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Progress in simulating QCD at nonzero baryon density requires, among other things, substantial
numerical effort. Here we propose two different expansions to all orders in the hopping parameter,
preserving the full Yang-Mills action, which are much cheaper to simulate. We carry out simulations using
complex Langevin dynamics, both in the hopping expansions and in the full theory, for two flavors of
Wilson fermions, and agreement is seen at sufficiently high order in the expansion. These results provide
support for the use of complex Langevin dynamics to study QCD at nonzero density, both in the full and
the expanded theory, and for the convergence of the latter.
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I. INTRODUCTION

Strongly interacting matter at finite density is a highly
topical and interesting problem, relevant for a wide
spectrum of phenomena, from heavy ion collisions to
neutron stars and the phases of QCD. The study of
QCD at nonzero density (or quark chemical potential) is
challenging, however, due to the difficulty of performing
ab initio lattice QCD calculations, due to what is known as
the sign problem for numerical simulations; see e.g.
Ref. [1]. The sign problem appears in theories where the
partition function is represented as a sum (or integral) over
configurations with a complex associated weight factor.
As such it is not unique to QCD and indeed the sign
problem appears in many theories with an imbalance
between particles and antiparticles [2]. Moreover, the
presence and severity of the sign problem depends on
the representation of the path integral, which has allowed
for solutions in certain cases [3].
In the case of QCD, until now only the small-μ=T region

could be investigated [4]. In recent years, however,
progress in complex Langevin (CL) dynamics [5–7] has
led to the hope that the full region of physical interest
can be explored. Nevertheless, this approach still implies
demanding calculations, especially at low temperature,
where large lattices are required. It is therefore useful to
combine it with the hopping parameter expansion, which
can be formulated as a systematic approximation for QCD
at finite chemical potential. The hopping expansion yields
an analytic series which for not too small quark masses is
expected to converge towards full QCD at sufficiently high
order, but is still much easier to simulate than the complete
theory. The leading-order (LO) and next-to-leading-order
terms have been determined in the past using a loop
expansion [8–10] and used, together with the full Yang-
Mills (YM) action, to explore the phase diagram [11]

(see also Ref. [12]). This work has been followed by
calculations using a combination of the strong-coupling
expansion for the Yang-Mills action and hopping parameter
expansion for the determinant, also with the aim of deter-
mining the phase diagram [13–17]. However, it becomes
notoriously difficult to go to higher order in the general case.
In this paper we present two alternative ways to introduce
higher-order corrections in the hopping parameter expan-
sion. They allow for the calculation of corrections to any
order preserving the full Yang-Mills action and without
having to consider explicitly the fermionic loops and their
combinatorial factors. Hence this procedure improves the
current status substantially and aims directly at approaching
full QCD at any coupling. The expansions have different
merits: the κ expansion introduced below is numerically
cheaper, but converges well only at not too high chemical
potential, while the slightly more expensive κs expansion
also converges at larger values. They may also have better
convergence properties than the loop expansion [11], where
the effective expansion parameter is Nτκ, with Nτ being the
extent in the temporal direction.
In order to solve the resulting theories (which still suffer

from a sign problem) numerically, we demonstrate that
this can be achieved using CL dynamics. We compare the
results with CL simulations of the full theory [7]. We find
excellent agreement at sufficiently high order in the
expansion, providing justification for both the expanded
and the full results. We suggest that the approach may
provide access to the QCD phase diagram beyond what can
be normally achieved [4].

II. HOPPING PARAMETER EXPANSIONS

We consider lattice QCD with Wilson fermions at
nonzero quark chemical potential μ. After integrating out
the fermions, the QCD partition function is given by
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Z ¼
Z

DUe−S; S ¼ SYM − log det M; ð1Þ

where SYM is the standard Wilson gauge action and the
fermion matrix (for each flavor) is given by

M ¼ 1 − κQ ¼ 1 − κsS − R; ð2Þ
with

Sxy ¼ 2
X3
i¼1

ðΓ−iUx;iδy;xþai þ ΓþiU−1
y;iδy;x−aiÞ;

Rxy ¼ 2κðeμΓ−4Ux;4δy;xþa4 þ e−μΓþ4U−1
y;4δy;x−a4Þ: ð3Þ

We introduced a separate parameter κs for hopping in the
spatial direction, which will be used to define the κs
expansion below, with the identification κs ¼ κ. The hop-
ping parameter is (naively) related to the bare quark
mass m as κ ¼ 1=ð2mþ 8Þ. The projectors are Γ�ν ¼
ð1� γνÞ=2, with Γ2

�ν ¼ Γ�ν and ΓþνΓ−ν ¼ 0. For nonzero
μ, detM is complex, but it satisfies the relation
½detMðμÞ�� ¼ detMð−μ�Þ, due to the γ5 Hermiticity of
the Dirac matrix M. As always, the temperature is given
by the inverse temporal length of the lattice, T ¼ 1=ðaNτÞ
(we use lattice units a≡ 1).
In a straightforward hopping expansion, which we will

call the κ expansion, detM is expanded as

detM ¼ detð1 − κQÞ ¼ exp
X∞
n¼1

−
κn

n
TrQn: ð4Þ

For Nf > 1 flavors their contributions are summed in the
exponent. Since Q contains hoppings, only even powers
contribute in the expansion, due to the traces. Fermionic
observables are calculated using the same expansion: e.g.
the chiral condensate and baryonic density are written as

hψ̄ψi ¼ 2κNf

Ω

X∞
n¼0

κnhTrQni; ð5Þ

hni ¼ −
Nf

Ω

X∞
n¼1

κn
�
Tr

�∂Q
∂μ Qn−1

��
; ð6Þ

where Ω ¼ N3
sNτ is the lattice volume. A drawback of this

approach is that one needs to go to order Nτ before μ
dependence is visible, since μ dependence only arises when
loops can wind around the lattice in the time direction.
Moreover, the terms in the expansion contain eμ contribu-
tions, which affect the convergence for large μ.
For those reasons we consider a second scheme, an

expansion in the spatial hopping parameter only, which we
call the κs expansion. At LO, obtained by taking κs ¼ 0 in
Eq. (2), we recover heavy dense QCD (HDQCD), which
formally relies [8] on the double limit κ → 0, μ → ∞, with

ζ≡ 2κeμ fixed. Note that in this limit only Polyakov loops
Px survive; inverse Polyakov loops P−1

x are introduced to
preserve the γ5 Hermiticity and allow a smooth continu-
ation to small μ [18]. The HDQCD determinant reads

detMLO ¼
Y
x

det ð1þ CPxÞ2 det ð1þ C0P−1
x Þ2; ð7Þ

where CðμÞ ¼ ð2κeμÞNτ and C0ðμÞ ¼ Cð−μÞ. The remain-
ing determinants in color space are easily expressed in
terms of traced (conjugate) Polyakov loops, Px ¼ TrPx=3,
P0
x ¼ TrP−1

x =3 [11,18]. Since quarks cannot hop in space,
this corresponds to the static limit.
HDQCD can be used as an approximation to QCD for

any κ and μ. However, since the hopping expansions are
analytic, one can go further and consider successive higher-
order terms in κ2s in the loop expansion of the determinant,
by using decorated Polyakov loops [11]. To go beyond LO
systematically in the κs expansion, we separate the tem-
poral part and write

M ¼ ð1 − RÞ
�
1 −

1

1 − R
κsS

�
: ð8Þ

The full determinant is then expanded as

detM ¼ detð1 − RÞ exp
X∞
n¼1

−
κns
n
Tr

�
1

1 − R
S

�
n
: ð9Þ

Again, only even powers have a nonvanishing contribution
in the expansion. The determinant and inverse of 1 − R
can be calculated analytically. Since (unlike for staggered
fermions) backtracking is forbidden, the former is just
given by the LO expression (7). For the inverse we write
ð1 − RÞ−1 ¼ ð1 − RþÞ−1 þ ð1 − R−Þ−1 − 1 with R� con-
taining the timelike hoppings in the positive/negative
direction. We then expand

ð1 − RþÞ−1xy ¼
X∞
n¼0

ð2κeμΓ−4Ux;4δy;xþa4Þn; ð10Þ

and similarly for ð1 − R−Þ−1. The geometric series can
easily be resummed by introducing temporal strings
between x and y. The fermionic observables can be
expressed similarly to Eqs. (5) and (6). A similar expansion
was used in Refs. [16,17] in combination with the strong-
coupling expansion for the Yang-Mills action to develop an
effective Polyakov-loop model for QCD. These papers also
contain detailed formulas for the relations following from
Eqs. (9) and (10). Here our main interest is to develop a
model-free method for QCD, using the full Yang-Mills
action and the hopping parameter expansion to arbitrary
order, allowing calculations in a large region of parameters.
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III. COMPLEX LANGEVIN SIMULATIONS

We define the NqLO approximation by truncating the
expansions (4) and (9) to order κ2qðsÞ. The resulting
Boltzmann weights are however still complex, invalidating
importance sampling; hence we use CL dynamics instead.
Since CL dynamics does not rely on positivity of the
weight, it has the potential to simulate lattice models for
which importance sampling fails. The approach [19,20] is
based on setting up a stochastic process on the complex-
ification of the configuration space. One can formally prove
[5] the correctness of the approach, provided that certain
conditions are met, such as a rapid decay of the probability
distribution effectively sampled on the complexified con-
figuration space and the holomorphy of the drift term and
observables. Numerical problems, e.g. runaway trajecto-
ries, may be present due to the amplification of unstable
modes in the drift dynamics by numerical imprecision, but
these can to a large extent be taken care of by adaptive step
sizes [21]. Generally, one has significant freedom in
defining the process for a given action [22].
In lattice QCD links live in SU(3) and the Langevin

equation reads [23]

Ux;ν↦ exp

�X
a

iλaðϵKxνa þ
ffiffiffi
ϵ

p
ηxνaÞ

�
Ux;ν; ð11Þ

where Kxνa ¼ −DxνaS is the drift force, ϵ is the (adaptive)
stepsize, and η are independent Gaussian noises satisfying
hηxνaηx0ν0a0 i ¼ 2δaa0δxx0δνν0 . A complex action leads to a
complex drift force K, and links take values in SLð3;CÞ.
While the drift term is gauge covariant and transverse to
the gauge orbits, the noise term contains components along
the gauge orbits. Solutions of the stochastic process may
therefore go far from the unitary submanifold, resulting in a
wide distribution in the noncompact direction, undermining
one of the conditions for the validity of the approach. To
deal with this problem, we use the method of gauge cooling
[6] (see also the review [24]), which uses noncompact
gauge transformations to force the process to stay near the
unitary manifold. This leads to a thin distribution which is
required for the convergence proof and together with the
adaptive step size this practically eliminates runaways.
Another complication is due to zeroes in the measure, i.e.

detM ¼ 0, leading to a meromorphic drift. Poles in the drift
may provoke an incorrect convergence of the process, as
shown in nontrivial, soluble models [25]. At any finite
order n the κ expansion for the drift has no poles and the
possible zeroes in the determinant will only show up as a
poor convergence of the series when approaching such
configurations. Its drawback at large μ comes from the eμ

contributions to the terms in the expansion. The κs
expansion, which takes care of these contributions analyti-
cally, does not have this drawback, but here the drift itself
will have singularities at the zeroes of the LO determinant,
detð1 − RÞ. These singularities may cause problems in

some regions of parameter space. While a systematic
understanding of the effect of poles is still missing, the
results presented below indicate that it is not an issue here.
HDQCD was first studied using CL dynamics in

Ref. [18]. Supplemented with the gauge cooling procedure,
it produces correct results (in comparison with reweighting
data where available) [6], provided that the gauge coupling
β ≳ 5.7. Below this threshold, gauge cooling is not effec-
tive enough to control the distribution in SLð3;CÞ. The
threshold depends only very mildly on the lattice size or
μ [26]. Hence, the continuum limit can be reached by
increasing β. The extension to full QCD was given in
Ref. [7] for staggered quarks. Since the gauge trans-
formations are interlaced with dynamical steps, the numeri-
cal costs are increased by a factor without changing the
volume dependence of the algorithm.
The expressions for the Langevin drift at LO can be

found in Ref. [18]. To go beyond LO, we now discuss how
the drift terms using the κ and κs expansions are imple-
mented in CL dynamics. In the case of the κ expansion, the
contribution to the drift (for a single flavor) is

Kxνa ¼ −
X∞
n¼1

κnTrðQn−1DxνaQÞ: ð12Þ

In the κs expansion, there are two terms, with the
contribution from the first factor in Eq. (9) given by the
drift at LO [18]. The contribution from the second factor is

Kxia ¼ −
X∞
n¼1

κnsTr

�
1

1 − R
ðDxiaSÞ

	
1

1 − R
S



n−1

�
;

Kx4a ¼ −
X∞
n¼1

κnsTr

�
1

1 − R
ðDx4aRÞ

	
1

1 − R
S



n
�
; ð13Þ

for spatial and temporal links, respectively. In the numerical
implementation the traces are computed using a noisy
estimator, i.e. by choosing a Gaussian random vector ηi
(here i represents space-time, color and Dirac indices)
satisfying hηii ¼ 0, hη�i ηji ¼ δij, and then constructing the
drift as

Kxνa ¼ hη�ðDxνaQÞsi; s ¼ −
X
n

κnQn−1η; ð14Þ

for the κ expansion. The dominant numerical cost of the
fermions, when including corrections up to κn, is thus n − 1
multiplications with the sparse matrix Q. For the κs
expansion the drift is computed in a similar fashion, but
the numerical cost is slightly higher, as additional multi-
plications with the matrix ð1 − RÞ−1 are required. We
emphasize that numerical inversion of the fermion matrix
M is not required at any stage.
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IV. SIMULATION RESULTS

In order to demonstrate the feasibility of the approach
we have carried out simulations for Nf ¼ 2 flavors. Here
we present first results on a 44 lattice, at β ¼ 5.9 and
κ ¼ κs ¼ 0.12, for several values of μ. We always use
lattice units. We also compare with results for full QCD,
obtained with complex Langevin dynamics, extending the
approach of Ref. [7] for staggered fermions to Wilson
fermions. We have measured the scale using the gradient
flow, as proposed in Ref. [27]. The scale depends on the
theory that is considered: for HDQCD we find that β ¼ 5.9
and κ ¼ 0.12 corresponds to a≃ 0.12 fm, while for full
QCD we find a≃ 0.114 fm.
In Fig. 1 we present the quark number density as a

function of the order in the κ and κs expansions for two
different μ values. We also show the result for full QCD. At
the smaller μ ¼ 0.7 (or μ=T ¼ 2.8) the two expansions
perform similarly, but at the larger μ ¼ 1.1 (or μ=T ¼ 4.4)
the κ expansion breaks down, due to the presence of κeμ

terms in the series. The κs expansion converges in both
cases (already at order κ10), as the μ dependence does not
interfere with the spatial hopping expansion. In the κ
expansion, one needs to go to order κ4 to find the first κ
dependence, since only then can it appear in a closed loop,
i.e. the plaquette. Similarly, one needs to go to order κNτ to
find the first μ dependence. Hence the results up to κ2 equal
the quenched (κ ¼ 0; μ ¼ 0) result. In the κs expansion,
there are κ and μ dependencies at all orders. We not only
observe good convergence, but also agreement with the full
result. This is a nontrivial test for both expansions and for
the CL simulation of the full theory; in particular, it implies
that the lack of holomorphicity due to poles in the drift

arising from the determinant does not invalidate the results.
Similar behavior is observed for the chiral condensate and
the spatial plaquette; see Fig. 2.
The κs expansion appears to converge relatively quickly

for κ ¼ 0.12, at orders where it is still much cheaper to
simulate than full QCD. The convergence radius depends
on the parameters used and the expansion appears to break
down below κ ¼ 0.14 at μ ¼ 0.9; see Fig. 3 (top). However,
first results indicate that the convergence radius does not
seem to depend on the lattice size. Figure 3 (bottom) shows
the convergence of the expansion on a larger 84 lattice,
corresponding to a lower temperature ∼200 MeV, for two
μ values, corresponding to μ=T ¼ 5.6 and 6.4. Here we
note that at μ ¼ 0 the theory is in the confined phase. The
rapid rise of the density as μ increases from 0.7 to 0.8
indicates that at the larger μ value the theory is no longer
confining. This interpretation is indeed supported by a
nonzero Polyakov-loop expectation value (not shown). A
detailed study of how the convergence depends on the
chemical potential, hopping parameter and lattice volume
requires further investigation.
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FIG. 1 (color online). Dependence of the quark density (in
lattice units) on the order of the truncation of the κ and κs
expansions, for μ ¼ 0.7 and 1.1, on a 44 lattice with β ¼ 5.9,
κ ¼ 0.12, and Nf ¼ 2. The region where the κ expansion breaks
down for μ ¼ 1.1 is indicated. The lines show the result for full
QCD. Saturation density is nsat ¼ 2NcNf ¼ 12.
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V. SUMMARY

We have outlined a program to simulate QCD at nonzero
density using two distinct hopping parameter expansions
and demonstrated that the approach appears feasible, at
least for not too small (bare) quark masses. We used two
formulations—the κ and κs expansions—which can be

effectively and cheaply calculated, using complex
Langevin dynamics, to high order. Hence convergence
can be checked explicitly. We have also presented for the
first time complex Langevin simulations of full QCD with
Wilson fermions at finite chemical potential. This makes it
possible to compare the hopping parameter expansion
results with those obtained directly in full QCD. The
agreement in this case can also be used to justify the full
Langevin results, and, in particular, to demonstrate that the
nonholomorphicity of the action due to the determinant
does not invalidate the Langevin results. We emphasize that
the approach outlined here is free of further approximations
and is based solely on the hopping parameter expansion to
high order. Hence model-dependent features of effective
models, such as those obtained using the strong-coupling
expansion, can be verified with our approach as well as by
comparing with full QCD results.
While the first results are encouraging, there are many

aspects that require further investigation, in particular the
behavior on larger lattices at lower temperature and large
μ=T, as well the convergence properties when decreasing
the quark mass (increasing the hopping parameter). First
results indicate that there is no problem in reducing the
temperature and hence we propose to use the methods
described here to investigate the phase diagram of QCD in
regions not accessible otherwise, using larger lattices at
sufficiently high order in the κs expansion. We hope to
come back to this in the near future.
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