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The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g.,
in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum
hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Here
we investigate this issue, using nonperturbative lattice simulations employing the FASTSUM anisotropic
Nf ¼ 2þ 1 ensembles. We study the fate of octet and decuplet baryons as the temperature increases,
focussing in particular on the positive- and negative-parity ground states. While the positive-parity ground
state masses are indeed seen to be temperature independent, within the error, a strong temperature
dependence is observed in the negative-parity channels. We give a simple parametrization of this and
formulate an in-medium HRG, which is particularly effective for hyperons. Parity doubling is seen to
emerge in the deconfined phase at the level of correlators, with a noticeable effect of the heavier s quark.
Channel dependence of this transition is analyzed.
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I. INTRODUCTION

How the light hadrons behave under the extreme con-
ditions of nonzero temperature and/or density is a question
of fundamental importance, linked to confinement and
chiral symmetry. Moreover, quantitative insight is highly
relevant for ongoing heavy-ion collision experiments,
exploring the QCD phase diagram, as heavy-ion phenom-
enology relies on understanding the behavior of hadrons
under the conditions created in those collisions.
A widely used description of the hadronic phase at

nonzero temperature and vanishing or low baryon density is
given by the hadron resonance gas (HRG) [1–3], in which
all states, including resonances, contribute to thermody-
namic quantities, such as pressure, entropy and suscep-
tibilities. In its simplest form, the hadrons are treated as
noninteracting particles, characterized by their vacuum
mass and quantum numbers. This setup gives a reasonable
description of both heavy-ion phenomenology [4,5] and
lattice QCD data [6,7]. A closer look, however, reveals
intriguing discrepancies [8,9]. This is not unexpected and
there are a number of HRG modifications which aim to go
beyond the ideal HRG, e.g., by including attractive and/or
repulsive interactions [10,11], hard-core interactions [12]

or additional states, predicted by e.g., the quark model but
not yet observed in nature [8,9,13].
Most commonly used implementations of the HRG,

however, use a formulation in which the resonances have
the same mass throughout the hadronic part of the QCD
phase diagram, i.e., equal to their value in vacuum. This is
somewhat surprising, since the in-medium modification
of masses, or of more general spectral features, is a
longstanding topic of interest in the theory and phenom-
enology of strongly interacting matter and often used as one
of the indications of the presence of a medium [14,15]. For
light hadrons, chiral symmetry is expected to play an
important role and in-medium effects are often captured by
a medium-dependent chiral condensate. While this is
widely accepted, it is typically not implemented in the
HRG or its extensions. An exception is Ref. [16], in
which the interplay between the freeze-out temperature
and chiral-condensate dependent in-medium masses has
been discussed.
There is therefore a need to unambiguously establish if

and how the masses of the light hadrons in the hadronic
phase depend on the temperature, at zero and low baryon
density. This is a nonperturbative question in QCD, which
can be addressed using either a first-principle lattice QCD
computation or via effective models, suitably benchmarked
against lattice QCD results. While mesons at finite temper-
ature have indeed been fairly well studied on the lattice in
various contexts (see e.g., Ref. [17] for a list of references),
for baryons this is not the case. In fact, there are only a few
lattice studies of baryonic thermal screening [18,19] and
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temporal [17,20,21] masses. Here we extend our work on
baryons [17,21], using lattice QCD simulations on the
FASTSUM anisotropic Nf ¼ 2þ 1 ensembles [22,23], to
include hyperons, i.e., all octet and decuplet baryons. We
are particularly interested in the role of chiral symmetry and
the emergence of parity doubling: in the presence of
unbroken chiral symmetry, positive- and negative-parity
baryonic channels are degenerate. When chiral symmetry is
(spontaneously) broken, this is no longer the case and
indeed, in vacuum the positive-parity ground state is
typically lighter than the negative-parity one. Since chiral
symmetry is restored around the deconfinement transition,
one expects a degeneracy to emerge, based purely on
symmetry considerations. Here we investigate how this
degeneracy emerges, which is a nonperturbative dynamical
question, not answerable using symmetry considerations
alone, and how it affects the HRG description.
The paper is organized as follows. In the following

section we summarize the details of the lattice QCD
simulations [22,23]. Section III contains the results on
temperature effects in the hadronic phase at vanishing
baryon density, including a parametrization of the temper-
ature-dependent masses for the negative-parity ground
states. These parametrizations are subsequently used in
Sec. IV to define an in-medium hadron resonance gas, and
we give an application to baryonic fluctuations and con-
tributions to the pressure. Section V contains the results in
the deconfined phase, including an analysis of the strange-
ness dependence of the transition from the low- to the high-
temperature phase. A summary is given in Sec. VI. The N,
Δ and Ω channels were already discussed in Ref. [17];
preliminary results in the Λ, Σ, Σ�, Ξ and Ξ� channels have
been presented in Ref. [24].

II. LATTICE QCD DETAILS

In order to investigate QCD at nonzero temperature
nonperturbatively, the FASTSUM collaboration uses lattice
QCD simulations on highly anistropic lattices, aτ=as ≪ 1.
We employ a fixed-scale approach in which the temperature
is varied by changing the number of time slices Nτ, via the
standard relation, T ¼ 1=ðaτNτÞ. The choice of fixed-scale
anisotropic lattices is specifically motivated for spectral
studies of QCD at nonzero temperature, as it increases the
number of time slices available and does not require a
zero-temperature tuning of parameters for each tempera-
ture value. Our lattice discretization follows the Hadron
Spectrum Collaboration [25] and uses a Symanzik-
improved anisotropic gauge action with tree-level mean-
field coefficients and a mean-field–improvedWilson-clover
fermion action with stout-smeared links [26]. Full details
can be found in Refs. [22,23].
We have available several ensembles, four below and

four above the deconfinement transition, see Table I. These
ensembles make up our Generation 2 ensembles and have
been used in studies of transport [23,27], bottomonium

[22], open and hidden charm [28], and baryons [17,21],
which are further studied in this paper. Tuning of the lattice
parameters and also the “zero-temperature” ensemble
(Nτ ¼ 128) were kindly provided by the HadSpec collabo-
ration [25]. The crossover temperature, denoted with Tc, is
determined via the inflection point of the renormalized
Polyakov loop and is found to be Tc ¼ 185ð4Þ MeV. This
is higher than in nature, due to the light quarks not having
their physical masses (mπ ¼ 384ð4Þ MeV). The strange
quark mass has its physical value [22,23]. We note here
that in the case of a crossover the transition temperature
determined via other observables, e.g., linked to chiral
properties, can be different, see e.g., Ref. [6]. Here we
use Tc to denote the transition temperature determined via
the Polyakov loop, as discussed above, and take care to
distinguish it from estimates coming from other observables.
For the baryonic correlators, we apply Gaussian smear-

ing [29] at both the source and the sink in the spatial
directions, in order to increase the overlap with the ground
state. The smearing parameters are chosen to maximize the
length of the plateau for the effective mass of the ground
state at the lowest temperature. These smearing parameters
are then used at all temperatures, see Refs. [17,21].

III. IN-MEDIUM EFFECTS
IN THE HADRONIC PHASE

We computed all octet (spin 1=2) and decuplet (spin 3=2)
baryon correlators, for both positive and negative parity. In
fact, in each channel the parity partners are encoded in the
same Euclidean correlator: if G�ðxÞ denotes the correlator
projected to positive (negative) parity, i.e.,

G�ðxÞ ¼ htrP�OðxÞŌð0Þi; P� ¼ 1

2
ð1� γ4Þ; ð1Þ

with OðxÞ the baryon annihilation operator, then

G�ð1=T − τ;pÞ ¼ −G∓ðτ;pÞ; ð2Þ

TABLE I. Ensembles used in this work. The lattice size is
243 × Nτ, with the temperature T ¼ 1=ðaτNτÞ. The available
statistics for each ensemble is Ncfg × Nsrc. The sources were
chosen randomly in the four-dimensional lattice. The spatial
lattice spacing as ¼ 0.1227ð8Þ fm, the inverse temporal lattice
spacing a−1τ ¼ 5.63ð4Þ GeV, and the renormalized anisotropy
ξ ¼ as=aτ ¼ 3.5. The estimate Tc ¼ 185ð4Þ MeV is determined
via the inflection point of the renormalized Polyakov loop.

Nτ 128 40 36 32 28 24 20 16

T [MeV] 44 141 156 176 201 235 281 352
T=Tc 0.24 0.76 0.84 0.95 1.09 1.27 1.52 1.90
Ncfg 139 501 501 1000 1001 1001 1000 1001
Nsrc 16 4 4 2 2 2 2 2
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i.e., the parity partner propagates from the opposite side of
the Euclidean lattice; see Ref. [17] for a detailed derivation.
In the confined phase, we find that the correlators can be

described by combinations of exponentials, allowing us to
determine the ground state masses m� as a function of the
temperature. Examples of correlators and a description of
fitting methods can be found in Ref. [17]; we follow the
same approach here. Our results for the ground state
masses, m�ðTÞ, in both parity channels at four temper-
atures in the confined phase are given in Table II, together
with the “zero-temperature” results from the Particle Data
Group [30]. As mentioned above, the results for the N, Δ
and Ω baryons were previously presented in Ref. [17].
A few things can be noted. We start at the lowest

temperature. Since the light quarks are somewhat heavy,
the S ¼ 0 states at the lowest temperature are also heavier
than in nature. However, since in our simulations the s
quark has its physical mass, for hyperons this difference is
reduced as strangeness decreases. Negative-parity states are
typically about 500–600 MeV heavier than their partners,
both in our simulations and in the PDG. Some negative-
parity states in the PDG seem anomalously light, such as
the Λð1405Þ, and the status of this state is indeed under
discussion (see e.g., the review [31] and references therein).
In these cases, Table II also lists masses from the PDG
which are separated by about 500 MeV and hence are
potential candidates for parity partners, as suggested by our
results at the lowest temperature (we note here that our
spectroscopy methods are not specifically designed for
high-precision spectroscopy in vacuum). As a final remark

at the lowest temperature, we note that the positive-parity
masses satisfy, to high precision, the Gell-Mann–Okubo
mass relation [32,33]

3

4
mΛ þ 1

4
mΣ −

1

2
ðmN þmΞÞ ¼ 0; ð3Þ

for octet baryons and Gell-Mann’s equal spacing rule

mΣ� −mΔ ¼ mΞ� −mΣ� ¼ mΩ −mΞ� ð4Þ

for decuplet baryons, also for our choice of quark masses,
but the negative-parity masses do not (as is expected).
We now turn to the discussion of temperature effects,

also presented in Table II and summarized in Figs. 1 and 2,
where we show m�ðTÞ in the various channels, normalized
with mþ at the lowest temperature, T0 ¼ 44 MeV. Several
observations can be made. The positive-parity masses are
largely temperature independent. A slight increase and
subsequent drop when approaching the transition can be
seen, but it is not significant within current errors. A
corollary is that the relations (3), (4) are satisfied through-
out the confined phase (within error), which constrains
thermal model-building efforts. The negative-parity masses
on the other hand drop in all channels in a similar way, and
become near-degenerate with the corresponding positive-
parity mass near the transition. The larger errors for the
negative-parity states indicate that it is harder to fit the
negative-parity correlators, impeding very precise state-
ments about the degeneracy very close to the transition.

TABLE II. Groundstate massesm� (in MeV) for baryons with strangeness S in both parity sectors (P ¼ �) in the
confined phase. Estimates for statistical and systematic uncertainties are included. The final column shows the
T ¼ 0 values from the PDG. Note that in some cases there is more than one candidate.

S IðJPÞ T=Tc ¼ 0.24 0.76 0.84 0.95 PDG

0 N 1
2
ð1
2
þÞ 1159(13) 1192(39) 1169(53) 1104(40) 939

1
2
ð1
2
−Þ 1778(52) 1628(104) 1425(94) 1348(83) 1535

Δ 3
2
ð3
2
þÞ 1459(58) 1521(43) 1449(42) 1377(37) 1232

3
2
ð3
2
−Þ 2138(117) 1898(106) 1734(97) 1526(74) 1710

−1 Σ 1ð1
2
þÞ 1277(13) 1330(38) 1290(44) 1230(33) 1193

1ð1
2
−Þ 1823(35) 1772(91) 1552(65) 1431(51) 1750

Λ 0ð1
2
þÞ 1248(12) 1293(39) 1256(54) 1208(26) 1116

0ð1
2
−Þ 1899(66) 1676(136) 1411(90) 1286(75) 1405–1670

Σ� 1ð3
2
þÞ 1526(32) 1588(40) 1536(43) 1455(35) 1385

1ð3
2
−Þ 2131(62) 1974(122) 1772(103) 1542(60) 1670–1940

−2 Ξ 1
2
ð1
2
þÞ 1355(9) 1401(36) 1359(41) 1310(32) 1318

1
2
ð1
2
−Þ 1917(27) 1808(92) 1558(76) 1415(50) 1690–1950

Ξ� 1
2
ð3
2
þÞ 1594(24) 1656(35) 1606(40) 1526(29) 1530

1
2
ð3
2
−Þ 2164(42) 2034(95) 1810(77) 1578(48) 1820

−3 Ω 0ð3
2
þÞ 1661(21) 1723(32) 1685(37) 1606(43) 1672

0ð3
2
−Þ 2193(30) 2092(91) 1863(76) 1576(66) 2250
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To model the temperature dependence of m−ðTÞ, we
have fitted the data with a simple Ansatz, interpolating
between m−ð0Þ and m−ðTcÞ,

m−ðTÞ ¼ wðT; γÞm−ð0Þ þ ½1 − wðT; γÞ�m−ðTcÞ: ð5Þ

Here

wðT; γÞ ¼ tanh ½γ−1ð1 − T=TcÞ�
tanhðγ−1Þ ð6Þ

is a transition function, with wð0; γÞ ¼ 1 and wðTc; γÞ ¼ 0.
Since in a crossover the determination of a transition
temperature using deconfinement or chiral observables
need not coincide, a more elaborate Ansatz would replace
Tc with Tχ

c, a chiral transition temperature determined by

e.g., the requirement that m−ðTχ
cÞ ¼ mþðTχ

cÞ, i.e., the
temperature at which the masses become degenerate.
Since there are only 4 data points in the confined phase
and the uncertainty is largest close to Tc, we choose to
proceed here with the Ansatz (5), postponing to Sec. V an
estimate of Tχ

c directly from the Euclidean correlators in
each channel.
Since the transition is a crossover rather than a real phase

transition, with the strength of the transition depending on
the masses of the light quarks, the fit parameter γ > 0 is
used to encode the width of the transition region, with small
(large) γ corresponding to a narrow (broad) crossover
region. We have carried out fits in each of the 8 channels
and find

0.22≲ γ ≲ 0.35; 0.85≲m−ðTcÞ
mþð0Þ

≲ 1.1: ð7Þ

The largest uncertainty resides in m−ðTcÞ, since it assumes
that the concept of a well-defined ground state at or close to
Tc remains sensible. Note that in the fits we fixed
m−ð0Þ ¼ m−ðT0Þ. The results of the fits are shown as
dashed lines in Figs. 1 and 2. We use the results of this
analysis in the next section.
To summarize, our results confirm that parity doubling

indeed emerges, as expected, and moreover establish that
the degeneracy develops from a reduction of the negative-
parity masses with temperature, while the positive-parity
masses remain approximately constant. We find this to be
similar in all the channels studied. While the emergence of
degeneracy is not surprising, the manner in which this is
realized cannot be determined from symmetry alone, but
requires a dynamical calculation, as we have done here. We
note that our findings can be used to constrain effective
parity-doublet models [34–36], in which a chirally invariant
component to baryon masses, denoted asm0, is introduced.
These models permit a nonzero baryon mass also when
chiral symmetry is restored, with the typical behavior of the
mass of parity partners being [34–37]

m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ c1σ20

q
∓ c2σ0; ð8Þ

where σ0 denotes the chiral condensate in vacuum and c1;2
are parameters related to the couplings between the baryons
and the light mesons. Incorporating medium effects by
allowing σ0 to be temperature dependent yields a prediction
for the temperature dependence of the baryon masses, but
some nontrivial interplay is to be expected to ensure that
mþ remains largely independent of temperature, as our data
indicates. Some recent work along these lines can be found
in Refs. [38–45] (see also Ref. [46] for an approach based on
the Faddeev kernel). Studies determining only the positive-
parity hyperon ground states at nonzero temperature include
Ref. [47] (using the Polyakov-Nambu-Jona-Lasinio (PNJL)
model) and Ref. [48] (using QCD sum rules).
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FIG. 1. Temperature dependence of the ground state masses,
normalized with mþ at the lowest temperature, m�ðTÞ=mþðT0Þ,
in the hadronic phase, for octet baryons. Positive- (negative-)
parity masses are indicated with open (closed) symbols.
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FIG. 2. As above, for decuplet baryons.
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IV. IN-MEDIUM HADRON RESONANCE GAS

We now consider a possible application of our findings
in the confined phase, which has relevance for heavy-ion
phenomenology. A widely used model to describe thermo-
dynamical properties of QCD at low temperature is the
hadron resonance gas (HRG), in which all resonances
identified in the PDG contribute to the pressure and other
thermodynamic quantities, such as generalized susceptibil-
ities. In the standard formulation, the resonances are not
interacting and their properties are taken as in vacuum,
i.e., not affected by the presence of a (thermal) medium.
This ideal HRG gives a reasonable description of exper-
imental and lattice QCD data, but discrepancies appear at a
quantitative level. As mentioned in the Introduction, several
modifications of the HRG have been proposed to cure this
[10–12]. Since the ideal HRG results typically fall below
e.g., the lattice QCD data for thermodynamic quantities, it
has been proposed to include more states than have been
identified in the PDG, since this will result in an increase of
the pressure and of susceptibilities. Indeed, including states
which appear in the quark model but have not (yet) been
identified experimentally leads to a better agreement
between lattice data and this extended HRG [8,9,13].
Motivated by our findings above, we propose here to

include medium effects in the hadronic masses, rather than
keeping them as in vacuum. Since we observed that the
negative-parity ground state masses drop as the temperature
increases, we can anticipate an increase in the pressure and
susceptibilities compared to the ideal HRG, since lighter
degrees of freedom lead to larger fluctuations. Hence a
qualitative improvement is expected. We will refer to this
proposal as the in-medium HRG, to distinguish it from
other modifications. Since in this paper we are concerned
with spectral changes for baryons, we apply the in-medium
HRG to quantities that are sensitive to baryon number,
namely the baryonic contributions to the pressure and the
correlation between baryon number and strangeness,

χBS ¼
1

VT
hBSi ¼ T

V
∂2 lnZ
∂μB∂μS ; ð9Þ

where V is the spatial volume and Z the partition function.
Let us now turn to the concrete implementation. As

supported by the lattice study, positive-parity masses are
kept fixed, i.e., at their vacuum value, but the negative-
parity ground state masses are taken to be temperature
dependent, according to the prescription (5). We do not
modify masses of excited states, as we have currently no
predictions for their temperature dependence from the
lattice, but one could envision including this. Our lattice
study was carried out using two light flavors which are
heavier than in nature. In our in-medium HRG application,
we use the actual mass values given in the PDG: concretely,
we use the PDG2016 baryon masses classified with 3 and 4
stars, up to 2.5 GeV. In the case that there are several

candidates for negative-parity partners—e.g., Λð1450Þ and
Λð1670Þ—we have identified as parity partners the ones
that are separated by about 500–600 MeV, i.e., Λð1670Þ,
Σð1940Þ and Ξð1950Þ, similar as for the other baryons. For
the pseudocriticial temperature, we used Tc ¼ 155 MeV,
which is determined by chiral observables [6,49]. The
strength of the transition is expected to depend on the
masses of the light flavors. To incorporate this, we have
varied the parameter γ encoding the width of the transition
region, see Eq. (5), but have found no effect within the
uncertainty arising from varying m−ðTcÞ=mþð0Þ. For the
results shown in Figs. 3 and 4, we have used γ ¼ 0.3 and
varied the ratio m−ðTcÞ=mþð0Þ between 1 and 1.1.
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FIG. 3. Fluctuations of strange baryons, −χBS=T2 ¼
−hBSi=VT3. The symbols are continuum-extrapolated lattice
data from the Budapest-Wuppertal collaboration [50–52]. HRG
(full line) is the standard hadron resonance gas. The in-medium
HRG (orange stripes) uses temperature-dependent masses for the
negative-parity ground states, and is explained in the text.
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2, 3. The lattice data is taken from Refs. [9,53]. The HRG and
in-medium HRG are as above.
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In Fig. 3, we show the dimensionless combination
−χBS=T2 ¼ −hBSi=VT3, representing fluctuations of
strange baryons. The standard HRG result, shown by the
full line, lies below the continuum-extrapolated lattice data
from the Budapest-Wuppertal collaboration [50–52].
The in-medium HRG result moves away from the HRG
line as the temperature increases, since a subset of the
strange baryons becomes lighter as the system heats up,
in qualitative agreement with the lattice data. Within
the uncertainty, which is dominated by the variation of
m−ðTcÞ=mþð0Þ, we find that the in-medium HRG result
agrees with the lattice data also quantitatively.
Figure 4 shows the contributions to the normalized

pressure p=T4 from the sectors with baryon number
jBj ¼ 1, organized by strangeness. The ideal and in-medium
HRG are compared to the lattice data of Refs. [9,53]. In the
S ¼ 0 sector, the ideal HRG describes the data very well and
in fact modifications of the HRG will typically make the
comparison worse. In the jSj ¼ 1, 2, 3 sectors, however, the
standard HRG lies significantly below the lattice data. Here
we observe that the in-medium HRG leads to a quantitative
improvement.
To conclude, a few comments are in order. First we note

that both mesons and baryons enter in the HRG and for
many thermodynamic quantities mesons, containing the
lightest states, dominate. In our lattice study, we have
considered baryons only. Hence in the application above
we have consider quantities that are sensitive to baryon
number. To extend the in-medium HRG to include mesonic
resonances requires a detailed study the mesonic spectrum
as the temperature increases, which we leave for the future.
Second, with temperature-dependent masses, an applica-
tion of the in-medium HRG to thermodynamic quantities
which are obtained as temperature derivatives of the
pressure, such as the entropy density s ¼ ∂p=∂T, care
has to be taken to be thermodynamically consistent, see
e.g., Ref. [54]. Finally, given that there are a number of
HRGmodifications which aim to improve the ideal HRG in
complementary ways, it would be interesting to consider
various modifications simultaneously, provided they are
not in incompatible on physical grounds.

V. PARITY DOUBLING

We now return to the lattice data and analyse the
transition from the hadronic phase to the quark-gluon
plasma, in particular the emergence of parity doubling.
At T ¼ 201 MeV (T=Tc ¼ 1.09), the lowest temper-

ature in the deconfined phase we have access to, we find
that clearly identifiable bound states do not appear to be
present; evidence in the N and Ω channels has already been
reported in Ref. [17]. Instead, we study the emergence of
parity doubling, which can be done directly at the level of
the correlators G�, without the need for identifiable ground
states. We consider the ratio [20,21]

RðτÞ ¼ GþðτÞ −Gþð1=T − τÞ
GþðτÞ þ Gþð1=T − τÞ ; ð10Þ

to analyze the difference between the channels with
opposite parity, see Eq. (2). Note that we consider zero
momentum only and hence drop the p dependence. In the
case of parity doubling, GþðτÞ ¼ Gþð1=T − τÞ ¼ −G−ðτÞ
and RðτÞ ¼ 0. In absence of parity doubling, and in the
presence of clearly separated ground states with a gap
between the positive- and negative-partity ground states,
such that

G�ðτÞ ∼�A�e−m�τ; m− ≫ mþ; ð11Þ

one finds that RðτÞ ¼ 1, in the interval where the ground
states dominate [17,20,21]. We can capture this in a single
quantity R by summing over the temporal lattice points,

R ¼
P

nRðτnÞ=σ2ðτnÞP
n1=σ

2ðτnÞ
; ð12Þ

where σðτnÞ denotes the error at time slice τn and
4 ≤ n ≤ Nτ=2 − 1, to exclude lattice artefacts and excited
states present at early times. (Note that the same procedure
was followed in Refs. [17,21]; the starting value in the sums
in Refs. [17,21] was incorrectly given as n ¼ 1.) If the
Ansatz of a single exponential at low temperature, Eq. (11),
describes the data well, one finds that the quasiorder
parameter R equals 1, while it vanishes in the case of parity
doubling.
The results for R as a function of temperature are shown

in Fig. 5. Note that the channels are identified by the
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FIG. 5. Crossover behavior of R, see Eqs. (10), (12), as a
function of temperature and ordered by strangeness, indicating
the emergence of parity doubling in the deconfined phase. The
grey lines are cubic spline fits, with the width indicating a
statistical uncertainty only. The vertical lines indicate the tran-
sition temperature extracted from the renormalized Polyakov
loop, Tc ¼ 185ð4Þ MeV.
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particle content and are ordered by strangeness. We note
that R indeed changes from (close to) 1 to (close to) 0 as T
increases, with the crossover taking place in the transition
region as determined by the Polyakov loop. At the highest
temperatures, the difference from 0 appears directly propor-
tionate to the number of strange quarks in the channel,
which reflects the explicit chiral symmetry breaking arising
from the heavier strange quark. Eventually, this effect
should disappear as ms=T → 0. We hence conclude that
the interpretation of parity doubling due to chiral symmetry
restoration in the baryon sector is indeed valid.
When the transition between two phases is not a phase

transition but merely an analytic crossover, as is the case for
the thermal transition in QCD [55], a single transition
temperature cannot be given. Instead one finds a range of
transition or pseudocritical temperatures, which depend on
the observable and method used to define it, see e.g.,
Ref. [6] and references therein. In Sec. III we denoted the
transition temperature linked to parity doubling as Tχ

c, but
did not determine it. Here we will estimate it directly from
the R ratio. An often used method is to locate the inflection
point of (quasi)order parameters. For this reason, we have
fitted cubic splines to the lattice data in Fig. 5, which are
represented by the grey lines, with the widths giving an
indication of the statistical error. Using the cubic splines,
we have extracted the temperatures of the inflection points,
which are shown in Fig. 6, organized by strangeness and
labeled by the ground state of the respective channels. The
errors are statistical only and are determined by the boot-
strap method. The transition temperature determined from
the renormalized Polyakov loop, Tc ¼ 185ð4Þ MeV, is
indicated by the shaded band. We observe that the
inflection-point temperatures lie below this band, by about

9 to 15 MeV (the result in the Σ channel lies somewhat
lower than expected, see also Fig. 5). Due to the cross-
over nature of the transition, this is not unexpected. A
possible dependence on strangeness (see e.g., Ref. [56]
on flavor separation during the crossover) might
become better visible when the light quarks are tuned
closer to their physical values. This project is currently in
progress [57].

VI. SUMMARY

In this paper we determined the response of hyperons to
an increase of temperature in thermal QCD, going from the
hadronic phase to the quark-gluon plasma, using lattice
QCD simulations. While the masses of the positive-parity
ground states were seen to be not affected, within the
numerical uncertainty, the masses of the negative-parity
ground states showed a characteristic temperature depend-
ence, in all channels. We have argued that both findings are
relevant for the phenomenology of heavy-ion collisions, in
particular in the context of the hadron resonance gas. We
have formulated an in-medium HRG to incorporate the
temperature dependence of the negative-parity ground
states and applied it to fluctuations involving strange
baryons and baryonic contributions to the pressure, which
had been computed independently on the lattice. While in
the nucleon and Δ (S ¼ 0) channels the standard HRG
describes the lattice data already very well (and any
modification makes the comparison worse), we found that
for hyperons the in-medium HRG leads to an improved
agreement between lattice QCD results for those quantities
and the HRG. It would therefore be interesting to extend
this approach to mesons as well and determine the temper-
ature dependence of spectral features of mesons. This work
is currently in progress. Besides this, it would be of interest
to combine our suggestion for the in-medium HRG with
other modifications of the ideal HRG, to be able to study
how various modifications may work together. Finally, our
results in the hadronic phase can also be used to benchmark
effective models, such as parity doublet and PNJL-type
models.
At the higher temperatures, proceeding into the quark-

gluon plasma, we focused on the emergence of parity
doubling, at the level of the correlators. We defined an R
ratio, which captures the transition from the chirally broken
to the chirally symmetric phase. The temperatures of the
inflection points of this R ratio lie somewhat below the
pseudocritical temperature extracted from the Polyakov
loop, indicating the crossover nature of the transition. To
observe possible strangeness dependence, a larger separa-
tion between the strange and light quark masses would
be advantageous. This would also allow us to further
study modifications to the hadronic spectrum in the low-
temperature phase, closer to the physical point. Work in this
direction is currently underway.
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