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A lattice calculation is presented for the electrical conductivity � of the QCD plasma with 2þ 1

dynamical flavors at nonzero temperature. We employ the conserved lattice current on anisotropic lattices

using a tadpole-improved clover action and study the behavior of the conductivity over a wide range of

temperatures, both below and above the deconfining transition. The conductivity is extracted from a

spectral-function analysis using the maximal entropy method, and a discussion of its systematics is

provided. We find an increase of �=T across the transition.
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Introduction.—Transport coefficients, such as the shear
and bulk viscosity, the electrical conductivity, and heavy-
quark diffusion constants, can be seen as parameters in
the low-energy effective theories that describe real-time
evolution in the quark-gluon plasma (QGP) on the longest
length and time scales, encoding the dynamics of the
underlying quantum field theory, QCD. Knowledge of
transport coefficients is especially relevant for understand-
ing heavy-ion collision experiments, at the Relativistic
Heavy-Ion Collider at BNL and the Large Hadron
Collider at CERN, for which viscous hydrodynamics is
routinely used as a tool to analyse the collisions [1,2].

In the strongly coupled quark-gluon plasma, transport
coefficients are not easily calculable. Although the applica-
tion of holography in strongly coupled theories has provided
an important stimulus [3], a nonperturbative computation
directly in QCD is highly desirable. According to the Kubo
formulas, see, e.g., Ref. [4], transport coefficients can be
extracted from the low-energy behavior of appropriate
current-current spectral functions. When using lattice QCD,
which is formulated in Euclidean space-time, the main chal-
lenge is the construction of spectral functions fromEuclidean
correlators, i.e., the analytical continuation from imaginary to
real time. Here the understanding has steadily increased and
some lattice results for transport coefficients (mostly in SU(3)
gauge theory, i.e., without dynamical quarks) are now avail-
able [5–10]. We discuss this further below and refer to
Refs. [11–13] for reviews on transport which include a dis-
cussion of lattice QCD aspects.

In this Letter, we present lattice results for the electrical
conductivity � of the QCD plasma. On the phenomeno-
logical side, the conductivity may play an important role in

the evolution of electromagnetic fields during a heavy-ion
collision [14,15], and it has recently also been suggested
that experimental information on conductivity can be
extracted from flow parameters in heavy-ion collisions
[16]. There are a number of lattice QCD computations of
the conductivity, using a plasma without dynamical quarks
(quenched, Nf ¼ 0) [5,6,9]. A recent two-flavor study at a

single temperature T in the QGP is available as well [10].
Here, we improve on these results in various significant
ways. First of all, our simulations are carried out in a
plasma with Nf ¼ 2þ 1 quark flavors. Second, we con-

sider a wide range of temperatures below and above the
deconfinement transition. This allows us, for the first time,
to observe a rise of the conductivity as the temperature is
increased [17]. Third, we use the exactly conserved current
on the lattice, whereas in all previous studies a local lattice
operator, which requires renormalization, was used. And
finally, we employ anisotropic lattices with a substantially
smaller lattice spacing in the time direction, allowing for
more data points to be used in the analysis. Our main result
is the observation of an increase of �=T, as the plasma is
heated from the confined to the deconfined phase.
Electrical conductivity.—The electromagnetic (em) cur-

rent is given by jem� ðxÞ ¼ e
P

fqfj
f
�ðxÞ, where the sum is

over the flavors, e is the elementary charge, qf is the

fractional charge of the quark (2=3 or �1=3) and jf� is
the vector current for each flavor. The Euclidean correlator
Gem built up from jem� is related to the corresponding

spectral function � via the integral relation [11–13]

Gem
��ð�;pÞ ¼

Z
d3xeip�xhjem� ð�;xÞjem� ð0; 0Þyi

¼
Z 1

0

d!

2�
Kð�;!Þ�em

��ð!;pÞ; (1)

where the temperature-dependent kernel is given by

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 111, 172001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 OCTOBER 2013

0031-9007=13=111(17)=172001(5) 172001-1 Published by American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.172001
http://creativecommons.org/licenses/by/3.0/


Kð�;!Þ ¼ cosh½!ð�� 1=2TÞ�
sinh½!=2T� : (2)

In the rest of the Letter, we consider correlators at zero
momentum and, hence, we drop the p dependence. The
electrical conductivity � can finally be determined from
the slope of the spectral function at ! ¼ 0 as [4]

�

T
¼ 1

6T
lim
!!0

�emð!Þ
!

; �emð!Þ ¼ X3

i¼1

�em
ii ð!Þ: (3)

Lattice details.—We use an anisotropic lattice of size
N3

s � N� with 2þ 1 flavors of clover fermions [18–21].
Using a finer lattice spacing a� for the time direction
provides a better temporal resolution of the correlation
functions without increasing the computational cost sig-
nificantly. However, this choice introduces new bare pa-
rameters in the action, which have to be tuned carefully.
This has been achieved in Refs. [18,19], to which we refer
for further details. The gauge action is Symanzik improved
with tree-level tadpole-improved coefficients. The Dirac
operator reads [22]

D½U� ¼ m̂0 þ �4Ŵ4 þ 1

�f

X

i

�iŴi � ct
2

X

i

�4iF̂4i

� cs
2�g

X

i<j

�ijF̂ij: (4)

The first three terms indicate the mass term and the usual

Wilson operator Ŵ�, with �� the Dirac matrices, while the

last two are the clover operators, with��� ¼ ði=2Þ½��; ���
and F̂�� the lattice version of the field strength tensor.

The parameters �g and �f are the bare gauge and fermion

anisotropies, which have to be tuned. Following Ref. [18],
we use a renormalized anisotropy � � as=a� ¼ 3:5, which
results from �g ¼ 4:3 and �f ¼ 3:4. The parameters in

front of the timelike and spacelike clover operators, ct ¼
0:9027 and cs ¼ 1:5893, have been chosen according to
tree-level conditions [21]. The gauge links U� are repre-

sented by three-dimensional stout-smeared links [23],
with smearing weight � ¼ 0:14 and n� ¼ 2 iterations.

The light and strange quark mass parameters are chosen
[19] to reproduce the physical strange quark mass and a

light quark mass with M�=M� ¼ 0:446ð3Þ, i.e., m̂light
0 ¼

�0:0840 and m̂strange
0 ¼ �0:0743.

In Refs. [18,19], only zero-temperature lattices were
considered, with a�N� � asNs and Ns ¼ 12, 16, 24. We
have generated a number of finite-temperature ensembles,
using spatial lattice extents of Ns ¼ 24 and 32, and N�

ranging from 48 to 16. Some details are given in Table I. As
always, the temperature is given by T ¼ 1=ða�N�Þ. The
critical temperature is estimated from the renormalized
Polyakov loop inflection point [24]. Note that we have
four temperatures both below and above Tc.

In order to compute the electromagnetic current corre-
lator, we use the exactly conserved vector current on the
lattice, whose components at lattice site x read

VC
�ðxÞ ¼ 	�½ �c ðxþ �̂Þð1þ ��ÞUy

�ðxÞc ðxÞ
� �c ðxÞð1� ��ÞU�ðxÞc ðxþ �̂Þ�; (5)

where 	4 ¼ 1=2, 	i ¼ 1=ð2�fÞ. To compute the current-

current correlator as a function of the Euclidean time
separation � in the zero-momentum limit, we use Wick’s
contraction and neglect disconnected diagrams, as has
been the case in all previous studies and is well motivated
[9]: in particular, their contribution is identically zero in
the Nf ¼ 3 case. We then find the following two contribu-

tions to the correlator:

hVC
�ðxÞVC

� ðyÞyi
¼ 2	�	�ReTr½�Sðy;xþ �̂ÞUy

�ðxÞ�þ
�Sðx;yþ �̂Þ

�Uy
� ðyÞ~��

� þSðyþ �̂; xþ �̂ÞUy
�ðxÞ�þ

�Sðx;yÞU�ðyÞ~�þ
� �;
(6)

where x, y are two lattice points, Sðx; yÞ ¼ hc ðxÞ �c ðyÞi is
the fermion propagator and ��

� ¼ 1� ��,
~��
� ¼ 1� ~��

with ~�� ¼ �4���4. Since we are using a Symanzik-

improved action, the current should in principle be
improved as well, by adding a total divergence of the
form a�@� �c ðxÞ���c ðxÞ, which we have not done (for

massless quarks this contribution is suppressed). To con-
vert from lattice to continuum units on an anisotropic
lattice, we note that the spatial current density VC

i ðxÞ is
given in units of a2sa�. It follows that the correlator, pro-
jected to zero momentum, and its spectral function, are
given in units of asa

2
� and asa�, respectively. Finally, in

order to be able to compare with results obtained previ-
ously, we consider, in this Letter, only the contribution
from the two light flavors to the electromagnetic current.
We can then factor out the fractional charge assignments
of the quarks, via Cem ¼ e2

P
fq

2
f ¼ 5=9e2, and write

TABLE I. Lattice setup: the lattice size is N3
s � N� and the

lattice spacing is as ¼ 0:1227ð8Þ fm and a� ¼ 0:035 06ð23Þ fm,
corresponding to a�1

� ¼ 5:63ð4Þ GeV [18,19]. The renormalized
anisotropy is � � as=a� ¼ 3:5. NCFG is the number of configu-
rations available for each volume and NSRC is the number of
sources used in the analysis.

Ns N� T [MeV] T=Tc NCFG NSRC

32 16 352 1.90 1059 4

24 20 281 1.52 1001 4

32 24 235 1.27 500 4

32 28 201 1.09 502 4

32 32 176 0.95 501 4

24 36 156 0.84 501 4

24 40 141 0.76 523 4

32 48 117 0.63 601 1
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�emð!Þ ¼ Cem�ð!Þ. The inclusion of the strange quark is
in progress [25].

Spectral function.—The inversion of the integral equa-
tion (1) relating Gð�Þ and �ð!Þ is an ill-posed problem,
since the correlator is known numerically at a finite number
of time slices only, whereas the spectral function is, in
principle, a continuous function of !. To resolve this
problem, one possibility is to use an ansatz for �ð!Þ with
a small number of fitting parameters and a constrained
fitting procedure required for stabilization [9,10].
Another route is to use the maximum entropy method
(MEM) [26], which has its basis in Bayesian analysis
[27] and aims to construct the most probable spectral
function, given the data and prior information, encoded
in a default model, without requiring any assumptions of its
functional form. Here, we use Bryan’s algorithm [28],
which expands �ð!Þ in terms of basis functions determined
by a singular-value decomposition of the kernel Kð�;!Þ
[6,26]. At T > 0, a straightforward implementation of this
leads to instabilities since the kernel diverges as ! ! 0,
K � 1=!. To cure this, we construct instead �ð!Þ=!,
using the kernel !Kð�;!Þ [6]. Prior information is then
introduced via the default model mð!Þ as

�ð!Þ
!

¼ mð!Þ expX
k

ckukð!Þ; (7)

where ukð!Þ are the basis functions mentioned above
and the coefficients ck are to be determined. We employ
a default model with a minimal amount of features, i.e.,

mð!Þ ¼ m0ðbþ a�!Þ: (8)

Here m0 is an overall normalization, determined by a
simple 
2 fit to the correlator. The parameter b is essential
at small energies, since it permits the presence of a nonzero
value of �ð!Þ=! at ! ¼ 0 and, hence, a nonzero conduc-
tivity. Varying b provides a crucial test to verify the robust-
ness of our results, as we will see below. Finally, the term
linear in ! is motivated by the expected large ! behavior
in the continuum.

Results.—We now discuss our results. In Fig. 1, we
present spectral functions obtained with MEM for three
temperatures. The main figure shows �ð!Þ=!2. At the
lowest temperature, we observe a peak in the spectral
function corresponding to the � particle. Note that the
vertical line denotesM� at T ¼ 0 [19]. As the temperature

is increased, this peak is reduced and eventually disap-
pears, which is interpreted as ‘‘melting.’’ The structures at
!� 4� 6 GeV are presumably lattice artifacts due to the
finite size of the Brillouin zone and are not physical [29].
In the inset, we show �ð!Þ=!T, in order to highlight
the presence of an intercept at! ¼ 0. It can be seen clearly
that as the temperature is increased, a nonzero intercept
emerges, indicating the presence of a temperature-
dependent conductivity. Underlying this analysis is the
assumption that the transport peak is not extremely narrow;

if it is, the inversion will not determine the intercept
reliably [30].
In order to study the robustness of the MEM results, we

have carried out a number of tests. By varying the time
interval included in the MEM analysis, we found that
the results are stable when �min 	 � 	 a�N�=2, with
�min=a� * 3; the results shown here are obtained with
�min=a� ¼ 4. Similarly, we varied the ! range with
0 	 ! 	 !max and found stability provided a�!max �
3–5; here, we use a�!max ¼ 3. An important test concerns
the parameter b in the default model, since this parameter
is directly related to the intercept of �ð!Þ=! and, hence,
�=T, see Eqs. (3), (7), and (8). The b dependence is shown
in Fig. 2. We observe clear plateaus, provided that b is not
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FIG. 1 (color online). Spectral functions �ð!Þ=!2 and
�ð!Þ=!T (inset) at three temperatures. The vertical line indi-
cates M� at T ¼ 0 [19], and the thickness of the lines represents

the statistical jackknife error from MEM. The rise of the inter-
cept at ! ¼ 0 in the inset indicates a temperature-dependent
conductivity.
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FIG. 2 (color online). Dependence of the conductivity
C�1
em�=T on the parameter b in the default model (8). The

time range included in the MEM analysis is �=a� ¼
4; . . . ; N�=2 and the ! range is 0< a�! < 3. The result is robust
against variations of b, provided it is not too small.
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too small. In the latter case, the conductivity is unnaturally
pushed to zero, due to a bias in the default model, which
should be avoided. We also note a larger sensitivity to b at
the highest temperature, which reflects that, in this case,
only a small number of time slices is available for the
analysis.

Our results for the conductivity are shown in Fig. 3
where C�1

em�=T is plotted against the temperature. We
observe an increase of �=T as the transition to the decon-
fined phase is made, with the rise starting already below Tc.
We note that since the transition is a crossover, a smooth
transition may be expected. It is not excluded that far
below Tc, the conductivity is much larger due to the
transport of charged hadrons, which may, however, lead
to a narrow transport peak, whose details cannot be
resolved in the Euclidean correlator [30]. Some previously
obtained results are shown as well. We observe that our
Nf ¼ 2þ 1 findings are comparable with those well inside

the QGP phase. Not shown are the much larger value,
�=T � 7, found in Ref. [5] above Tc, and the much smaller
lower bound found in Ref. [31] from a reanalysis of the
data of Ref. [9].

Conclusion.—We have presented the first lattice QCD
analysis of the electrical conductivity in the QCD plasma
across the deconfinement transition. While inside the
QGP our results are comparable with previously obtained
results, we have for the first time observed an increase of
�=T, starting already in the confined phase. It would be
interesting to explain this behavior in effective QCD mod-
els or semianalytically, both below and above Tc, see, e.g.,
Refs. [32–35]. In the near future, we plan to include the
contribution from the strange quark to the current. Finally,

we note that this calculation only offers the QCD contri-
bution to the conductivity and not the contribution from
weakly interacting leptons.
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