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Stochastic weight matrix dynamics during learning and Dyson Brownian motion

Gert Aarts ,1,* Biagio Lucini ,2,† and Chanju Park 1,‡

1Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom
2Department of Mathematics, Swansea University (Bay Campus), Swansea SA1 8EN, United Kingdom

(Received 14 August 2024; accepted 16 December 2024; published 8 January 2025)

We demonstrate that the update of weight matrices in learning algorithms can be described in the framework
of Dyson Brownian motion, thereby inheriting many features of random matrix theory. We relate the level
of stochasticity to the ratio of the learning rate and the minibatch size, providing more robust evidence to
a previously conjectured scaling relationship. We discuss universal and nonuniversal features in the resulting
Coulomb gas distribution and identify the Wigner surmise and Wigner semicircle explicitly in a teacher-student
model and in the (near-)solvable case of the Gaussian restricted Boltzmann machine.
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I. INTRODUCTION

Recent years have seen a dramatic increase of the use of
machine learning (ML) in the fundamental sciences, with the
adoption and development of many ML applications to im-
prove and speed up scientific analysis [1]. Reversely, there is a
growing trend to use the methodology of (theoretical) physics
to understand ML algorithms, viewing these as acting on
systems with many fluctuating degrees of freedom and hence
employing the analogy with statistical physics. In this paper
we explore this second direction and argue that learning can
be formulated in the framework of Dyson Brownian motion
[2], thereby inheriting many features of random matrix theory
(RMT) [3–8].

In general terms, ML algorithms aim to minimize some
cost function by applying stochastic gradient descent (SGD),
or variations thereof, to weight matrices W defined inside
the architecture. Stochastic updates of matrices immediately
establishes the link with Dyson Brownian motion, which ex-
actly describes those, and yields an equation for the dynamics
of the eigenvalues of the symmetric combination X = W T W .
This dynamics contains universal aspects, e.g., eigenvalue
repulsion due to an induced Coulomb term, as reflected in the
Wigner surmise, as well as nonuniversal aspects, related to de-
tails of the gradient of the loss function. In many algorithms,
stochasticity is inherently present due sampling and minibatch
updates. We demonstrate that the distribution of eigenvalues
depends on the ratio of the learning rate α and minibatch
size |B|, and not on these quantities separately. This linear
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scaling rule has been observed previously [9–12] (see also
Ref. [13]), but we demonstrate that it is a direct consequence
of stochastic matrix dynamics and Dyson Brownian motion.
An interesting corollary is that there is no simple limit (e.g.,
α → 0, 1/|B| → 0) in which SGD reduces to a stochastic
differential equation (SDE) in continuous time [14,15]. Again,
this has been noted before [16], but we emphasize the view-
point that a tunable ratio α/|B| in fact prevents an obvious
SDE limit (in the limit α/|B| → 0, the SGD update reduces
to an ordinary differential equation for the eigenvalues). The
amount of stochasticity is directly proportional to α/|B| and
therefore determines the strength of the eigenvalue repulsion.
It hence sets a fundamental limit on the accuracy of learning,
but reversely a larger level of stochasticity leads to better
generalization, as it avoids overfitting [9–11]. These concepts
find a natural place in the framework of Dyson Brownian
motion, as we will demonstrate.

This paper is organized as follows. After setting up the
general framework in Sec. II, we demonstrate our arguments
explicitly in two cases, namely the Gaussian restricted Boltz-
mann machine (RBM) and a simple teacher-student model in
Sec. III. The conclusions are summarized in Sec. IV, along
with directions for future research. Appendix A contains a
brief summary of Dyson Brownian motion, while Appendices
B, C, and D contain some further comments used in the main
text.

With relation to RMT, we note that Refs. [17,18] apply
RMT to the distribution of eigenvalues of weight matrices
in an empirical manner, but not in the framework of Dyson
Brownian motion and the linear scaling rule. In Ref. [19] it
was shown that “real-world data” have many features consis-
tent with RMT. Here we apply RMT to weight matrices, not
to data.

II. STOCHASTIC WEIGHT MATRIX DYNAMICS

A. Stochastic updates

Let us consider some weight matrix W , which con-
nects layers of nodes in a neural network or a restricted
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Boltzmann machine. During the learning stage, it is updated
using stochastic gradient descent, or variations thereof, by
subtracting the change in the loss function, L[W ],

Wi j → W ′
i j = Wi j + δWi j = Wi j − α

δL
δWi j

, (1)

where α is the learning rate. This update is carried out using
stochastically chosen minibatches B of size |B|, with a mini-
batch average

δW B
i j = 1

|B|
∑
b∈B

δW b
i j . (2)

The entire data set from which the minibatches are drawn is
assumed to be sufficiently large to not lead to additional con-
straints. Since the minibatch size is finite, δW B is a stochastic
variable, with the size of the fluctuations set by the central
limit theorem. We hence write the update as

δWi j = δW B
i j + 1√|B|

√
Var(δWi j ) ηi j, (3)

where the first term is the deterministic part of the update for a
given minibatch and the second part reflects stochastic fluctu-
ations, whose magnitude decreases with increasing minibatch
size. The noise ηi j ∼ N (0, 1) is matrix valued. The variance
is defined for each matrix element, i.e.,

Var(δWi j ) = 〈δWi jδWi j〉 − 〈δWi j〉〈δWi j〉. (4)

The update (3) is applied to each matrix element and no
summation over repeated indices is implied in this section.
In terms of the gradient of the loss function, this update reads

W ′
i j = Wi j − α

(
δL
δWi j

)
B

+ α√|B|

√
Var

(
δL
δWi j

)
ηi j, (5)

which makes the learning rate explicit.
Since W is in general a rectangular M × N matrix, and the

connection with random matrix theory is easier for symmetric
matrices, we consider the symmetric combination

X = W T W. (6)

Without loss of generality we take N � M; if this is not
the case, simply exchange W and W T . X is a symmetric
N × N matrix with N semipositive real eigenvalues xi = ξ 2

i
(i = 1, . . . , N), where ξi are the singular values of W , ob-
tained via the singular value decompositon W = U�V T . The
focus on the singular values also removes the redundancy of
left and right rotations on the weight matrix. The update for X
follows from the one for W as

X → X ′ = X + δW T W + W T δW ≡ X + δX, (7)

and for finite batch size, the update is stochastic, with

Xi j → X ′
i j = Xi j + δXB

i j + 1√|B|
√

Var(δXi j )ηi j, (8)

as above, with symmetric noise in this case.

B. Dyson Brownian motion

The framework in which to consider stochastic matrix dy-
namics for a symmetric matrix X is Dyson Brownian motion

[2], which is summarized in Appendix A. The main feature
is that the eigenvalues of X not only evolve stochastically but
also repel, due to an induced Coulomb term. The strength of
the stochastic term and of the Coulomb term are related to the
stochasticity in the original matrix equation for X .

Starting from Eq. (8), the eigenvalues xi of X evolve ac-
cording to [see Eq. (A2)]

xi → x′
i = xi + Ki +

∑
j 
=i

g2
i

xi − x j
+

√
2giηi, (9)

where Ki and gi are linked to the deterministic and stochastic
terms in Eq. (8), and again η ∼ N (0, 1). The term with the
summation is the Coulomb term, resulting in eigenvalue re-
pulsion. The learning rate and batch size can be made explicit
by writing, cf. Eq. (5),

Ki = αK̃i, gi = α√|B| g̃i, (10)

where K̃i and g̃i are related to the gradient of the loss function
and its variance, respectively (quantities with a tilde are inde-
pendent of the learning rate and batch size at leading order).
The eigenvalue update then becomes

xi → x′
i = xi + αK̃i + α2

|B|
∑
j 
=i

g̃2
i

xi − x j
+ α√|B|

√
2g̃iηi.

(11)

When trying to identify the learning rate or the inverse batch
size with a stepsize ε, we note here that the drift, including
the Coulomb term, and the stochastic term do not scale in
the standard (i.e., Itô calculus) manner. Indeed, the difficul-
ties of going from stochastic gradient descent to a stochastic
differential equation (SDE) [14,15] are well known [16], with
the update reducing to an ordinary differential equation in the
limit that, e.g., the learning rate goes to zero. However, as
we will demonstrate shortly, the appearance of the learning
rate and batch size as in Eq. (11) naturally leads to the linear
scaling rule, in which α/|B| is a parameter whose tunability
can be exploited. An obvious SDE limit should therefore in
fact not be expected.

We will derive the linear scaling rule [10,11] now, by
considering the stationary distribution corresponding to the
stochastic process (9). The associated Fokker-Planck equation
for the distribution is given in Appendix A. The stationary
distribution is known as the Coulomb gas, which reads

Ps({xi}) = 1

Z

∏
i< j

|xi − x j |e− ∑
i Vi (xi )/g2

i , (12)

with

Z =
∫

dx1 . . . dxN Ps({xi}). (13)

Here it is assumed that the drift can be derived from a separa-
ble potential,

Ki(xi ) = −dVi(xi )

dxi
. (14)
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We can again make the learning rate and batch size explicit,
by introducing

Vi(xi ) = αṼi(xi ). (15)

The combination in the exponent then reads

Vi(xi )

g2
i

= 1

α/|B|
Ṽi(xi )

g̃2
i

, (16)

where the first factor on the right-hand side (RHS) indicates
universal scaling with α/|B| and the second factor depends on
the details of the loss function.

If we assume that the potentials Vi have a minimum at
xi = xs

i , such that

Ṽi(xi ) = Ṽi
(
xs

i

) + 1
2�i

(
xi − xs

i

)2 + . . . , (17)

with �i the curvature around the minimum, the exponentials
in Eq. (12) are Gaussians centered at xi = xs

i with variance

σ 2
i = α

|B|
g̃2

i

�i
. (18)

The interplay between learning rate, batch size, curvature of
the loss function, and the variance of fluctuations is then easy
to see. We emphasise that the assumption of a single well-
defined minimum is not required in the derivation leading to
Eq. (16).

We conclude that the stationary distribution after training
depends on the ratio of the learning rate and batch size, and
not on these quantities separately. This was observed empir-
ically previously [10,11], but we have demonstrated that it
is a direct consequence of stochastic matrix dynamics, when
cast in this framework. Reference [13] contains an alternative
derivation of the linear scaling rule, using a continuous-time
limit of SGD in a weak sense [15], while Ref. [20] contains
an application interpreting α/|B| as an effective temperature.

The Coulomb gas structure of the stationary distribution
has further, universal, consequences. Due to the Coulomb
term, eigenvalues repel and the spacing between eigenvalues
is nonzero. This effect is captured in the Wigner surmise,
which is the distribution for the level spacings Si = xi+1 − xi,
see Eqs. (A13) and (A15). The spectral density,

ρ(x) =
〈

1

N

N∑
i=1

δ(x − xi )

〉
, (19)

takes a universal form as well, called the Wigner semicircle,
see Eq. (A17). In the following we explore both universal and
nonuniversal features in two examples.

III. APPLICATIONS

In this section we apply the general framework presented
above to Gaussian restricted Boltzmann machines (RBMs)
and to a teacher-student model. In the former, stochasticity is
inherently present, due to sampling and batch updates. In the
latter, stochasticity is introduced by hand, but in such a way
that it models the stochasticity presented above and observed
in the RBMs.

FIG. 1. Sketch of a restricted Boltzmann machine with Nv (Nh)
nodes on the visible (hidden) layer, connected by the Nv × Nh

matrix W .

A. Gaussian RBMs

Restricted Boltzmann machines [21,22] consist of one vis-
ible layer (with Nv nodes) and one hidden layer (with Nh

nodes), see Fig. 1. There are no connections within each layer.
The degrees of freedom can be discrete, as in an Ising model,
continuous or mixed; Ref. [23] is a useful review. We consider
Gaussian RBMs, in which both sets of degrees of freedom
are quadratic. The ones on the visible layer are collected in
an Nv-dimensional vector φ and on the hidden layer in an
Nh-dimensional vector h. They are coupled bilocally via the
Nv × Nh weight matrix W . We follow the notation of our
previous work [24].

The probability distribution and partition function are
given by

p(φ, h) = 1

Z
e−E (φ,h), Z =

∫
DφDh e−E (φ,h), (20)

with the energy (or action)

E (φ, h) = 1

2
μ2φT φ + 1

2σ 2
h

(h − η)T (h − η) − φT W h. (21)

The induced distribution on the visible layer is Gaussian as
well, and reads

p(φ) =
∫

Dh p(φ, h) = 1

Z
exp

(
−1

2
φT Kφ + JT φ

)
, (22)

with the kernel and source

K = μ211 − σ 2
h WW T , J = W η. (23)

Here 1/μ2 is the variance on the visible layer, σ 2
h is the vari-

ance on the hidden layer, and η is a bias, which we will put to
zero from now on. This model has been studied in detail from
the perspective of lattice field theory (LFT) in Ref. [24], which
explains the appearance of μ2 as a mass parameter for a scalar
field. Its generative power is linked explicitly to the number
of hidden nodes Nh and the mass parameter μ2, which both
act as an ultraviolet regulator, using the terminology familiar
from LFT. To match to the general notation of the previous
section, we identify Nv = M and Nh = N and take N � M.

In order to have a well-defined model, with a positive
kernel K = μ211 − σ 2

h WW T , the weight matrix W must be
initialized in such a way that the eigenvalues of WW T

are bounded between 0 and μ2/σ 2
h , for any 0 < N/M � 1.

Initialisation is discussed in Appendix B, in terms of the
Marchenko-Pastur distribution. Stable initialization is guar-
anteed provided the matrix elements of W are drawn from a
normal distribution with variance 1/M and μ2 > 4σ 2

h .
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FIG. 2. Target spectrum κi (i = 1, . . . , 10): each mode, except
the lowest and the highest ones, is doubly degenerate.

The model can be trained by maximizing the log-likelihood
(or minimizing the Kullback-Leibler divergence), leading to
the gradient,

δL
δWia

= σ 2
h

∑
j

(〈φiφ j〉target − 〈φiφ j〉model )Wja. (24)

Here the first two-point function is evaluated using the target
data and the second one is the RBM prediction. The dynamics
can be analysed semianalytically [23,24] by performing a
singular-value decomposition W = U�V T in which U and
V are orthogonal transformations in M and N dimensions,
respectively, and � is a rectangular matrix with N singular
values ξi (i = 1, . . . , N) on the diagonal.

The kernel K on the visible layer is diagonalized as

K = μ211 − σ 2
h WW T = UDKU T , (25)

where

DK =
diag

(
μ2 − σ 2

h ξ 2
1 , μ2 − σ 2

h ξ 2
2 , . . . , μ2 − σ 2

h ξ 2
N︸ ︷︷ ︸

N

, μ2, . . . , μ2︸ ︷︷ ︸
M−N

)
.

(26)

We are interested in the N eigenvalues λi = μ2 − σ 2
h ξ 2

i . It
is natural to absorb σ 2

h in xi = σ 2
h ξ 2

i , such that the eigenval-
ues read λi = μ2 − xi. As above, we consider the symmetric
matrix X = W T W (times σ 2

h ) and focus on the eigenvalues
xi of X , rather than λi, since this makes the relation with
the Coulomb gas direct. Note that positiveness and stability
requires that 0 � xi < μ2.

As the target, we use a simple one-dimensional noninter-
acting scalar field theory with the spectrum given by the free
dispersion relation,

κk = m2 + p2
lat,k = m2 + 2 − 2 cos

(
2πk

Nv

)
, (27)

with −Nv/2 < k � Nv/2. This spectrum is shown in Fig. 2
for the case Nv = 10, m2 = 4. Each mode, except the lowest
and the highest ones, is doubly degenerate. This is of interest
for the Coulomb gas description derived above, since under
stochastic matrix dynamics eigenvalues repel and exact de-
generacy cannot be reproduced. Given a target eigenvalue κi

and RBM mass parameter μ2, the exact value for xi is given
by xs

i = μ2 − κi.
The numerical training of the RBM is carried out using

persistent contrastive divergence (PCD) with minibatches, see
Ref. [24] for details. The RBM mass parameter is fixed at
μ2 = 9 and Nv = Nh = 10. The learning rate and the mini-
batch size can be independently varied. For each choice of

FIG. 3. Learned distributions of eigenvalues xi = μ2 − λi. The
target eigenvalues μ2 − κi are shown with dashed vertical lines.
All except the lowest and the highest target eigenvalues are doubly
degenerate.

learning rate and minibatch size, we have trained 7500 RBMs,
to gather statistics. A typical example of the learnt distribution
of eigenvalues xi of X is shown in Fig. 3.

B. Universal predictions

The task is to describe the distributions shown in Fig. 3 us-
ing the concepts from random matrix theory presented above.
We start with the universal predictions. Due to the eigenvalue
repulsion, degenerate modes cannot be learned exactly. This
can be analysed using the Wigner surmise: for each of the four
doubly degenerate modes we collect data on the level splitting
for adjacent eigenvalues, Si = xi+1 − xi. Here we employed
the fact that the nondegenerate eigenvalues are well separated.
The resulting histograms are shown in Fig. 4 (left). These
histograms can be fitted with a single-parameter ansatz [see
Eq. (A13)] in terms of the mean level splitting 〈Si〉 = √

πσi.
Presenting the same data as a function of s = Si/〈Si〉 yields
the parameter-free Wigner surmise [see Eq. (A15)] leading to
a universal description of the level spacing. The linear rise at
small s reflects the level repulsion.

Next we turn to the spectral density (A16) for each of the
four doubly degenerate modes. The results for two of these
are shown in Fig. 5 (note that these are the second-to-lowest
and second-to-highest histograms previously shown in Fig. 3).
The lines are fits to Eq. (A17) with the position xm,i and
width σi as free parameters. It is clear that the histograms
are not described by simple Gaussians, but are broader and
flatter. Non-Gaussianity can be checked by computing the
Binder cumulant U4 of the distribution, which equals (here
δx = x − xm)

U4 ≡ 〈δx4〉
3〈δx2〉2 − 1 = − 4

27
≈ −0.148 (28)

for the Wigner semicircle (with N = 2), while it vanishes for
a Gaussian distribution. For completeness, we note here that
we have also fitted the distributions corresponding to a single,
nondegenerate level (the ones farthest to the left and right in
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FIG. 4. Wigner surmise for the level spacing S (left) and for the rescaled s = S/〈S〉 (right) for the four doubly degenerate modes labeled
by κ . The lines on the left are fits with 〈S〉 = √

πσ as a free parameter. The rescaled histograms on the right collapse to the universal curve,
P(s).

Fig. 3) and found these to be described by a Gaussian, as
expected.

Importantly, from the general discussion in the previous
section it follows that the higher the level of stochasticity
(as indicated by g2

i and depending on learning rate and batch
size), the wider the distributions are expected to be. We have
hence repeated the exercise above for a range of learning
rates, 0.01 � α � 0.1, and minibatch sizes, 4 � |B| � 64. We
will demonstrate below that the potentials Vi(xi ) have a global
minimum at xs

i = μ2 − κi. The variance in the Coulomb gas
σ 2

i is then proportional to the ratio of the learning rate and
batch size, see Eq. (18), and both the mean level spacing 〈S〉
and the width of the spectral density are expected to scale
with

√
α/|B| times a model and data dependent function of μ2

and κi.
This is demonstrated in Fig. 6. We show the response of

the mean level spacing 〈S〉 (left) and the width parameter of
the spectral density

√
πσ (middle) to variation of the learning

rate α and the batch size |B|, as follows,

〈S〉,√πσ = afit

√
α

|B|κ
2
i �i. (29)

A derivation of the nonuniversal factor κ2
i �i = (μ2 − κi ),

using an analysis of the variance of the gradient of the loss

function, can be found in Appendix C. A linear dependence
of 〈S〉2 and σ 2 on α/|B| is observed, consistent with the
derivation in Sec. II.

Both fits are independent ways to probe the Coulomb gas
description of the joint distribution P(xi, xi+1), which depends
on one parameter σi only. Hence in Fig. 6 (right) we show
the expected linear relation between 〈S〉 and

√
πσi, to provide

further support for this description.
The Coulomb term not only breaks the degeneracy of the

doubly degenerate modes, but also leads to a repulsion be-
tween all eigenvalues. This can be analyzed by determining
the mean positions xm,i of the spectral densities as a function
of α/|B|. In Fig. 7 we show the ratio of the RBM eigenvalues
λi = μ2 − xm,i and the target eigenvalues κi as a function of
α/|B|, where α and |B| are independently varied. We conclude
that the spectrum of the target theory will only be learnt
exactly in the limit that the stochasticity goes to zero, i.e.,
when α/|B| → 0. Of course, as is well known, choosing a
small learning rate from the beginning of the training is not
recommended, since it may lead to overfitting and limit the
scope for generalization.

C. Nonuniversal dynamics

Next we turn to nonuniversal, model-dependent features,
which are contained in the drift Ki(xi ) and the potential Vi(xi ).

FIG. 5. Spectral density for two values of doubly degenerate target eigenvalue κ = 7.62 (left) and κ = 4.38 (right), with fit parameters xm

and σ indicated in the argument of ρ(x; xm, σ ). Non-Gaussianity of the distribution is checked by computing the Binder cumulant U4.
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FIG. 6. Response of the mean level spacing 〈S〉 (left) and the width parameter of the spectral density
√

πσ (middle) to variation of the
learning rate α and the batch size |B|, presented in the combination

√
(α/|B|)κ2

i �i, for fou doubly degenerate pairs, identified by target
eigenvalues κi. Expected linear relation between 〈S〉 and

√
πσ upon independent variation of α and |B| (right).

In Refs. [23,24] it was shown that in the instantaneous eigen-
basis the singular values ξi of W are subject to the equation

d

dt
ξi = σ 2

h

(
1

κi
− 1

μ2 − σ 2
h ξ 2

i

)
ξi, (30)

where it is assumed that a continuous time limit exists. Writ-
ing this as an equation for xi = σ 2

h ξ 2
i (as above) and redefining

time as τ = 2σ 2
h t then yields

d

dτ
xi =

(
1

κi
− 1

μ2 − xi

)
xi. (31)

However, it should be clear from the previous discussion that
this equation is not relevant for the evolution of the eigenval-
ues xi of X in the realistic case, as it lacks both the Coulomb
repulsion and the stochasticity. Instead, we should consider
[see Eq. (A2)]

d

dτ
xi = Ki(xi ) +

∑
j 
=i

g2
i

xi − x j
+

√
2giηi, (32)

with a now determined drift

Ki(xi ) =
(

1

κi
− 1

μ2 − xi

)
xi. (33)

FIG. 7. Ratio of the RBM eigenvalues λi = μ2 − xm,i and the
target eigenvalues κi as a function of α/|B|, where α and |B| are
independently varied, demonstrating eigenvalue repulsion for nonva-
nishing stochasticity.

Here we stick to continuous time and it is understood that gi

captures the dependence on α and |B|.
From now on we consider one mode only and drop the

index i. This allows us to focus on the properties of the drift
K (x), without having to consider the Coulomb term, which
will be added again later. The corresponding Fokker-Planck
equation (FPE) for one mode reads

∂τ P(x, τ ) = ∂x(g2∂x − K (x))P(x, τ ), (34)

with the drift

K (x) =
(

1

κ
− 1

μ2 − x

)
x. (35)

A stationary solution exists if the drift can be integrated to
yield a potential, using K (x) = −∂xV (x), or

V (x) = −
∫ x

dx′ K (x′) = − x2

2κ
− x − μ2 log(μ2 − x),

(36)

where we recall that 0 � x < μ2, due to positivity and sta-
bility requirements. The stationary distribution for one mode
then reads

Ps(x) = 1

Z
e−V (x)/g2

= 1

Z
exp

[
1

g2

(
x2

2κ
+ x + μ2 log(μ2 − x)

)]
. (37)

Z is the normalization factor, such that

∫ μ2

0
dx Ps(x) = 1. (38)

Note that the distribution is peaked at x = xs = μ2 − κ , where
the drift vanishes, K (xs) = 0.

To analyze the properties of the time-dependent FPE, we
cast the dynamics as a quantum-mechanical bound state prob-
lem [25]. We factor out the square root of the stationary
distribution

P(x, τ ) =
√

Ps(x)ψ (x, τ ), (39)

015303-6
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FIG. 8. Analysis of the Fokker-Planck Hamiltonian for a single mode x, with μ2 = 9, κ = 4, and g2 = 0.01 (left) and 0.001 (right). Shown
are the FP potential U (x) (black line) and the ground-state wave function ψ0(x) = √

Ps(x) (blue line). The vertical dotted line at xs = μ2 − κ =
5 indicates the expected position of the peak.

and analyze the time dependence of ψ (x, τ ). Taking the time
derivative and using Eq. (34) then yields

∂τψ (x, τ ) =
(

g2∂2
x − 1

4g2
[∂xV (x)]2 + 1

2

[
∂2

x V (x)
])

ψ (x, τ )

≡ −2HFPψ (x, τ ), (40)

where the so-called Fokker-Planck Hamiltonian can be writ-
ten in a semipositive definite form,

HFP = 1
2 L†L, (41)

with

L† = −g∂x + 1

2g
∂xV (x), L = +g∂x + 1

2g
∂xV (x), (42)

The eigenvalue problem given by HFP takes the form of a
bound state problem, with

HFPψn(x) = Enψn(x). (43)

The ground state, ψ0(x), with vanishing energy E0 = 0, is
determined by Lψ0(x) = 0, which yields ψ0(x) = √

Ps(x), as
it should be, see Eqs. (37) and (39).

The solutions with positive energy determine the time-
dependent evolution, or learning dynamics, and the time-
dependent solution of the FPE can be expressed in terms of

ψ (x, τ ) = ψ0(x) +
∑
n>0

cnψn(x)e−2Enτ , (44)

where the coefficients cn are determined by the initial distri-
bution P(x, 0), using relation (39).

To analyze the spectrum of HFP in more detail, we write it
as follows,

HFP = −g2

2
∂2

x + U (x), U (x) = 1

g2
[U0(x) + g2U1(x)],

(45)

where

U0(x) = 1
8 [∂xV (x)]2, U1(x) = − 1

4∂2
x V (x), (46)

are both independent of the noise strength g2. This way of
writing reveals the dual role of 1/g2: it plays the role of mass,
appearing in the kinetic (∂2

x ) and potential (U0) terms in a
reciprocal manner. Moreover, given that the noise strength is
small, g2 can be treated as a small parameter, such that U1

can be treated as a perturbative correction. We therefore first
consider U0(x). It has a minimum where the drift vanishes,

∂xU0(x)|x=xs = 0, ∂xV (x)|x=xs = −K (xs) = 0, (47)

i.e., at the expected position xs = μ2 − κ . The curvature at the
minimum is given by

∂2
x U0(x)|x=xs = �2

4
, � ≡ ∂2

x V (x)|x=xs = μ2 − κ

κ2
. (48)

Note that U0(xs) = 0 and U1(xs) = −�/4. U0(x) has a lo-
cal maximum at xmax = μ2 −

√
κμ2, with U0(xmax) > 0,

U1(xmax) = 0. We also note that U (0) = �κ/(4μ2) > 0. The
potential U (x) is therefore a nondegenerate double well poten-
tial on the line segment 0 � x < μ2, with a global minimum
at x = xs. Examples are shown in Fig. 8 for two values of g2.

Around x = xs, the FP Hamiltonian can hence be
written as

HFP = −g2

2
∂2

x + 1

2g2

(
�

2

)2

(x − xs)2 − 1

2

(
�

2

)
, (49)

making complete the mapping to a harmonic oscillator with
mass 1/g2, frequency �/2, and shifted zero-point energy. Its
eigenvalues are therefore

En = �

2
n, n = 0, 1, 2, . . . , (50)

and convergence to the stationary limit is determined by the
smallest nonzero eigenvalue, 2E1 = �, as observed before
[24]. Also shown in Fig. 8 is the groundstate wave function,
ψ0(x) = √

Ps(x). We have a chosen a rather large value of
g2 here, such that it has a substantial width. Indeed, in the
harmonic approximation, g2 does not appear in the spectrum
but controls the width of the wave function, and hence the
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distribution P(x, t ). Less stochasticity results in a narrower
distribution centered around x = xs, as one would expect.

The overall dynamics combines the evolution in the po-
tential Vi(xi ) for each eigenvalue with the Coulomb repulsion
between the eigenvalues, leading to the spectral densities
shown in Figs. 3 and 5.

D. Teacher-student model

Here we implement the findings in a simple teacher-student
model, with an emphasis on how the stochasticity can be
modelled, when added by hand. This is of interest, since as
we have argued above, the noise does not appear in a standard
manner (it is multiplied by the learning rate and not its square
root, for instance).

We consider a simple teacher-student model, formulated as

yt = V x, ys = W x, (51)

where V,W are N × N symmetric matrices and x ∼ N (0, 1)
are N-dimensional Gaussian random vectors. The teacher ma-
trix V is fixed, while the student matrix W is to be learned by
minimizing the loss function,

L(W ) = 1
2 〈||yt − ys||2〉, (52)

where the brackets denote averaging over the input data. In
the limit of an infinite amount of input data, 〈xix j〉 = δi j ,
and the dynamics is deterministic. Some stochasticity can
be introduced by considering batch updates. The amount of
stochasticity is, however, not sufficient for the purpose of this
discussion, since it is unavoidably suppressed when W → V
as the training converges. We therefore introduce additional
randomness by hand, in a manner that is consistent with the
discussion in Sec. II, see in particular Eq. (5). We consider

Wi j → W ′
i j = Wi j − α

δL
δWi j

+ α
√

Ai jη
B
i j . (53)

Here α is the learning rate, which multiplies both the gradient
and the stochastic term, Ai j indicates the strength of the noise,
and ηB

i j is the stochastic term, averaged over a minibatch of
size |B|. The latter is introduced as follows: we consider indi-
vidual updates with noise ηb

i j ∼ N (0, 1). A minibatch average
is then given by

ηB
i j = 1

|B|
∑
b∈B

ηb
i j, (54)

such that 〈
ηB

i jη
B
kl

〉 = 1

|B|2
∑
b,b′

〈
ηb

i jη
b′
kl

〉 = 1

|B|δikδ jl . (55)

We finally write ηB
i j = ηi j/

√|B|, with ηi j ∼ N (0, 1), to sep-
arate the factor 1/

√|B|. The noise is explicitly symmetrised,
such that throughout the evolution W is symmetric. The final
update equation is then

Wi j → W ′
i j = Wi j − α

δL
δWi j

+ α√|B|
√

Ai jηi j, (56)

with ηi j ∼ N (0, 1), which, as stated, is modeled explicitly to
be consistent with the arguments given in Sec. II.

We have applied this model to the case of N = 2, with the
teacher matrix diagonal with eigenvalues κ1,2 = κ ± δκ/2,
and Ai j = A(1 + δi j ) (see Appendix D). The eigenvalues of
W then satisfy

λ1 → λ′
1 = λ1 − α(λ1 − κ1) + α2

|B|
A

λ1 − λ2

+ α√|B|
√

2Aη1, (57)

λ2 → λ′
2 = λ2 − α(λ2 − κ2) + α2

|B|
A

λ2 − λ1

+ α√|B|
√

2Aη2. (58)

We have solved Eq. (56) numerically and varied the learning
rate α, minibatch size |B| and noise strength A independently.
We have constructed the distribution for the level spacing
and for the spectral density, and confirmed that in all cases
these distributions can be fitted by the Wigner surmise and the
Wigner semicircle (for N = 2).

We denote the eigenvalue splitting as S = |λ1 − λ2|. Tak-
ing the difference of the equations above and averaging over
the noise, then yields in the stationary limit

〈S〉 − δκ − 2αA

|B|
〈

1

S

〉
= 0. (59)

Since for the Wigner surmise 〈1/S〉 = π/(2〈S〉), we finally
find that the mean level spacing is given by

〈S〉 = 1

2

⎛
⎝δκ +

√
δκ2 + 4παA

|B|

⎞
⎠. (60)

In the limit of vanishing stochasticy, this becomes 〈S〉 = δκ ,
as it should be (perfect learning), while for the degenerate case
this reduces to

〈S〉 =
√

παA

|B| , (61)

demonstrating again the linear scaling rule and setting a limit
on the precision with which the teacher matrix can be learnt,
for finite learning rate, noise strength, and batch size. In Fig. 9
we show the mean level spacing as a function of

√
αA/|B|,

where, as already mentioned, α, |B|, and A are varied inde-
pendently, and δκ = 0. The fitted slope, afit ≈ 1.87, is close
to the analytical prediction

√
π ≈ 1.77, where the latter is

valid when finite learning rate corrections are disregarded (see
Appendix C).

IV. SUMMARY AND OUTLOOK

We have considered stochastic weight matrix dynamics in
generic learning algorithms and argued that it can be described
in the framework of Dyson Brownian motion. This results in
universal features dictated by random matrix theory, including
eigenvalue repulsion, quantified by the Wigner surmise. The
level of stochasticity is determined by the ratio of the learn-
ing rate α and the minibatch size |B| times a nonuniversal
function, which encodes details of the loss function and the
architecture. The linear scaling rule, i.e., the dependence on
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FIG. 9. Response of the eigenvalue splitting 〈S〉 = 〈δλ〉 (left) and the width parameter of the spectral density
√

πσ (middle) to independent
variations of the learning rate α, the batch size |B|, and the level of stochasticity A, presented in the combination

√
αA/|B|, in the teacher-

student model. Expected linear relation between 〈S〉 and
√

πσ upon independent variation of α, |B|, and A (right).

α/|B|, arises naturally within this framework. One implica-
tion is that there is no straightforward limit in which, say,
stochastic gradient descent reduces to a stochastic differential
equation in continuous time, since the level of stochasticity
decreases with decreasing learning rate or increasing mini-
batch size. While the inherent stochasticity for finite α/|B|
sets a fundamental limit on the accuracy of learning, it also
prevents overfitting and hence helps in decreasing the gener-
alization error.

We have tested our universal and nonuniversal predictions
in two simple models: a linear teacher-student model and
the Gaussian restricted Boltzmann machine. In the latter the
nonuniversal aspects of the dynamics of the eigenvalues can
be nicely described as a quantum-mechanical bound state
problem in a nondegenerate double well potential, defined
on a finite interval. The universal dependence on α/|B| was
confirmed in both models.

Our results are rather general and can be applied to any
model in which weight matrices are updated with a stochastic
optimization algorithm. The choice of architecture and loss
function determine the nonuniversal aspects in the Coulomb
potential, as well as the level of stochasticity. In some cases
the resulting stochasticity is so small that is hardly noticeable;
this was the case in the linear teacher-student model and for
that reason we added noise by hand. The Gaussian RBM is
stochastic by itself, due to the need to sample, and hence the
noise inherent in the model is strong enough to observe the
effects without any further addition. Moving forward, it is im-
portant to test these ideas in more complicated architectures,
including neural networks and transformers. To be able to
observe universal features, it may be required to use spectral
unfolding, see, e.g., Refs. [19,26,27]. The coupling between
different weight matrices across layers as well as the use of
adaptive learning rates, such as adam [28], may also influence
the manner in which universal features appear. Work along
these directions is currently in progress.
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APPENDIX A: DYSON BROWNIAN MOTION
AND THE STOCHASTIC COULOMB GAS

In this Appendix we summarize the main concepts of
Dyson Brownian motion [2], see in particular the textbook [8]
(Ch. 7). For simplicity we use continuous-time notation, but
when in doubt, expressions should be understood in the sense
of Itô calculus.

Consider a symmetric N × N matrix X , whose matrix ele-
ments are updated according to

dXi j

dt
= Ki j (X ) + √

Ai jηi j, (A1)

where Ki j is the drift term, Ai j encodes the strength of the
noise, and ηi j ∼ N (0, 1), all of which are symmetric. Its
eigenvalues xi then evolve according to

dxi

dt
= Ki(xi ) +

∑
j 
=i

g2
i

xi − x j
+

√
2giηi

≡ K (eff)
i (xi ) +

√
2giηi, (A2)

where Ki(xi ) is the drift acting on the eigenvalues, the second
term is the induced Coulomb term, and ηi ∼ N (0, 1). This
result can be derived using second-order perturbation theory
with a discrete time step δt , making the standard assumption
that the drift and the noise correlator 〈ηi jηkl〉 scale as δt [8].
The noise strength satisfies Ai j = A(1 + δi j ) and we denote
the diagonal element as

√
Aii = √

2gi. Strictly speaking the
index on gi should be dropped, but we keep it for future
convenience. A derivation in the context of the teacher-student
model is given in Appendix D.

015303-9



GERT AARTS, BIAGIO LUCINI, AND CHANJU PARK PHYSICAL REVIEW E 111, 015303 (2025)

The corresponding Fokker-Planck equation (FPE) for the
distribution P({xi}, t ) reads

∂t P({xi}, t ) =
N∑

i=1

∂xi

[(
g2

i ∂xi − K (eff)
i (xi )

)]
P({xi}, t ). (A3)

Provided that the drift can be derived from a potential,

Ki(xi ) = −dVi(xi )

dxi
, (A4)

the FPE has the stationary solution

Ps({xi}) = 1

Z

∏
i< j

|xi − x j |e− ∑
i Vi (xi )/g2

i , (A5)

with

Z =
∫

dx1 . . . dxN Ps({xi}). (A6)

This distribution is known as the Coulomb gas. The Coulomb
repulsion term can also be seen as a Jacobian arising when
making the transition from integrating over all matrix ele-
ments to just the eigenvalues. In the case that the potentials
Vi(xi )/g2

i are identical quadratics, the Coulomb gas describes
the eigenvalues of the Gaussian orthogonal ensemble.

The presentation above assumes that the potential in the
Coulomb gas is separable, see Eqs. (A4) and (A5). If this is
not possible, e.g., due to eigenvalues mixing nonlinearly in
the drift terms, a more general potential appears, as∑

i

Vi(xi )/g2
i → V (x1, x2, . . . , xN ), (A7)

with

Ki = −g2
i

∂V (x1, x2, . . . , xN )

∂xi
. (A8)

While this will complicate the analysis and lead to a richer loss
function landscape, the implications are expected to remain.

We specialize to the case with N = 2 eigenvalues and as-
sume that the dynamics can be linearized around degenerate
minima xs

1 = xs
2 = κ , such that the drift Ki is proportional to

(κ − xi ). The partition function is then

Z = 1

N0

∫
dx1dx2 |x1 − x2| e−V (x1,x2 ), (A9)

with

V (x1, x2) = 1

2σ 2
[(x1 − κ )2 + (x2 − κ )2]. (A10)

The variance σ 2 is chosen to be identical for the two degen-
erate modes. We assume that the distribution is sufficiently
peaked around κ , such that the integral boundaries can be
taken as ±∞. We hence consider

Z = 1

N0

∫
dx1dx2 |x1 − x2| e−(x2

1+x2
2 )/(2σ 2 ), (A11)

with the normalization constant N0 = 4
√

πσ 3.
The Wigner surmise signifies the level spacing S = x1 −

x2. Let us change variables to x1,2 = x ± S/2, such that

Z =
∫ ∞

0
dS P(S), (A12)

with

P(S) = S

2σ 2
e−S2/(4σ 2 ). (A13)

The mean level spacing is

〈S〉 =
∫ ∞

0
dS SP(S) = √

πσ. (A14)

In terms of s = S/〈S〉 the surmise is parameter free,

P(s) = π

2
se−πs2/4. (A15)

The spectral density is defined, for arbitrary N , as

ρ(x) =
〈

1

N

N∑
i=1

δ(x − xi )

〉
. (A16)

For N = 2, it is easily evaluated as

ρ(x) = e−x2/(2σ 2 )

4
√

πσ

[
2e−x2/(2σ 2 ) +

√
2π

x

σ
Erf

(
x√
2σ

)]
.

(A17)

It is flatter and broader than a simple Gaussian.

APPENDIX B: WEIGHT MATRIX INITIALIZATION

Consider the M × N random matrix W at initialization,
with elements W ∼ N (0, σ 2

in ). Without loss of generality we
take N � M; if this is not the case, simply exchange W and
W T . The symmetric N × N matrix X = W T W has N nonzero
eigenvalues xi = ξ 2

i (i = 1, . . . , N), where ξi are the singular
values of W . The distribution of eigenvalues x of X is given
by the Marchenko-Pastur distribution,

PMP(x) = 1

2πσ 2
inMrx

√
(x+ − x)(x − x−), (B1)

where r = N/M � 1 and x± = Mσ 2
in(1 ± √

r)2, x− < x < x+.
It is desirable for the spectrum of X to only depend on r
and not separately on M and N , such that one can take
M, N → ∞ at fixed r. There is some freedom to select σ 2

in,
e.g., σ 2

in = 1/M, 1/N , or 1/
√

MN . By choosing σ 2
in = 1/M,

the spectrum of X is bounded for all values of 0 < r � 1,
which can be advantageous, in particular in the RBM case.
The initial distribution then reads

PMP(x) = 1

2πrx

√
(x+ − x)(x − x−), (B2)

with x± = (1 ± √
r)2, 0 � x− � x � x+ � 4.

APPENDIX C: NONUNIVERSAL PART OF THE LINEAR
SCALING RELATION

In Sec. II, we demonstrated that the Coulomb gas potential
Vi(xi )/g2

i is the product of a universal and a nonuniversal fac-
tor, see Eqs. (16) and (18). Here we consider the nonuniversal
factor in the case of the restricted Boltzmann machine and
sketch a derivation of its parameter dependence.

We are interested in the variance of the gradient of the loss
function, Var(δW ) or Var(δX ). We write the gradient in the
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form, see Eq. (24) and putting σ 2
h = 1,

δL
δW

W T = (Ctarget − CRBM)(WW T ). (C1)

The two-point functions on the RHS indicate the target data,

Ctarget = K−1
target, (C2)

and the RBM model,

CRBM = φRBMφRBM, (C3)

with expectation value

〈CRBM〉 = K−1, K = μ211 − WW T . (C4)

Finally, using the singular-value decomposition W = U�V T ,

WW T = U��T U T , (C5)

where ��T contains the squares of the singular values xi = ξ 2
i

on the diagonal. All quantities above are matrix-valued with
indices on the visible layer, which we suppress.

To determine the variance, it is important to note that only
CRBM is fluctuating during the mini-batch and contrastive
divergence updates. The variance is therefore

Var

(
δL
δW

W T

)
= (〈CRBMCRBM〉 − 〈CRBM〉2)(WW T )(WW T ).

(C6)

In the Gaussian RBM only the second moment is nontrivial,
see Eq. (C4). Hence

〈CRBMCRBM〉 − 〈CRBM〉2 = 2K−1K−1. (C7)

Going to the eigenbasis for one mode, in which

K−1 → 1

μ2 − x
, WW T → x, (C8)

then yields

Var

(
δL
δW

W T

)
∼ 2x2

(μ2 − x)2
. (C9)

After training, x = μ2 − κ + δx. At leading order in δx we
find therefore

Var

(
δL
δW

W T

)
∼ 2(μ2 − κ )2

κ2
. (C10)

In the main text we noted that the curvature of the
Coulomb gas potential around its minimum is given by

�i = (μ2 − κi )/κ2
i . We therefore write the nonuniversal func-

tion representing the variance as

g̃2
i ∼ κ2

i �2
i , (C11)

or, see Eq. (18),

σ 2
i = α

|B|κ
2
i �i. (C12)

By analyzing the scaling of the mean level splitting 〈S〉 with
α/|B| for different κi values, we have confirmed this paramet-
ric dependence on μ2 and κ .

As a side note, we also include here the (well-known) state-
ment that stochastic equations suffer from finite-discretization
effects, which should be considered when comparing with
analytically derived expressions. Consider the simple update
for one degree of freedom, which is modeled according to the
equations considered in the main paper,

xn+1 = xn − αωxn +
√

2αγ ηn, (C13)

where γ = αA/|B| and 〈ηnηm〉 = δnm. It is solved by (taking
x0 = 0)

xn =
√

2αγ

n−1∑
i=0

(1 − αω)n−1−iηi. (C14)

Assuming that αω < 1 and taking n large, one finds

lim
n→∞

〈
x2

n

〉 = αA

|B|
1

ω

1

1 − αω/2
. (C15)

This illustrates that the variance depends on αA/|B|, as we
have emphasised in the main text, but also that there are finite
learning rate corrections present, as expected.

APPENDIX D: DERIVATION OF THE EIGENVALUE
EQUATION

In this Appendix we add a brief derivation of the eigenvalue
equation including the Coulomb term, starting with the matrix
update, in the context of the teacher-student model. This fol-
lows closely textbook derivations [8], but may be useful to
those not familiar with this topic.

We consider a 2 × 2 symmetric matrix W , updated accord-
ing to

Wi j → W ′
i j = Wi j − α

δL
δWi j

+ α√|B|
√

Ai jηi j, (D1)

where α is the learning rate and |B| the batch size. Both the
noise ηi j ∼ N (0, 1) and strength Ai j are symmetric matrices.
The eigenvalues of W are denoted as λ1,2 and the teacher
values are κ1,2.

We assume that at the current step W is diagonal (or has
been diagonalized) and consider one update. The drift is then
−α(λ1,2 − κ1,2) and the updated matrix reads

W ′ =
(

λ1 − α(λ1 − κ1) + (α
√|B|)√A11η11 (α/

√|B|)√A12η12

(α/
√|B|)√A12η12 λ2 − α(λ2 − κ2) + (α/

√|B|)√A22η22

)
. (D2)
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To compute the eigenvalues of W ′, we follow the standard
power counting rules and treat the drift as O(ε) and the noise
terms as O(

√
ε). Expanding to O(ε) then yields the eigenval-

ues of W ′,

λ′
1 = λ1 − α(λ1 − κ1) + α2

|B|
A12η

2
12

λ1 − λ2
+ α√|B|

√
A11η11,

(D3)

λ′
2 = λ2 − α(λ2 − κ2) + α2

|B|
A12η

2
12

λ2 − λ1
+ α√|B|

√
A22η22.

(D4)

Taking a noise average in the Coulomb term, i.e., replacing η2
12

by 1, denoting η11 = η1, η22 = η2, and using that Ai j = A(1 +
δi j ) (or A11 = A22 = 2A, A12 = A21 = A) [8], then yields

λ′
1 = λ1 − α(λ1 − κ1) + α2

|B|
A

λ1 − λ2
+ α√|B|

√
2Aη1,

(D5)

λ′
2 = λ2 − α(λ2 − κ2) + α2

|B|
A

λ2 − λ1
+ α√|B|

√
2Aη2. (D6)

This is the standard equation for the eigenvalues, including
the Coulomb and stochastic terms. As mentioned, a detailed
discussed of the various steps and an extension to N × N
matrices can be found in the textbook [8].
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