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Abstract—eXplainable Artificial Intelligence (XAI) aims to
provide intelligible explanations to users. XAI algorithms such
as SHAP, LIME and Scoped Rules compute feature importance
for machine learning predictions. Although XAI has attracted
much research attention, applying XAI techniques in healthcare
to inform clinical decision making is challenging. In this paper,
we provide a comparison of explanations given by XAI methods
as a tertiary extension in analysing complex Electronic Health
Records (EHRs). With a large-scale EHR dataset, we compare
features of EHRs in terms of their prediction importance es-
timated by XAI models. Our experimental results show that
the studied XAI methods circumstantially generate different top
features; their aberrations in shared feature importance merit
further exploration from domain-experts to evaluate human trust
towards XAI.

Index Terms—Explainable AI, Black-box, Glass-box, Machine
Learning, Electronic Health Records

I. INTRODUCTION

Though machines outperform human experts in some appli-
cations, one question remains: how can we assure that the AI
solutions are trustworthy? Commonalities arise in algorithm
applications, to where a model can exhibit different behaviours
compromising the trust factor, this is where “black-box”
models become an adversary to human trust, as understanding
the internal mechanisms of such models is difficult, if not
impossible [1].

The medical and health sciences have witnessed a growing
interest of using Machine Learning (ML). However, in light
of ensuring trust in human-AI collaboration, Tonekaboni et
al. [2] have looked at the question “what clinicians want?”
They identify that merely having highly accurate ML models
is not sufficient for clinicians; notably a single metric such
as classification accuracy does not provide insight to how
the solution was obtained or provide depth to the models
effectiveness [3]. Medicine needs a requisition of clarity due
to the fragile nature of data in the field.

XAI is a sub-field of AI that aims to provide intelligible
explanations to the end user [4]. There is a pressing need
to develop XAI methods, tools and techniques, as traditional
AI approaches suffer from doubts from human experts and
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general public [5]. This adheres to ethical concern and regu-
latory considerations that need to be made within the domain,
should there be bias or discriminatory results. Healthcare is
susceptible to such doubts; and XAI methods have been thus
developed and applied in e.g., [6], [7] and [8]. It is believed
that XAI will provide the much needed trust in human-AI
collaboration for critical applications in healthcare.

In this paper, we apply three XAI methods to demonstrate
the usability of an explainable tertiary appendix to ML models
and provide data interpretability for large-scale EHR data. In
particular, we study lung-cancer mortality with multiple ML
and XAI models. Lung-cancer is the leading cause of cancer
mortality in men and women worldwide [9]. Early predicting
the mortality of lung-cancer patients can help identify patients
that will benefit from treatment and those at risk of relapse,
so help healthcare professionals develop preventative measures
and treatment plans.

Data for this study used artificial data from the Simulacrum,
a synthetic dataset created by Health Data Insight CiC derived
from anonymous cancer data provided by the National Cancer
Registration and Analysis Service (NCRAS), which is part
of Public Health England. The experimentation of XAI has
focused on generating the feature importance regarding a
models prediction indicative of contribution. Therefore, the
use of XAI allows us to inform domain experts the trends
identified through features that can be difficult for a human
expert to deduce due to data quantity. This work compares
state-of-the-art XAI approaches and serves as a demonstration
of what XAI may deliver for healthcare applications.

II. BACKGROUND

We focus on experimenting three XAI techniques: SHAP,
LIME and Scoped Rules. They are feature attribution methods
which, for a ML prediction, assign “weights” to features used
to predict. We briefly review them below.

Shapley Additive exPlanations (SHAP) [10] explains
an ML prediction based on feature attribution towards the
prediction. The use of Shapley values directs the model on
how to fairly distribute the importance of the feature(s),
determined by the feature investments. The implementation
of Shapley value sees the incorporation of a characteristic
function G, for a number of features F = {0, 1, 2, . . . , n}
ensuring that coalitions G ⊆ F , where the Shapley value
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calculates average contribution over a permutation of features.
Additive explanations can be defined as a linear function of
binary inputs, defined as

g(z′) = φ0 +

M∑
k=1

φkz
′
k,

where g is the given explanation for an original prediction f(x)
and where z′ is a coalition vector of simplified inputs, such
that z′ ⊆ {0, 1}M ; M is the maximum number of simplified
inputs. Explanatory models use simplified feature inputs due
to the complexity of the original input data. Finally, φk is
feature attribution for feature k, and g(z′) is the sum of all
feature contributions for the linear model g, this is fit for z′.

Local Interpretable Model-agnostic Explanations
(LIME) [11] measures whether or not the explanation
is close to the prediction of the original model. LIME
focuses on local interpretablility, achieved by accessing a
single input feature that fits to a line of linearity using a
regularization constraint to the linear regression model. To
obtain an explanation for a local point x, the faithfulness of
the explanation g to the original f(x) is measured for a local
prediction, defined as L(f, g, πx) applying the regularization
parameters Ω(g), where L denotes the square loss function
that is minimized. Explanation for x is such that:

E(x) = arg min
g∈G

L(f, g, πx) + Ω(g).

Scoped rules (Anchors) [12] explains individual pre-
dictions of a classification model by prioritising a search
for a decision rule to increase the prediction likelihood. A
perturbation-based strategy is used to create an explanatory
output of black-box machine learning models. Anchors fol-
low the idea of factual explanations, identifying cases where
certain anchors give conditional ”AND” statements that are
identified as true.

Scoped rules provides a rule-based format of communica-
tion with IF-THEN rules in the explanation structure. The
introduction to such extension of LIME provides a better
localized understanding. An anchor can be defined as

EDx (z|A)

[
1f(x)=f(z)

]
≥ τ,A(x) = 1,

where predicate A is an anchor if the expected evaluation of
the neighbours of instance x of the distribution D matching A
is greater-than or equal-to the precision boundary set on some
threshold τ .

III. DATA PREPARATION AND ML PREDICTION

In this work, we compare XAI methods for explaining
predictions made towards the likelihood of mortality for lung-
cancer patients. Specifically, we pre-process the Simulacrum
dataset and solve the following classification problem:

Given a lung-cancer patient with features collected
from the Simulacrum dataset (see Table I as an
example), predicting whether he is likely to survive.

Table I
A SAMPLE PATIENT RECORD IN THE SIMULACRUM DATASET AFTER

PRE-PROCESSING.

Age 75 Grade G3
Sex Male Morph 8041

Weight 71.2 Cancer Plan Curative
Dose Administration 150 Outcome Treatment completed as prescribed

Drug Group Etoposide Administration Route Oral
Behaviour Malignant Regimen Time Delay No

T Best 4 Regimen Stopped Early No
N Best 3 Regimen Cisplatin + Gemcitabine
M Best 1 Clinical Trial 2
Cycle 1 Site C34

Height 1.57 CNS 99
Chemo Radiation No ACE 9

with a classifier and then generate explanations to the classi-
fication with three XAI approaches.

The Simulacrum data set consists of 1,322,100 synthetic
cancer patients, allowing for model development and eval-
uation whilst maintaining patient confidentiality, reflecting a
high degree of accuracy to properties found in the NCRAS
dataset.1 We first apply data pre-processing, performed to
construct a clean data set to support ML usability. To clean
data, we remove null values and obvious errors. For instance,
logical inconsistencies in the data, such as patients having
weight or height that is unrealistic, or where a patient is
listed as undergoing a regimen after death are removed.
These conditions are amended based on logical assumption.
Following this, the data is then balanced to the lower bounds
bias for developing a trustworthy AI model.

We compose the data in a tabular format with each row
corresponding to a single patient record. We treat each tabular
category as a feature. Then, we obtain the contribution towards
one of the two output classes, “Alive” or “Deceased”, repre-
senting whether the patient survived or not, respectively. We
assume that the model will provide knowledge association in
explanations regarding domain specificities, reflective of input
features.

Before running XAI methods, we first execute black-box
classifiers to generate predictions. Two deterministic algo-
rithms inheriting an explanation are Logistic Regression and
XGBoost. We also compare the performance of baseline
algorithms against a glass-box method, Explainable Boosting
Machine (EBM) [13], with all results displayed in Table II.
Our testing dataset contains 49,456 Lung Cancer patients,
randomly selected from the Simulacrum dataset, with 48.94%
decease and 51.06% alive; the models are trained on 70% of
the given data and tested on remaining 30%.

Table II
CLASSIFICATION PERFORMANCE OF LR, XGBOOST AND EBM.

Precision (%) Recall(%) Accuracy(%)
Logistic Regression 68 68 68

XGBoost 78 78 78
EBM 67 67 67

It is evident that XGBoost is the best performing algorithm
in terms of classification accuracy. We thus drop both Logistic
Regression and EBM approaches and use XGBoost as the
baseline algorithm for the explanation extension of XAI.

1http://www.ncin.org.uk/about ncin/
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IV. EXPLAINING CLASSIFICATIONS WITH XAI
We apply SHAP, LIME and Scoped Rules to the given

lung-cancer mortality problem and compare their explanations.
For illustration, we present the global explanation obtained
with SHAP on our testing dataset in Figure 1. We observe
that “M-Best”, Presence or Absence of Distant Metastatic
Spread, “T-Best”, Size and extent of the primary tumor and “N-
Best”, Extent of involvement of regional lymph nodes provide
the most attribution towards model output. Similar figures on
global explanations can be produced by LIME and Anchor.
They are omitted due to space limit.

Figure 1. SHAP global explanation. The x-axis provides a weighting, Red
being a shift towards death which is countered by blue being alive, with the
value “0.0” indicative of minimal impact.

To conduct quantitative comparison between XAI algo-
rithms, we focus on local (instance) explanation. Figures 2, 3
and 4 present explanation visualisation from the three methods,
respectively, for the patient instance given in Table I. We
observe that all three methods identify “M-Best”, as the most
important feature for the classification (the value “1b” means
that cancer has spread to other parts of the body). However,
Scoped Rules has identified no other feature being influential
to the prediction, and the ranking for the remaining features
differs between SHAP and LIME. E.g., SHAP consider “N-
Best”, as the second most important feature to the prediction
whereas LIME considers “Behaviour”, Behaviour of the tu-
mour, as the second most important.

Figure 2. SHAP local explanation. The width of each descriptive block and
colour are indicative of the shift in probability for the instance.

Noticing the discrepancy amongst SHAP and LIME, we
study the scale of their differences. As top features can be
identified by absolute value irrespective of the classification
outcome, we count the cases where SHAP and LIME differ
on the top k features, for both “Alive” and “Deceased” cases.

Figure 3. LIME providing an explanation given probability of Alive /
Deceased cases. Supported by each feature value and importance towards
the corresponding class of feature weighting.

Figure 4. Anchors give a conditional junction of cases. In this case there is
a single Anchor.

In other words, we count cases where SHAP and LIME share
a given feature F for the kth ranking, written as SHAP(Fk)
= LIME(Fk), with k = 1, 2 and 3, with results shown in
Figure 5. From these shared features, it can be seen that
there exist inconsistencies amongst the relationship where the
indexed feature is the same across the explanations. But, in
differential comparisons, e.g. where SHAP(F1) = LIME(F2)
there are a high majority of features as priority on the most
important feature. Note that Scoped Rules are not included in
this analysis as the algorithm does not always find an anchor
given τ is set to 0.95, to increase the quality of response, over
a collection of instances, this is not applicable to all cases.
Scoped Rules and LIME are kindred in calculation; therefore,
the results hold little integrity. Conversely, SHAP and LIME
differ in calculation providing a more meaningful comparison.

Figure 5. Comparing the shared features using SHAP and LIME.

Given such information, priority features can be determined
from the dataset, though they may not be shared for each
instance between explainers. It is optimal that the identified
important features are relational to a degree, providing a
form of validation supporting the consistency of knowledge
representation. Therefore, this study provides a demonstration
of feature importance, extracted from the first 1000 instances
taken from the test data, where we extract the most important
feature under the condition that k = 1 for each of LIME and
SHAP, as well as the first Scoped Rules anchor. In this way,
the most influential factors were identified towards a patient
either [“Deceased”, “Alive”] as shown in Figure 6.
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Figure 6. Most important feature returned or the first anchor (scoped rules)
for the first 1000 instances on the test data.

It can be seen that the top 3 most important features are
M-Best, N-Best, and T-Best. This is a particularly interesting
result as it confirms the superiority of TNM based cancer
stage classification [14]. Cancer staging is a critical step in
the diagnosis process with multifarious objectives [14], such
as helping identify treatment plans, providing indication of
prognosis, showing the evaluation of the results of treatment,
and facilitating the exchange of information of cancer de-
velopment. The findings of these 3 top features are also
consistent with another data-derived cancer prognosis study
[15] indicating that TNM stage remains the most important
prognostic factors, while being followed by tumor histologic
grade, patient sex, age, and performance status. Conversely,
note that our study shows that cancer morphology and patient
weight are the following important factors for predicting
mortality of lung-cancer patients (Figure 1).

V. CONCLUSION

XAI has been considered as an answer to the ML trust
problem in healthcare. In this work, we have compared state-
of-the-art XAI techniques on a large-scale EHR dataset in
answering the lung-cancer mortality question. We show that
the SHAP illustrations bring clarity when communicating both
a local and a global explanation to a problem, thus providing
more than just a prediction supporting what clinicians want
through reasoning. We believe that the tertiary extension of
knowledge can improve the rate of case deduction and support
human-expert reasoning, and improve trust. Although all three
methods, SHAP, LIME and Scoped Rules, have identified
M-Best as the single most important feature in deciding a
patient’s mortality, coinciding with known medical knowl-
edge, they differ on identifying secondary or tertiary features.
Thus, although the explanations of XAI models can generate
clear feature importance, which help inform clinical decision
supports, they cannot work to substitute a human expert.
To support the discernible necessity of human-expert trust,
a user study will be conducted in future work to determine
effectiveness of given explanations.
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