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Mapping distinct phase transitions to a neural network
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We demonstrate, by means of a convolutional neural network, that the features learned in the two-dimensional
Ising model are sufficiently universal to predict the structure of symmetry-breaking phase transitions in consid-
ered systems irrespective of the universality class, order, and the presence of discrete or continuous degrees of
freedom. No prior knowledge about the existence of a phase transition is required in the target system and its
entire parameter space can be scanned with multiple histogram reweighting to discover one. We establish our
approach in q-state Potts models and perform a calculation for the critical coupling and the critical exponents of
the φ4 scalar field theory using quantities derived from the neural network implementation. We view the machine
learning algorithm as a mapping that associates each configuration across different systems to its corresponding
phase and elaborate on implications for the discovery of unknown phase transitions.
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I. INTRODUCTION

Deep learning [1] is a category of machine learning al-
gorithms that has recently gained significant importance in
the physical sciences. Applications of neural networks have
emerged in research fields such as particle physics and cos-
mology, condensed matter physics, quantum computation, and
physical chemistry. For a recent review see Ref. [2].

Within these developments machine learning has critically
influenced the domain of statistical mechanics, particularly
in the study of phase transitions [3,4]. A wide range of ma-
chine learning techniques, including neural networks [5–17],
diffusion maps [18], support vector machines [19–22], and
principal component analysis [23–27], have been imple-
mented to study equilibrium and nonequilibrium systems.
Transferable features have also been explored in phase tran-
sitions, including modified models through a change of lattice
topology [3] or form of interaction [28], in Potts models
with a varying odd number of states [29], in the Hubbard
model [6], in fermions [5], in the neural network-quantum
states ansatz [30,31], and in adversarial domain adapta-
tion [32]. Among these, recent studies based on transferable
features have mostly focused on predicting the critical tem-
perature exclusively.

A machine learning algorithm can be implemented, based
on a set of labeled training data, to complete a classification
task such as the separation of phases in a statistical system.
This is almost universally conducted under the assumption
that the training and prediction data belong in identical prob-
ability distributions and have been acquired from the same
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feature space. A change in feature space could arise by at-
tempting to separate phases in a different system. However,
such an attempt would require the algorithm to be rebuilt, due
to the difference in systems, in order to solve, in essence,
a new classification task. Transfer learning is a framework
within the research field of machine learning introduced to
address precisely this problem [33]. Specifically, it enables the
transfer of knowledge from a solved machine learning task to
a new one that shares certain similarities with the original.

In this paper, we propose transfer learning as a means to
discover and study unknown phase transitions. In particular,
we explore if the features learned by a convolutional neural
network on the two-dimensional Ising model are sufficiently
universal to predict the structure of phase transitions in sys-
tems irrespective of the universality class, the order, and the
presence of discrete or continuous degrees of freedom. We
further explore the deeper layers of the neural network ar-
chitecture for universal features and discuss how the neural
network acts as a mapping, which associates each config-
uration, across different systems under consideration, to its
corresponding phase. It is then feasible to predict phases
across a wide range of systems, governed by distinct Hamil-
tonians and symmetries, without introducing prior knowledge
about the presence of a phase transition in them.

To study unknown phase transitions, we treat the predictive
function of the Ising-trained neural network as an observable
in the target system, and propose the extension of previous
work on reweighting for machine learning [34], to the mul-
tiple histogram method [35,36]. This technique enables the
accurate definition of the target system’s critical region by in-
terpolating the neural network function in its entire parameter
space. Given the knowledge of an effective order parameter in
a target system through transfer learning, we train a randomly
initialized neural network to perform a finite-size scaling
analysis based on histogram-reweighted quantities derived
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from the machine learning algorithm. This results in an accu-
rate calculation of multiple critical exponents and the critical
coupling.

To establish our approach, we apply the Ising-trained neu-
ral network to q-state Potts models, systems that manifest
first- or second-order phase transitions depending on their
number of states, and the φ4 scalar field theory. Without using
knowledge about the presence of a phase transition in the
target system, we employ transfer learning to reconstruct an
effective order parameter therein, define rigidly the bound-
aries of its critical region, and perform a finite-size scaling
analysis on machine learning derived quantities to determine
its universality class.

II. TRANSFER LEARNING

We consider a domain � which comprises a feature space
� and a marginal probability distribution P(X ), where X =
{xi, . . . , xN } ∈ � is a learning sample:

� = {�, P(X )}. (1)

For the case of the Ising model, the feature space � contains
all possible configurations of the system, X is a subset of �,
comprising a finite number of configurations that have been
drawn from selected inverse temperatures, and xi corresponds
to a specific configuration.

Within a domain �, we define a task T , with a label
space Y and a predictive function f (·) which is learned during
the optimization of the machine learning algorithm on the
training data:

T = {Y, f (·)}. (2)

In particular, for a phase identification task in the Ising model,
a label yi ∈ Y , denoted by zero or one, signifies the disordered
or the ordered phase, and the predictive function f (·), which
is equivalent to the conditional probability distribution p(y|x),
associates each configuration x, given as input to the algo-
rithm, to its corresponding phase.

Given the knowledge acquired on a source domain �s and
learning task Ts, transfer learning can be utilized for a target
domain �t and learning task Tt , to enhance the predictive
function f (·)t , when �s �= �t or Ts �= Tt [33]. The condition
�s �= �t implies, based on Eq. (1), that the feature spaces or
the marginal probability distributions might be different: �s �=
�t , Ps(X ) �= Pt (X ). An example of domain adaptation con-
cerns employing transfer learning to relocate from a source
domain of a two-dimensional binary system, such as the Ising
model, to a different system in search for a phase transition
that separates a disordered from an ordered phase.

III. DISCOVERING PHASE TRANSITIONS

We employ transfer learning to predict the phase diagram
of two-dimensional q-state Potts models and the φ4 scalar
field theory using an Ising-trained convolutional neural net-
work and multiple histogram reweighting. In addition we
explore if the neural network accurately classifies distinct
phase transitions due to the presence of learned universal
features in deeper layers.

The configurations of the Ising and the Potts models are
obtained using Markov chain Monte Carlo simulations with
the Wolff algorithm [37]. The scalar field theory is simulated
with the Metropolis algorithm followed by a sweep of the
Wolff algorithm [38,39] (see Appendix A for details of the
models). The convolutional neural network (see Fig. 1) is
trained on the Ising model, where configurations have binary
degrees of freedom, mapped to −1 and 1. Training of the
neural network is conducted for β � 0.41 and β � 0.47 in the
disordered and ordered phases, respectively (see Appendix B
for details of the neural network). To be consistent with the
same range when conducting transfer learning, configurations
from Potts models are mapped to unique positive and negative
numbers between −1 and 1. By choosing unique values for
the states of the Potts model the physics of the Hamiltonian,
which includes a δ function, is retained. When the number
of states is odd, the remaining value is chosen arbitrarily as
positive or negative. The degrees of freedom for the φ4 scalar
field theory lie within −∞ < φ < ∞ and no normalization is
conducted.

Once the convolutional neural network is trained on the
source domain �s, to classify the ordered and disordered
phases of the Ising model, its predictive function fs(·), which
is interpreted here as the probability of being in the ordered
phase, is employed to predict the phase of a configuration x.
The application of the predictive function to an importance-
sampled configuration x converts fs(x) into an observable with
an attached Boltzmann weight, enabling its extrapolation with
reweighting in the statistical system’s parameter space [34].
Here we propose the extension of reweighting to the multiple
histogram method (see Appendix C for a derivation). This
technique combines an arbitrary number of simulated data
sets and enables the estimation of the partition function, and
therefore of the predictive function, in the system’s entire
parameter space [35].

The results can be seen in Fig. 2(a), where the predictive
function, depicted by the line, is obtained in the visible range
using multiple histogram reweighting on a combination of
Monte Carlo data sets. We recall that the CNN is trained on the
intervals β � 0.41 and β � 0.47. The results are compared
with calculations of the neural network on independent Monte
Carlo simulations, which lie within statistical errors. The
predictive function acts as an effective order parameter, and
the use of multiple histogram reweighting advances previous
work by enabling the estimation of the predictive function
over extended ranges in the system’s parameter space.

The predictive function fs(·) was learned on configurations
of the Ising model, but the classification knowledge can be
adapted to other domains by applying it to configurations
x′ of a different system. The predictive function fs(x′) then
becomes an observable in the target system, where multiple
histogram reweighting can be employed to estimate it in the
target parameter space. The results for Potts models can be
seen in Fig. 2(c) where we recall that the phase transition is
second-order for q = 3, 4 and first-order for q = 5, 6, 7 [40].
The dashed vertical lines indicate the positions of the analyt-
ically determined critical coupling, βc = ln(1 + √

q). Good
agreement between the results obtained by transfer learning
and the exact ones can already be observed on the volume
shown here (L = 128). The results for the φ4 scalar field
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FIG. 1. The 2D Ising-trained convolutional neural network (see Appendix B). Configurations are successfully classified as belonging to
the disordered or ordered phase, irrespective of the system.

theory, a system with continuous degrees of freedom, can
be seen in Fig. 2(b), where we have fixed the dimensionless
quartic coupling λL = 0.7 and reweighted based on the values
of μ2, the dimensionless mass parameter (see Appendix A).
We infer that the system is in the broken (ordered) phase
for large and negative μ2 and in the symmetric (disordered)
phase for smaller μ2 values. In Sec. IV we analyze the critical
properties of the scalar field theory further using a finite-size
scaling analysis.

We note that the neural network successfully differentiates
between ordered and disordered phases, irrespective of the

system, and despite changes in discrete or continuous degrees
of freedom, the universality class, and the order of the phase
transition. Consequently, the predictive function fs(·) learned
by a convolutional neural network on the two-dimensional
Ising model is capable to reconstruct effective order param-
eters in more complicated systems.

To gain further insights about the capability of the neural
network to predict phases across different systems, we con-
sider that the fundamental constituents of a trained neural
network are the sets of variational parameters, specifically
the weights and the biases at each layer of its architecture.

FIG. 2. Multiple histogram reweighting of the predictive function versus coupling of the two-dimensional (a) Ising model, (b) φ4 scalar
field theory and (c) q = 3, . . . , 7 (left to right) Potts models, for lattice size L = 128. The reweighted predictive function is depicted by the
line. Its statistical errors are smaller than its width, excluding the insets in (a), where errors are portrayed by dashed lines. The results for all
figures have been obtained based on a convolutional neural network trained exclusively on the Ising model. In (a) filled points correspond to
the combined Monte Carlo data sets used to conduct reweighting and empty points are calculations of the predictive function on independent
Monte Carlo data sets, added for comparison. In (c) vertical dashed lines have been added for the values of critical inverse temperature of Potts
models, calculated through Eq. (A2).
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FIG. 3. Mean activations g versus the 64 latent variables in the fully connected layer (FC1) of the 2D Ising-trained convolutional neural
network. Results are from the two-dimensional Ising model, q = 3 and q = 5 Potts model, and the φ4 field theory for configurations belonging
in the disordered (top) and ordered phase (bottom). The maximum values have been normalized to one, and the results have been rescaled
accordingly and stacked vertically for better representation.

These are optimized during the training process for a specific
machine learning task T . The variational parameters eventu-
ally converge to certain values which encode the solution to
the particular problem under consideration. In our approach
they have been tuned to accurately separate the disordered and
ordered phases of the two-dimensional Ising model based on a
set of labeled Ising configurations. It is well known that within
the first layers of a neural network architecture the variational
parameters correspond to learned universal features [41]. This
form of universality is expected to eventually diminish to-
wards deeper layers of the neural network architecture where
the features are anticipated to transition from universal to
specific in relation to the machine learning task T .

Considering that the 2D Ising-trained neural network suc-
cessfully classifies phases across different systems by utilizing
an identical predictive function fs(·), we expect universal
features to extend further in deeper layers. The activation
function of a variable in an intermediate layer of the neu-
ral network architecture acts as a transformation that maps
a certain input to an output representation. For a feature to
be deemed universal in relation to certain inputs, the corre-
sponding activation function should produce identical output
representations. We therefore present as input to the neural
network configurations from different systems and calculate
their mean activations in order to diminish statistical errors
during classification. The results are depicted in Fig. 3, where
the activations have been drawn for the 64 variables of the first
fully connected layer. We observe spikes for values of cer-
tain activations, which are consistent for configurations from
the ordered or disordered phase, irrespective of the system.
The features learned by the Ising-trained convolutional neural
network successfully map each configuration, across systems
under consideration, to its associated phase.

IV. STUDYING UNKNOWN PHASE TRANSITIONS

The preceding results designate that a neural network
trained on a prototypical system, such as the Ising model
which manifests a second-order phase transition, can serve
as a tool to discover phase transitions in more complicated
systems. This pursuit is greatly enhanced with the use of
multiple histogram reweighting, where the entire parameter
space can be examined for the discovery of a phase transition.
By obtaining the knowledge of an effective order parameter

through the use of transfer learning in a target system, the
boundaries of its critical region can then be accurately defined.

As an example, for the φ4 field theory with fixed λL = 0.7,
we presume based on Fig. 2(b), that a conservative choice
for the boundaries of the ordered and disordered phases lie
on values of bare mass μ2 � −1.0 and μ2 � −0.90, respec-
tively. We note that one could employ the neural network that
produced the results of Fig. 2(b) to study the infinite-volume
limit of the target system. However, since target systems might
differ from the source system in fundamental aspects such as
the order of the phase transition, the continuous degrees of
freedom or the underlying symmetries, we treat the preceding
results from transfer learning as qualitative indications. To
obtain quantitative results, we train a randomly initialized
neural network on the φ4 scalar field theory to study the
infinite volume limit. We sample configurations which are
labeled as belonging to each phase based on Fig. 2(b). For the
randomly initialized neural network, which is trained using
the same setup (see Appendix B), the source domain is the one
defined by the configurations of φ4 scalar field theory, and the
machine learning task T is the separation of the two phases,
which are discovered through transfer learning.

We proceed by performing a calculation of the critical μ2
c

and the critical exponents of the φ4 scalar field theory under a
finite size scaling assumption, by relying on quantities derived
from the neural network implementation and their reweighted
extrapolations [34]. Specifically, we associate pseudocritical
points based on the maxima of the fluctuations of the predic-
tive function:

δ f (·) = V (〈 f 2〉 − 〈 f 〉2), (3)

where V is the volume of the system. The maxima (see
Table I) are obtained by reweighting based on one Monte
Carlo data set within the critical region. We note that includ-
ing measurements from additional simulations in reweighting
always leads to a reduction in statistical errors [35]. We then
calculate the correlation length critical exponent and critical
μ2

c through the equation

∣∣∣∣∣μ
2
c (L) − μ2

c

μ2
c

∣∣∣∣∣ ∼ ξ− 1
ν ∼ L− 1

ν , (4)
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TABLE I. Pseudocritical points μ2
c (L) for fixed λL = 0.7 and

maxima of the predictive function δ fmax for various lattice sizes L
of the φ4 scalar field theory.

L μ2
c (L) δ fmax

200 −0.94988(4) 8239(50)
256 −0.95037(5) 12 915(56)
360 −0.95096(4) 22 348(138)
440 −0.95117(3) 34 710(211)

and the magnetic susceptibility exponent through the equation

δ f ∼ L
γ

ν . (5)

The results are presented in Figs. 4 and 5 and in Table II.
We note that the value of the critical μ2

c for fixed λL = 0.7
is within statistical errors from calculations of conventional
phase transition indicators, such as the susceptibility or the
Binder cumulant, in Refs. [38,42]. For the values of λL and
μ2, we anticipate the phase transition to be in the universality
class of the two-dimensional Ising model, as evidenced by the
calculation of the critical exponents (see Appendix A). In the
error analysis (see Appendix D), only statistical errors from
predictions on a finite Monte Carlo data set were considered.
Better accuracy can be achieved by including calculations
from additional lattice sizes.

V. CONCLUSIONS

In this paper we employed transfer learning to discover and
study phase transitions from ordered to disordered phases in
two-dimensional statistical systems. By employing an Ising-
trained convolutional neural network and multihistogram
reweighting, we reconstructed effective order parameters in
q-state Potts models and the φ4 scalar field theory, without
introducing prior knowledge about the presence of a phase
transition in those target systems. In addition we viewed the
neural network as a mapping that associates each configura-
tion, across different systems, to its corresponding phase and
uncovered universal features learned on deeper layers of the
neural network architecture. Furthermore we utilized transfer
learning to define the boundaries of the critical region in the
φ4 scalar field theory. We finally conducted a finite size scal-
ing analysis to calculate multiple critical exponents and the
critical μ2

c constant using quantities derived solely from the
neural network algorithm. We are not aware of any prior work

FIG. 4. Pseudocritical μ2
c versus inverse lattice size.

FIG. 5. Fluctuations of the predictive function versus lattice size
on double logarithmic scale.

that employs machine learning to calculate critical exponents
for a quantum field theory.

The discovery and study of an unknown phase transition
can be completed in four steps:

Firstly, a neural network is trained on labeled configura-
tions of an original system to learn a predictive function that
separates a number of phases.

Secondly, the predictive function is then applied on unla-
beled configurations of a target system, to recognize if they
belong to any of the learned phases. The entire parameter
space can be inspected with multiple histogram reweighting
to uncover the target system’s critical region.

Thirdly, given this knowledge a second neural network
is trained on configurations of the target system that have
been labeled in compliance with the recognized phases in the
previous step.

Finally, the infinite volume limit is studied, using reweight-
ing on derived quantities from the second neural network
implementation to determine the universality class of the
phase transition in the target system.

Transfer learning enables the use of simplistic systems
to study complicated models with partially known behavior.
Combined with multihistogram reweighting, a technique that
is able to scan the entire parameter space by reconstructing
effective order parameters therein, it permits the discovery
of unknown phase transitions. Transfer learning is employed
successfully to predict the phase structure of target systems
irrespective of the universality class, order, and discrete or
continuous degrees of freedom, and can therefore be em-
ployed to uncover phase transitions in seemingly unrelated
systems. Finally one could combine multiple transfer learn-
ing implementations, obtained by training neural networks on
models with different phase transitions, to predict the structure
of an intricate, unknown phase transition in a target system.

Note added: Recently Refs. [43,44] appeared on the arXiv.
Reference [43] employs transfer learning for Potts models,

TABLE II. Critical μ2
c for fixed λL = 0.7 and critical exponents

of the φ4 scalar field theory.

μ2
c ν γ /ν

CNN+Reweighting −0.95225(54) 0.99(34) 1.78(7)
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and Ref. [44] explores universal critical behavior of phase
transitions based on the intrinsic dimension in the data space.
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APPENDIX A: ISING, POTTS AND THE φ4 FIELD THEORY

We consider the q-state Potts model on a square lattice,
with a Hamiltonian:

HP = −J
∑
〈i j〉

δ(σi, σ j ), (A1)

where J denotes the coupling constant, which we set to one,
〈i j〉 is a sum over nearest-neighbor interactions, δ(σi, σ j ) is
the Kronecker delta and σi is a spin at lattice site i that can take
the values 1, . . . , q. The 2D Potts model has a second-order
phase transition for q � 4 and a first-order phase transition
for q � 5 [40]. For q = 2, σ ∈ {−1, 1}, JIsing = J/2, the Potts
model reduces to the Ising model. The inverse critical temper-
ature of the 2D q-state Potts model is given by

βPotts
c = ln

(
1 + √

q
)
, (A2)

where for q = 2, β
Ising
c = βPotts

c /2.
We consider the φ4 scalar field theory in two dimensions,

described by the Euclidean Lagrangian

LE = 1

2
(∇φ)2 + 1

2
μ2

oφ
2 + λ

4
φ4. (A3)

We discretize the φ4 scalar field theory on a square lattice
with lattice spacing a:

SE =
∑

n

[
1

2

d=2∑
ν=1

(φn+eν
− φn)2 + 1

2
μ2φ2

n + 1

4
λLφ4

n

]
,

where the dimensionless parameters μ2 = a2μ2
0 and λL = a2λ

are the (bare) mass squared and coupling constant. By fixing
the value of λL while varying μ2 we cross a second-order
phase transition in the (λL, μ2) plane [38]. When λL → ∞
and μ2 → −∞ the system is expected to be in the same
universality class as the 2D Ising model, whereas for λL fixed
and μ → 0 the emerging critical behavior is Gaussian [45].

APPENDIX B: CONVOLUTIONAL NEURAL NETWORK

The neural network architecture, implemented with Ten-
sorFlow and the Keras library, comprises a convolutional layer

with 64 filters, of size 2 × 2 and a stride of s = 2. The result
is then forwarded to a max-pooling layer of size 2 × 2 and
subsequently to a fully connected layer (FC1) with 64 latent
variables. The nonlinear function is chosen as a rectified linear
unit g(x) = max(0, x). The output layer consists of a fully
connected layer (FC2) with a softmax activation function and
the training is conducted with the Adam algorithm and a mini
batch size of 12. The architecture was optimized for the Ising
model based on the training and validation loss.

The neural network is trained on 1000 uncorrelated con-
figurations per each parameter choice. Specifically for the
case of the Ising model the range of inverse temperatures is
0.32, . . . , 0.41 and 0.47, . . . , 0.56 in the disordered and the
ordered phases, respectively, with a step size of 0.01. The
second neural network is trained independently on the φ4

field theory on values of bare mass −1.09, . . . ,−1.00 and
−0.90, . . . ,−0.81 with the same step size.

APPENDIX C: MULTIHISTOGRAM REWEIGHTING

During a Monte Carlo simulation the probability of gener-
ating a state with a lattice action (or energy) S is

p(S) = ρ(S)
exp

[−∑
k g(k)S(k)

]
Z

, (C1)

where ρ(S) the density of states, Z the partition function, and
S a lattice action (or Hamiltonian) that separates in terms of a
set of parameters {g(k)}:

S =
∑

k

g(k)S(k). (C2)

The probability p(S) can be estimated during a Monte Carlo
simulation through p(S) = N (S)/n where n is the number of
independent measurements and N (S) the histograms of the
action. After conducting a series of simulations for a specific
set of parameters {g(k)

i }, we arrive at a number of different
estimates ρi of the density of states, given by

ρi(S) = Ni(S)Zi

ni exp
[−∑

k g(k)
i S(k)

] . (C3)

The estimates can be combined through a weighted average to
estimate the density of states:

ρ(S) =
∑

i

wiρi(S). (C4)

The values wi are acquired through a minimization of the
variance in the density of states, resulting in the equation

ρ(S) =
∑

i Ni(S)∑
j n jZ

−1
j exp

[−∑
k g(k)

j S(k)
] , (C5)

where j is the number of available Monte Carlo data sets. For
each data set, simulated on a parameter set {g(k)

m }, the partition
function, given by the equation

Zm =
∑

S

ρ(S) exp

[
−

∑
k

g(k)
m S(k)

]
(C6)
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FIG. 6. Histograms of energies, from Monte Carlo data sets sim-
ulated at inverse temperatures β = 0.41, . . . , 0.47 of the 2D Ising
model for L = 128. Overlapping histograms enable the interpolation
over the entire inverse temperature range with multiple histogram
reweighting.

can be estimated through an iterative scheme [35,46], by
solving

Zm =
∑
i,s

1∑
j

n jZ
−1
j exp

[∑
k

(
g(k)

m − g(k)
j

)
S(k)

is

] . (C7)

After convergence, the partition function Zl for an interpo-
lated parameter set {g(k)

l } can be acquired by one iteration of
Eq. (C7). The expectation value of an arbitrary observable

〈O〉l for a set of parameters {g(k)
l } is then calculated using the

equation

〈O〉l = 1

Zl

∑
i,s

Ois∑
j

n jZ
−1
j exp

[∑
k

(
g(k)

l − g(k)
j

)
S(k)

is

] , (C8)

where s is the number of states sampled at ith simulation. By
carefully conducting simulations in order to obtain overlap-
ping histograms between parameter values (e.g., see Fig. 6)
one can calculate the partition function and arbitrary observ-
ables of interest in the entire parameter space using Eqs. (C7)
and (C8).

APPENDIX D: BINNING ERROR ANALYSIS

The error analysis is conducted with a binning approach.
A Monte Carlo data set, comprising 10 000 uncorrelated
measurements, is separated into nb = 10 groups of 1000 mea-
surements. Multihistogram reweighting is conducted nb times
for extrapolated sets of parameters using the measurements of
each group in each available simulation. The standard devia-
tion for the expectation value at each extrapolated parameter
is given through the equation

σ =
√

1

nb − 1
(O2 − O

2
). (D1)
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