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Extending machine learning classification capabilities with histogram reweighting
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We propose the use of Monte Carlo histogram reweighting to extrapolate predictions of machine learning
methods. In our approach, we treat the output from a convolutional neural network as an observable in a
statistical system, enabling its extrapolation over continuous ranges in parameter space. We demonstrate our
proposal using the phase transition in the two-dimensional Ising model. By interpreting the output of the neural
network as an order parameter, we explore connections with known observables in the system and investigate its
scaling behavior. A finite-size scaling analysis is conducted based on quantities derived from the neural network
that yields accurate estimates for the critical exponents and the critical temperature. The method improves the
prospects of acquiring precision measurements from machine learning in physical systems without an order
parameter and those where direct sampling in regions of parameter space might not be possible.
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I. INTRODUCTION

Machine learning has recently emerged as an omnipresent
tool across a vast number of research fields. A major mile-
stone towards its wide success has been the unprecedented
capability of deep neural networks to automatically extract hi-
erarchical structures in data [1]. Historical implementations of
machine learning revolved around problems in image recogni-
tion and natural language processing but recent advances have
encompassed the physical sciences [2]. For a short review of
machine learning for quantum matter see Ref. [3].

On the forefront of modern approaches, there have
been significant contributions in the realm of computational
physics. Notably, machine learning was employed to study
phase transitions in classical and quantum many-body systems
[4,5]. The aim is typically the separation of phases in a system
by relying on supervised, unsupervised, or semisupervised
learning of its configurations. Neural networks [6–19], sup-
port vector machines [20–23], principal component analysis
[24–28], and a variety of algorithms [29–33] have been im-
plemented to achieve this goal. Within these approaches, the
Ising model, due to its simplicity, analytical solution [34], and
nontrivial phase structure, frequently acts as a prototypical
testing ground to demonstrate results.

In addition, efficient Monte Carlo sampling was realized
through the construction of effective Hamiltonians in physical
systems [35–37]. Among these approaches, the self-learning
Monte Carlo method was extended to continuous-time, quan-
tum, and hybrid Monte Carlo [38–48]. Deep reinforcement
learning was utilized to generate ground states through the
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training of a machine learning agent, neural autoregressive
models have been applied within variational settings, and
Boltzmann generators have been introduced to produce un-
biased equilibrium samples in condensed-matter and protein
systems [49–52]. In lattice field theories generative and re-
gressive neural networks have been implemented [53], and
sampling with flow-based methods has led to reduced auto-
correlation times [54,55].

Along these lines, there is an increasing need for tools that
improve computational efficiency and simultaneously enable
the extraction of more information from available machine
learning predictions. Traditionally, in statistical mechanics,
such pursuits are achieved with the use of Monte Carlo his-
togram reweighting techniques [56,57]. It is then possible
to acquire increased knowledge of observables by estimating
them based on measurements from already conducted simula-
tions. Furthermore, one can extrapolate in parameter space to
glimpse into the behavior of more complicated Hamiltonians.
A proof of principle demonstration concerns reweighting from
a zero external magnetic field to a nonzero value in the Ising
model [56].

In this article, we introduce histogram reweighting to su-
pervised machine learning. In particular, we explore if the
output from a neural network in a classification problem can
be treated as an observable in a statistical system and con-
sequently be extrapolated to continuous ranges—providing a
tool for further exploration without acquiring additional data
and potentially even when direct sampling is not possible.
We further interpret the output of the neural network as an
effective order parameter within the context of a phase iden-
tification task, and propose reweighting as a means to explore
connections with standard thermodynamic observables of the
system under consideration. Finally, we search for scaling
behavior in quantities derived from the machine learning al-
gorithm with an aim to study the infinite-volume limit of the
statistical system.
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To establish the method, we apply it to the two-dimensional
Ising model, a system that undergoes a second-order phase
transition from a broken-symmetry to a symmetric phase.
Using our developments, we present an accurate calculation
of the critical point and the critical exponents by relying
exclusively on quantities derived from the machine learning
implementation and their reweighted extrapolations.

II. HISTOGRAM REWEIGHTING

We consider a generic statistical system described by an
action (or Hamiltonian) S = ∑

k g(k)S(k), which separates in
terms of a set of parameters {g(k)}. During a Markov chain
Monte Carlo simulation of the system we sample a repre-
sentative subset of states σ1, . . . , σN based on a Boltzmann
probability distribution:

pσi = exp
[−∑

k g(k)S(k)
σi

]
∑

σ exp
[−∑

k g(k)S(k)
σ

] , (1)

where Z = ∑
σ exp [−∑

k g(k)S(k)
σ ] is the partition function

and the sum is over all possible states σ in the system. The
expectation value of an arbitrary observable O is then given
by

〈O〉 =
∑N

i=1 Oσi p̃
−1
σi

exp
[−∑

k g(k)S(k)
σi

]
∑N

i=1 p̃−1
σi

exp
[−∑

k g(k)S(k)
σi

] , (2)

where p̃σi are the probabilities used to sample configurations
from the equilibrium distribution. We now consider the proba-
bilities for a set of parameter values {g(k)

0 } that are sufficiently
adjacent to {g(k)} in parameter space, given by

p(0)
σi

= exp
[−∑

k g(k)
0 S(k)

σi

]
∑

σ exp
[−∑

k g(k)
0 S(k)

σ

] . (3)

After substituting p̃σi with p(0)
σi

in Eq. (2), we arrive at the
reweighting equation:

〈O〉{g(k)} =
∑N

i=1 Oσi exp
[ − ∑

k

(
g(k) − g(k)

0

)
S(k)

σi

]
∑N

i=1 exp
[ − ∑

k

(
g(k) − g(k)

0

)
S(k)

σi

] . (4)

Given a series of Markov chain Monte Carlo measurements
Oσi for a set of parameters {g(k)

0 }, Eq. (4) enables the cal-
culation of expectation values for extrapolated sets of {g(k)}.
Successful extrapolations of observables should lie within
adjacent parameter ranges where the associated action his-
tograms have markedly large values (e.g., see Ref. [58]).

III. REWEIGHTING OF MACHINE LEARNING OUTPUT

We employ reweighting techniques to study the phase tran-
sition in the two-dimensional Ising model (see Appendix A)
by formulating the phase identification task as a classifica-
tion problem. We create the data sets using Markov chain
Monte Carlo simulations with the Wolff algorithm [59]. The
training data are comprised of a set of 1000 uncorrelated
configurations at each training point, with 100 configurations
chosen as a cross-validation set. The range of inverse temper-
atures chosen to generate configurations used for training is
0.32, . . . , 0.41 in the symmetric phase and 0.47, . . . , 0.56 in
the broken-symmetry phase with a step of 0.01. The ranges are
chosen to be distant from the critical inverse temperature βc ≈
0.440687. We train the convolutional neural network (CNN)
for lattice sizes L = 128, . . . , 760. We implement the neural
network architecture (see Appendix B) with TensorFlow and
the Keras library [60,61]. The presence of a phase transition
makes the convolutional neural network a well-suited choice
to learn spatial dependencies across configurations in different
phases.

After training is completed, we present a configuration
to the convolutional neural network to predict its associated
classification label. The values of the output vector in the
classification task sum up to one and are interpreted as the
probability Pσi that a configuration σi belongs in the corre-
sponding phase. When referring explicitly to the probabilities
associated with the symmetric and the broken-symmetry
phase we will denote them as P(s)

σi
and P(b)

σi
, respectively, with

P(s)
σi

+ P(b)
σi

= 1.
In accordance with the sampling procedure which is

carried through a Markov chain Monte Carlo simulation,
each configuration appears in the chain of states as dic-
tated by an associated Boltzmann weight. As depicted in
Fig. 1, the mathematical operation of convolution acts on an
importance-sampled configuration and a series of additional
transformations imposed by the neural network lead to the
calculation of the probability Pσi . We therefore interpret P as
an observable of the system:

〈P〉 =
∑

σ

Pσ pσ =
∑

σ Pσ exp
[−∑

k g(k)S(k)
σ

]
∑

σ exp
[−∑

k g(k)S(k)
σ

] . (5)

In this framework, the probability P can be extrapolated
with histogram reweighting over wide ranges of parameter
values {g(k)}. Specifically for the case of the Ising model,
reweighting in terms of inverse temperatures reduces Eq. (4)

FIG. 1. The architecture of the convolutional neural network (see Appendix B). Importance-sampled configurations are presented as input
to the neural network and are further processed through a series of transformations. The values of the output vector denote the probability that
a configuration belongs in an associated phase. The probabilities are used as observables to be reweighted.
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FIG. 2. Reweighting for the neural network output probability versus the inverse temperature of the two-dimensional Ising model with
lattice size L = 128. The reweighted extrapolations are depicted by the line. The filled point corresponds to the parameter choice β0 = 0.438
(left) and β0 = 0.44 (right) used to conduct reweighting. Empty points are actual predictions from the neural network on Monte Carlo data
sets, added for comparison. The dashed lines, only visible in the insets, indicate the statistical uncertainty. The training was conducted for
β � 0.41 and β � 0.47.

to

〈P〉β =
∑N

i=1 Pσi exp [−(β − β0)Eσi )]∑N
i=1 exp [−(β − β0)Eσi ]

. (6)

In Fig. 2 we show the expectation value 〈P(b)〉 as a func-
tion of β for the Ising model with lattice size L = 128. The
values over this large span of inverse temperatures, depicted
by the line, have been obtained by exclusively extrapolat-
ing the probabilities from configurations of one Monte Carlo
data set. To demonstrate that reweighting is generally appli-
cable we consider two cases where the Monte Carlo data
set is simulated at β0 = 0.438 in the symmetric phase or
β0 = 0.44 in the broken-symmetry phase. The reweighting
results are compared with actual calculations of the average
probability, which are obtained from predictions of the convo-
lutional neural network on independent Monte Carlo data sets.
The reweighted extrapolations overlap within statistical errors

FIG. 3. Neural network output probability for the ensemble de-
fined by configurations from inverse temperatures β = 0.41 and
β = 0.42, versus inverse temperature β. Reweighting is depicted by
the line in the inset, where statistical errors are visible. The filled
point corresponds to the parameter choice β = 0.38 used to conduct
reweighting. Empty points are predictions of the CNN on indepen-
dent Monte Carlo data sets, added for comparison. The training
was conducted for β = 0.31, 0.32 (labeled as 0) and β = 0.41, 0.42
(labeled as 1).

with the values from actual calculations (see Appendix C),
demonstrating that the method is accurate. In addition we
note, by comparing the results of the two cases, that the
statistical errors of extrapolations increase with the distance
from the reweighting point.

We observe that the average probability resembles an order
parameter, with values that are consistent with zero and one
at different phases. In addition this effective order parameter
has emerged by features learned on configurations for sets of
inverse temperatures which lie beyond a fixed distance from
the critical point βc. The neural network has then fully re-
constructed an effective order parameter based on incomplete
information and representation of the studied system.

We emphasize that the reweighting of machine learning
devised observables is not inherently connected with the re-
construction of an effective order parameter in a statistical
system and that it is generally applicable to learned neural
network functions. As an example, we train a neural network
to learn a function that acts as measure of the similarity
between ensembles of configurations which reside exclusively
within one phase of the system. One ensemble is comprised of
configurations drawn from inverse temperatures β = 0.31 and
β = 0.32, where the configurations are labeled as zero, and
the second ensemble is comprised of configurations drawn
from β = 0.41 and β = 0.42, labeled as one.

FIG. 4. Reweighted extrapolations of the neural network output
probability versus inverse temperature for various lattice sizes.
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FIG. 5. Fluctuations of the neural network output probability,
Eq. (8), for various lattice sizes. The vertical line corresponds to the
known critical temperature βc ≈ 0.440687 of the two-dimensional
Ising model.

We apply the learned function to configurations of inter-
mediate inverse temperatures to predict their associated label.
The results are presented in Fig. 3, where the probability of a
configuration belonging in the ensemble defined by β = 0.41
and β = 0.42 is depicted. Reweighting results are compared
with calculations from independent Monte Carlo data sets,
demonstrating that reweighting is accurate within statistical
errors. The results evidence that reweighting is generally ap-
plicable to functions learned by a neural network in statistical
systems.

IV. FINITE-SIZE SCALING ON CNN-DERIVED
OBSERVABLES

To further investigate the construction of an effective order
parameter from a neural network trained for inverse tem-
peratures β � 0.41 and β � 0.43 (see Fig. 2), we employ
reweighting to draw the output probability 〈P(b)〉 for a range
of lattice sizes. Previous research (e.g., in Refs. [4,21]) has
evidenced that decision making of a neural network seems
to rely on some form of devised magnetization function. In
Fig. 4 we note that the probabilities for increasing lattice
sizes become sharper near the critical point in a way that
mimics the behavior of the magnetization. We recall that near
a continuous phase transition and on a lattice of a finite size L,

FIG. 6. Inverse pseudocritical temperature versus inverse lattice
size.

FIG. 7. Probability fluctuations versus lattice size on double log-
arithmic scale.

fluctuations such as the magnetic susceptibility χ have a max-
imum value. A pseudocritical point βχ

c (L) is then associated
with the maxima of the fluctuations which in the thermody-
namic limit converges to the inverse critical temperature:

lim
L→∞

βχ
c = βc. (7)

Considering that the neural network output probability
manifests behavior which is reminiscent to that of an effective
order parameter, we proceed by investigating its fluctuations,
weighed by the inverse temperature, which are defined as

δP = βV (〈P2〉 − 〈P〉2). (8)

Since reweighting has been formulated in terms of an ar-
bitrary observable, we use Eq. (4) to estimate the expectation
values of both observables 〈P2〉, 〈P〉 and hence calculate the
fluctuations of the probability which are depicted in Fig. 5,
without including statistical errors. We note that the inverse
temperatures where the maximum values of the fluctuations
δP are located evidence a scaling behavior with increasing
lattice sizes. As discussed above, such scaling behavior of the
fluctuations is anticipated for a quantity that acts as an effec-
tive order parameter, and it tentatively indicates a convergence
towards the known inverse critical temperature of the Ising
model βc ≈ 0.440687, which is depicted by the vertical line.
We therefore associate pseudocritical points βP

c (L) for the
values of the maxima δPmax to investigate their convergence in
the thermodynamic limit [see Eq. (7)] and to calculate multi-
ple critical exponents in our subsequent quantitative analysis.

TABLE I. Pseudocritical points βP
c (L) and maxima of the proba-

bility fluctuations δPmax for various lattice sizes L of the Ising model.

L βP
c (L) δPmax

128 0.438857(33) 1409(6)
200 0.439536(24) 3308(14)
256 0.439889(18) 5233(24)
360 0.440088(13) 9910(49)
440 0.440261(12) 13138(71)
512 0.440292(10) 18912(99)
640 0.440403(10) 25215(218)
760 0.440465(8) 30841(206)
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In order to estimate the correlation length exponent ν and
the inverse critical temperature βc we note that, due to the di-
vergence of the correlation length in the pseudocritical region,
the reduced temperature can be expressed as

|t | =
∣∣∣βc − βc(L)

βc

∣∣∣ ∼ ξ− 1
ν ∼ L− 1

ν . (9)

Consequently, without presuming any knowledge about the
values of the inverse critical temperature and the correlation
length exponent, we can calculate them simultaneously using
Eq. (9).

In addition, we investigate if the fluctuations of the neu-
ral network output probability, which resembles an effective
order parameter, are governed by the same critical exponent
as the fluctuations of the conventional order parameter, which
is the magnetization. We therefore perform a calculation for
the magnetic susceptibility exponent γ using the maximum
values of the probability fluctuations:

δP ∼ L
γ

ν . (10)

As visible in Figs. 6 and 7, we fit the data (see Table I) for
the pseudocritical points and the maxima of the probability
fluctuations using Eqs. (9) and (10), respectively. The results
of the finite-size scaling analysis are given in Table II. We
note that the obtained estimates for the critical exponents [ν =
0.95(9), γ /ν = 1.78(4)] and the inverse critical temperature
[βc = 0.440749(68)] of the Ising model are within statistical
errors of the known values from Onsager’s analytical solution
[ν = 1, γ /ν = 7/4, βc = ln(1 + √

2)/2]. In the error analysis
only statistical errors from predictions of the neural network
on a finite Monte Carlo data set were considered.

V. CONCLUSIONS

In this article we introduced histogram reweighting to su-
pervised machine learning. By treating the output of a neural
network in a phase identification task as an observable in
the two-dimensional Ising model, we utilized reweighting to
extrapolate it over continuous ranges in parameter space. We
further interpreted the output as an effective order parameter
and investigated its scaling behavior. This resulted in a cal-
culation of the correlation length and magnetic susceptibility
critical exponents, as well as the inverse critical temperature,
based on a finite-size scaling analysis conducted on quantities
derived from the neural network.

The extension of histogram reweighting to neural networks
enables quantitative studies of phase transitions based on a
synergistic relation between machine learning and statistical

TABLE II. Critical exponents ν, γ /ν and critical inverse temper-
ature βc of the Ising model acquired by reweighting quantities of the
neural network implementation and comparison with exact values
from Onsager’s analytical solution.

βc ν γ /ν

CNN+Reweighting 0.440749(68) 0.95(9) 1.78(4)
Exact ln(1 + √

2)/2 1 7/4
≈0.440687 =1.75

mechanics. Generalizing to multiple histogram reweighting
is straightforward. The effective order parameter learned by
the neural network on the spatial structure of configurations,
where no explicit information about the symmetries of the
Hamiltonian is introduced, can be studied with high precision
using reweighting and could prove useful when a conventional
order parameter is absent or unknown [4]. Examples are phe-
nomena that are currently under active investigation, such as
topological superconductivity [62], and the finite-temperature
phase transition in quantum chromodynamics [63,64]. Finally,
through multiparameter reweighting, one could explore the
extrapolation of machine learning predictions in regions of
parameter space where direct sampling with Monte Carlo
might not be possible. Such cases potentially include systems
with a numerical sign problem [65].
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APPENDIX A: ISING MODEL

We consider the Ising model on a hypercubic two-
dimensional square lattice with Hamiltonian:

E = −J
∑
〈i j〉

sis j − h
∑

i

si, (A1)

where 〈i j〉 denotes a sum over nearest neighbors, J is the
coupling constant which is set to one, and h the external
magnetic field which is set to zero.

The system is invariant under a reflection symmetry {si} →
{−si} that can be spontaneously broken. We define in the
vicinity of a continuous phase transition, a dimensionless
parameter called the reduced inverse temperature:

t = βc − β

βc
, (A2)

where βc is the critical temperature. The divergence of the
correlation length for a system in the thermodynamic limit
ξ = ξ (β, L = ∞) is given by

ξ ∼ |t |−ν, (A3)

with ν the correlation length critical exponent. Another ob-
servable of interest is the normalized magnetization:

m = 1

V

∣∣∣∣
∑

i

si

∣∣∣∣, (A4)
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where V is the volume of the system. The magnetic
susceptibility is then defined as the fluctuations of the
magnetization:

χ = βV (〈m2〉 − 〈m〉2), (A5)

and has an associated critical exponent γ , defined via

χ ∼ |t |−γ . (A6)

The sets of critical exponents determine a universality class.
Knowledge of two exponents is sufficient for the calculation
of the remaining ones through the use of scaling relations
(e.g., see Ref. [58]). The exact results for the two-dimensional
Ising model are

ν = 1, (A7)

γ /ν = 7/4, (A8)

βc = 1
2 ln(1 + √

2) ≈ 0.440687. (A9)

APPENDIX B: CNN ARCHITECTURE

The neural network architecture (see Fig. 1) consists of
a two-dimensional convolutional layer with 64 filters of size
2 × 2 and a stride of 2, supplemented with a rectified linear
unit (ReLU) activation function. The result is then passed
to a 2 × 2 max-pooling layer and subsequently to a fully
connected layer with 64 ReLU units. The output layer consists
of two units with a softmax activation function, with values
between [0,1]. Configurations in the symmetric phase are la-
beled as (1,0) and in the broken-symmetry phase as (0,1). We
train the CNN until convergence using the Adam algorithm
and a mini-batch size of 12. To speed up the learning in small

lattices of L � 256, we choose a learning rate of 10−4 and
reduce it by a factor of 10 for the remaining sizes.

The architecture is selected using an empirical approach.
Initially, the CNN is trained for lattice size L = 128 where
its training and validation loss, as well as their difference, are
monitored to be minimal. This certifies that the CNN accu-
rately separates phases of the two-dimensional Ising model
based on the presented training data and can generalize well
to unseen data. The approach is then extended successfully
to larger lattice sizes, up to L = 760, covering the complete
range of sizes used for the finite-size scaling with the same
CNN architecture. Architectures for more complicated sys-
tems can be derived using the same approach. When testing a
different architecture, an increase or decrease in the number of
trainable parameters might lead to overfitting or underfitting
of data. The occurrence of underfitting or overfitting can be
monitored based on the effect on the values of the validation
loss.

APPENDIX C: BOOTSTRAP ANALYSIS

The calculation of errors has been conducted with a boost-
rap analysis [58]. This enables the elimination of any potential
bias associated with the finite Monte Carlo-generated sam-
ple. In particular, each Monte Carlo data set, consisting of
uncorrelated configurations, has been resampled 1000 times
for each lattice size. For each resampled data set, reweighted
extrapolations of the output probability and its fluctuations are
acquired in a wide range of temperatures. The error for the
extrapolated probability P at each inverse temperature β is
given by the equation

σ =
√

P2 − P
2
, (C1)

where the averages are performed over the bootstrap replicas.
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