed by ML software frameworks.
Applying ML to LQFT may require specialized software incorporating LQFT-specific optimizations.

2 Some recent activities in ML focus on out-of-distribution detection.
3 In a data parallel scheme, parallel workers each apply the entire ML model to multiple pieces of data. This scheme involves relatively
little communication between workers, requiring only the synchronization of gradients of model parameters once per backwards pass.
In a model parallel scheme, the work of applying an ML model to a single piece of data is divided between multiple workers. This may
be accomplished e.g. by dividing the problem across sublattices, although other schemes like pipeline parallelism are possible.
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C. Requirements

From these concerns, we conclude that successful application of ML techniques in lattice QCD will require significant
efforts in two primary directions:

1. Exploratory research – The particular requirements of LQFT mean that out-of-the-box ML solutions often are
not directly applicable. Applying ML to LQFT while retaining full control over uncertainties will require research
and development of novel constructions with appropriate properties. Given the breadth of ML methods already
available, and with the rapid ongoing development of ML, this amounts to a need for substantial exploratory
research. The work required is experimental and inherently computationally demanding, especially when testing
scalability on large systems.

2. Software engineering – Following precedent, using ML-based methods at state-of-the-art scale will require develop-
ment and long-term maintenance of publicly available software infrastructure by the LQFT community. This soft-
ware must be portable and highly optimized for efficient use of available hardware resources, as well as well-tested,
well-documented, and open source to ensure scientific validity and verifiability. Development can be accelerated
by leveraging the large amount of work and domain expertise incorporated into existing LQFT and ML software
frameworks. However, at present, these pieces of infrastructure are entirely separate, and as discussed above have
been designed with different considerations (cf. differentiability, data hierarchies and computing models). Deliver-
ing high performance in ML for LQFT at scale thus represents a substantial software engineering task, which will
require experts with extensive knowledge in both domains.

III. STRATEGIES TO ENABLE ML FOR LQFT

Computing strategies. New policies for allocating computing time are needed to support exploratory algorithm
development and applications of ML-based approaches. Usually, allocations are requested for a fixed amount of
computing time, to run a specific set of computations on a predetermined schedule, and are granted based on what
physics results the proposed computations are projected to enable. This does not match with the nature of exploratory
ML research, which involves an iterative experimental process with each experiment guiding what computations are run
next. Iteration timescales are typically of order days or weeks, much less than year-long computing allocations. More
generally, even given a production-ready approach, present allocation policies are incompatible with any computation
that involves training a model: until the training is actually carried out, the precise cost and outcome will not be
known to high accuracy. Employing all talent available, and especially avoiding unfairly shutting out researchers from
smaller and less-funded institutions, will require making computing resources broadly available.

Community standards and resources. As discussed above, ML for LQFT will require development and main-
tenance of specialized software toolkits. Just as with software, trained models should be treated as a community
resource, particularly for at-scale applications where training may be expensive. Best practices must be established
for what information is required to constitute a verifiable result [107], likely involving sharing of code and models
alongside publications. To these ends, centralized infrastructure will be needed to enable sharing of trained models
and the code to use them.

Career paths. Permanent positions in ML for physics must be made available to support the exploratory research
and software engineering described above. This includes both traditional academic jobs and positions for specialists
in technical roles, such as Research Software Engineers (RSEs). Increased support for research scientists working
on ML for physics will promote building a vibrant interdisciplinary community and bridge gaps between different
subfields of physics and beyond. Given the utility of ML outside academia, these concerns are especially important to
retain talented early-career researchers, particularly those engaged in valuable but highly technical work. Policies and
practices should be adjusted for a definition of physics research and education that incorporates computer science and
applied mathematics relevant to ML. Cross-disciplinary collaborations may provide rapid progress as well as access
to substantial non-traditional funding and computational resources, including from industrial partners. Hiring and
graduate admissions should consider applicants from outside physics; it may be that the best-prepared candidate for
ML-based research is a student with an undergraduate degree in computer science, or a researcher from another field or
even industry. This applies especially in education, as discussed in greater detail in another white paper [108]. While
specialized degrees can play a useful role, ML for physics is a legitimate topic for a physics degree. Qualifying exam
practices should allow for students specialized in computation. Physics departments should incorporate computing
and ML in their curricula; besides supporting the development of ML for the physics community, this will benefit the
majority of students who go on to careers outside research.
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IV. OUTLOOK

From vector machines to BlueGene to GPUs, the LQFT community has a long history of leadership in rapidly
adopting new computing technologies, and driving their development as they emerge. The community now has the
opportunity to position itself for similar leadership in ML. Promising proof-of-principle results across every aspect of
the LQFT workflow and rapidly growing engagement in work at this intersection both illustrate potential to deliver
transformative advances in the immediate future.
Realizing this potential will require intentional investment of human and computing resources by the community in

ways distinct from those that have driven traditional algorithms research. Bringing ML to bear will require extensive,
computationally demanding exploratory research incorporating developments from the broader field of ML, requiring
updates to the way computing resources are allocated. When promising methods are identified, deploying them at
state-of-the-art scale will require software engineering to meet the existing high standards for performance.
The development and deployment of novel ML algorithms for LQFT has great potential for cross-cutting im-

pact. Besides its widespread adoption in industry, ML methods have already been applied to various problems in
particle/nuclear physics [109–111], astronomy [112, 113], condensed-matter physics [114], computational fluid dynam-
ics [115, 116], quantum chemistry [117], and many further fields of physics and beyond. As outlined in this white
paper, applications to LQFT bring specific challenges to the forefront, such as symmetries and the need for provably
exact algorithms. The solutions to these challenges may provide opportunities not only for science but industrial appli-
cations as well. Moreover, most of these considerations would be equally beneficial for other emerging computational
research directions, including tensor networks and quantum computing.
Developing the interdisciplinary workforce who will carry out this work will require investment and advocacy by

the LQFT community. For example, early career researchers are responsible for much of the ongoing research in ML
for LQFT; the community risks losing this talent pool if it cannot provide permanent positions to retain them, either
by opening physics positions to researchers with such an algorithmic focus, by opening computer science positions to
researchers with a focus on physics problems, or by creating permanent positions at the interdisciplinary boundaries.
This talent pool can be further expanded through the inclusion of computing and ML in physics curricula, and
more generally opening the field of physics to admit the specialization necessary for ML-based research. These same
concerns apply not only for LQFT, but for ML for physics in general. Nevertheless, if these challenges can be
successfully negotiated, the interdisciplinary nature and generalizability of ML methods provide a unique opportunity
for collaboration between fields and with industry, opening the doors to new intellectual, computational, and funding
resources which may have significant impact on the state-of-the-art in HEP theory.
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