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We analyze to what extent the complex Langevin method, which is in principle capable of solving the

so-called sign problems, can be considered as reliable. We give a formal derivation of the correctness and
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practical suggestions about the application of the method.
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I. INTRODUCTION

The complex Langevin method solves in principle the
sign problems arising in simulations of various systems, in
particular, in QCD with finite chemical potential. After
being proposed in the early 1980s by Klauder [1] and
Parisi [2], it enjoyed a certain limited popularity [3,4],
but very quickly certain problems were found. The first
one was instability of the simulations with absence of
convergence (runaways), the second one convergence to
a wrong limit [5–8]. Nevertheless in recent years the
method has been revived with sometimes impressive suc-
cess [9–16]. In particular the use of adaptive step size has
eliminated the problem of runaways [17].

But nagging problems remained due to the lack of clear
criteria to decide when an apparently convergent simula-
tion actually represented the truth. This was linked to the
lack of a clear mathematical basis for the method, that
would at the same time also provide criteria for its appli-
cability. The purpose of the present paper is to clarify the
situation at least to some extent. While we are still not able
to close certain mathematical gaps and reach a complete
analytic solution to the problems that have plagued the
method, we give some strong numerical evidence that the
method is correct in some cases and also suggest a plau-
sible explanation for the failure in other cases; this leads to
some pragmatic conclusions suggesting how to proceed in
practice in a way that promises credible results.

The paper is organized as follows. In Sec. II we give a
formal justification of the method, highlighting the as-
sumptions underlying the derivation. In Sec. III three
main questions raised by the formal arguments are listed.
We then focus on one particular issue, boundary effects, in

Sec. IV, and present detailed case studies in Sec. V.
Tentative conclusions are given in Sec. VI.

II. FORMAL DERIVATIONS

For simplicity we concentrate here on models in which
the fields take values in flat manifolds M ¼ Rn or M ¼
Tn, where Tn is the n dimensional torus ðS1Þn with coor-
dinates ðx1; . . . ; xnÞ. The complications that arise when the
fields live in nontrivial manifolds, as is of course the case in
QCD, have been successfully dealt with in the literature
(see for instance, Ref. [18] for real, Refs. [10,12,19,20] for
complex Langevin dynamics). But these complications are
not really relevant for our discussion.
As is well known, the idea is to simulate a complex

measure expð�SÞdx, with S a holomorphic function on a
real manifoldM, by setting up a stochastic process on the
complexification Mc of M, such that the expectation
values of entire holomorphic observables O in this sto-
chastic process converge to the ones with respect to the
complex measure expð�SÞdx.
The complex Langevin equation (CLE) on Mc is

dz ¼ �rSdtþ dw; (1)

where dw denotes the increment of the Wiener process and
the equation is to be interpreted as a real stochastic process,
namely,

dx ¼ Kxdtþ dw; dy ¼ Kydt; (2)

with

Kx ¼ �RerxSðxþ iyÞ; Ky ¼ �ImrxSðxþ iyÞ:
(3)

A slight generalization of Eq. (2) that has been considered
and will play a role in this investigation is

dx ¼ Kxdtþ
ffiffiffiffiffiffiffi
NR

p
dwR; dy ¼ Kydtþ

ffiffiffiffiffiffi
NI

p
dwI; (4)
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where dwR and dwI are independent Wiener processes,
NI � 0 and NR ¼ NI þ 1. This is usually referred to as
complex noise. The introduction of a nonzero NI makes it
possible to solve the Fokker-Planck equation (see below)
numerically and also allows a random walk discretization
of the complex Langevin process:

�xðtÞ ¼ �!x; Px;� ¼ 1

2

�
1� tanh

�
!x

2NR

Kx

��
; (5)

�yðtÞ ¼ �!y; Py;� ¼ 1

2

�
1� tanh

�
!y

2NI

Ky

��
; (6)

!x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NR�t

p
; !y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2NI�t

p
; (7)

where P� are the transition probabilities and we have
defined the steps ! such as to have the same �t in both
subprocesses, to ensure correct evolution.

By Itô calculus, if f is a twice differentiable function on
Mc and

zðtÞ ¼ xðtÞ þ iyðtÞ (8)

is a solution of the complex Langevin equation (4), we
have

d

dt
hfðxðtÞ; yðtÞÞi ¼ hLfðxðtÞ; yðtÞÞi; (9)

where L is the Langevin operator

L ¼ ½NRrx þ Kx�rx þ ½NIry þ Ky�ry; (10)

and hfi denotes the noise average of f corresponding to the
stochastic process described by Eq. (4). In the standard
way Eq. (4) leads to its dual Fokker-Planck equation (FPE)
for the evolution of the probability density Pðx; y; tÞ,

@

@t
Pðx; y; tÞ ¼ LTPðx; y; tÞ; (11)

with

LT ¼ rx½NRrx � Kx� þ ry½NIry � Ky�: (12)

LT is the formal adjoint (transpose) of L with respect to the
bilinear (not Hermitian) pairing

hf; Pi ¼
Z

fðx; yÞPðx; yÞdxdy; (13)

i.e.,

hLf; Pi ¼ hf; LTPi: (14)

Note that the FPE has the form of a continuity equation

@

@t
Pðx; y; tÞ ¼ rxJx þryJy; (15)

where ðJx; JyÞ is the probability current in the 2n dimen-

sional space Mc, given by

Jx ¼ ðNRrx � KxÞP; Jy ¼ ðNIry � KyÞP: (16)

We will also consider the evolution of a complex density
�ðxÞ on M under the following complex FPE:

@

@t
�ðx; tÞ ¼ LT

0�ðx; tÞ; (17)

where now the complex Fokker-Planck operator LT
0 is

LT
0 ¼ rx½rx þ ðrxSðxÞÞ�: (18)

A slight generalization will be useful: For any y0 2 M we
consider a complex Fokker-Planck operator LT

y0 given by

LT
y0 ¼ rx½rx þ ðrxSðxþ iy0ÞÞ�: (19)

LT
y0 is the formal adjoint of

Ly0 ¼ ½rx � ðrxSðxþ iy0ÞÞ�rx: (20)

The operators LT
y0 act on suitable complex valued distribu-

tions (measures) on M, parametrized by the real variables
ðx1; � � � ; xnÞ. But they do not allow a probabilistic inter-
pretation, because they do not preserve positivity.
For any y0 Eq. (17) with LT

0 replaced by LT
y0 has the

complex density

�y0ðx;1Þ / exp½�Sðxþ iy0Þ� (21)

as its (hopefully unique) stationary solution.
We next consider expectation values. Let O be an entire

holomorphic observable with at most exponential growth;
then we set

hOiPðtÞ �
R
Oðxþ iyÞPðx; y; tÞdxdyR

Pðx; y; tÞdxdy (22)

and

hOi�ðtÞ �
R
OðxÞ�ðx; tÞdxR
�ðx; tÞdx : (23)

We would like to show that

hOiPðtÞ ¼ hOi�ðtÞ; (24)

provided the initial conditions agree,

hOiPð0Þ ¼ hOi�ð0Þ; (25)

which is true if we choose

Pðx; y; 0Þ ¼ �ðx; 0Þ�ðy� y0Þ (26)

(for any y0). In the limit t ! 1 the dependence on the
initial condition should of course disappear by ergodicity.
The goal is to establish a connection between the ‘‘ex-

pectation values’’ with respect to � and P for the class of
observables chosen (entire holomorphic with at most ex-
ponential growth). The idea is to move the time evolution
from the densities to the observables and make use of the
Cauchy-Riemann (CR) equations. Formally (i.e., without
worrying about boundary terms and existence questions),
this works as follows: first we use the fact that we want to
apply the complex FP operators Ly0 only to functions that
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have analytic continuations to all ofMc. On those analytic
continuations we may act with the Langevin operator

~L � ½rz � ðrzSðzÞÞ�rz; (27)

whose action on holomorphic functions agrees with that of
L, since on such functions ry ¼ irx and �x ¼ ��y so

that the difference L� ~L vanishes.
The proliferation of Langevin/Fokker-Planck operators

may be somewhat bewildering, but it is important to realize
that L, ~L, Ly0 are really all different operators: while L and
~L act on functions on Mc [i.e., functions of
ðx1; y1; . . . ; xn; ynÞ], agreeing on holomorphic functions,
but disagreeing on general functions, Ly0 acts on functions

on M, i.e., functions of ðx1; . . . ; xnÞ.
We now use ~L to evolve the observables by the equation

@tOðz; tÞ ¼ ~LOðz; tÞ ðt � 0Þ (28)

with the initial condition Oðz; 0Þ ¼ OðzÞ, which is for-
mally solved by

O ðz; tÞ ¼ exp½t ~L�OðzÞ: (29)

In Eqs. (28) and (29), because of the CR equations, the tilde
may be dropped, and we will do so now. So we will have

@tOðz; tÞ ¼ LOðz; tÞ ðt � 0Þ; (30)

with its formal solution

O ðz; tÞ ¼ exp½tL�OðzÞ: (31)

In fact Eq. (28) is also equivalent to the family of equations

@tOðxþ iy0; tÞ ¼ Ly0Oðxþ iy0; tÞ ðt � 0Þ 8 y0:

(32)

The first thing to notice is that Oðz; tÞ will be holomorphic
if Oðz; 0Þ is. This can be seen as follows: Let �@j ði ¼
j; . . . ; nÞ be the Cauchy-Riemann operators defined by

�@ j � @xj þ i@yj : (33)

Applying this to both sides of Eq. (28) and using the fact
that by the holomorphy of S, �@j commutes with L, we find

@t �@jOðz; tÞ ¼ L �@jOðz; tÞ ðt � 0Þ; (34)

this is just Eq. (28) again withOðz; tÞ replaced by �@jOðz; tÞ.
Under the assumption that L generates a semigroup acting
on �@jOðz; tÞ, Eq. (34) has a unique solution; since the

initial condition is �@jOðz; 0Þ ¼ 0 we conclude that
�@jOðz; tÞ ¼ 0 for all t � 0, i.e., Oðz; tÞ satisfies the CR

equations for all t � 0 and all j ¼ 1; . . . ; n. So Oðz; tÞ is
holomorphic in each component zj separately. By Hartogs’

theorem [21,22] this implies joint holomorphy.
We now consider, for 0 � � � t,

Fðt; �Þ �
Z

Pðx; y; t� �ÞOðxþ iy; �Þdxdy; (35)

and claim that it interpolates between the � and the P
expectations:

Fðt; 0Þ ¼ hOiPðtÞ; Fðt; tÞ ¼ hOi�ðtÞ: (36)

The first equality is obvious, while the second one can be
seen as follows, using Eqs. (26) and (31)

Fðt; tÞ ¼
Z

Pðx; y; 0Þ expðtLÞOðxþ iy; 0Þdxdy

¼
Z

�ðx; 0ÞðexpðtLy0ÞOðxþ iy0; 0ÞÞdx

¼
Z

Oðxþ iy0; 0ÞðexpðtLT
y0Þ�ðx; 0ÞÞdx

¼ hOi�ðtÞ; (37)

where we only had to assume that we can integrate by parts
in x without worrying about boundary terms.
Our desired result follows if we can show that Fðt; �Þ is

independent of �. To see this, we differentiate

@

@�
Fðt; �Þ ¼ �

Z
ðLTPðx; y; t� �ÞÞOðxþ iy; �Þdxdy

þ
Z

Pðx; y; t� �Þ ~LOðxþ iy; �Þdxdy: (38)

Integration by parts then shows that the two terms cancel,
hence @

@� Fðt; �Þ ¼ 0 and thus

hOiPðtÞ ¼ hOi�ðtÞ: (39)

It is important to notice that this holds for all NI; whereas
the left-hand side seems to depend on NI, the right-hand
side is manifestly independent of it.
If we knew in addition that

lim
t!1hOi�ðtÞ ¼ hOi�ð1Þ; (40)

with �ð1Þ given by Eq. (21) with y0 ¼ 0, we could now
conclude that the expectation values of the Langevin pro-
cess relax to the desired values; this convergence would
follow if we knew that the spectrum of LT

y0 lies in a half

plane Rez � 0 and 0 is a nondegenerate eigenvalue. But
note that we do not really need convergence of Pðx; y; tÞ for
Eq. (40) to hold, since it will only be tested against analytic
observables O.
Nevertheless the numerical evidence in many cases

points to the existence of a unique stationary probability
density Pðx; y;1Þ. The corresponding probability currents
are divergenceless, but unlike the situation in the real
Langevin process, they cannot vanish. A general feature
of the stationary distribution that can be read off the FPE is
the following: Assume that ðx0; y0Þ is a local stationary
point of P, then

ðNR�x þ NI�yÞP ¼ rxðKxPÞ þ ryðKyPÞ; (41)

for x ¼ x0, y ¼ y0. So if NI > 0, a local maximum of P
can only occur where the divergence of the drift force is
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negative and a minimum where it is positive. For NI ¼ 0
the conclusion is even stronger: where the divergence is
negative (positive), there cannot be a local minimum
(maximum) in x for fixed y. These properties provide
some checks on numerical solutions.

III. QUESTIONS

There are three main questions raised by the formal
arguments in the previous section:

(1) Can the operators L, ~L, Ly0 and their transposes be

exponentiated; in more mathematical language: do
these operators generate semigroups on some suit-
able space of functions?

(2) Are the various integrations by parts justified, which
underlie the shifting of the time evolution from the
measure to the observables and back, or are there
boundary terms to worry about?

(3) Are the spectra of L, Ly0 and their transposes en-

tirely in the left half-plane and is 0 a nondegenerate
eigenvalue?

Concerning the first question, there are treatises (see for
instance Refs. [23,24]) giving rather general sufficient
conditions for the existence of a semigroup generated by
differential operators of the general type considered here.
Unfortunately it seems that the cases we have to deal with
here are not covered by those general results; the main
difficulties are (1) the strong growth of the drift given by
the gradients of the action in some complex directions and
(2) the fact that the drift is not always ‘‘restoring.’’

Question (1) for L, LT is intimately related to the ques-
tion whether the stochastic process given by the complex
Langevin equation exists for arbitrary long times. This is
not obvious because typically in the classical (no noise)
limit there are trajectories that go to infinity in finite time.
While those trajectories occur only for a subset of measure
zero of initial conditions, it is not obvious what happens
after adding the noise. On the one hand, the noise will
typically kick the process away from the unstable trajecto-
ries; on the other hand it may also kick it near the unstable
trajectory, inducing very large excursions of the process.
We will later illustrate this with some examples.

But let us say that the accumulated numerical evidence
points not only to the existence of the process for arbi-
trarily large times, but also to the existence of a unique
equilibrium measure for the process; unfortunately we
could neither find results in the mathematical literature
that would imply this, nor could we prove ourselves that
this is the case.

Concerning the exponentiation of ~L, Ly0 , which should

be easier, we still could not establish mathematically that it
is possible on a space of functions containing the most
obvious observables, such as exponentials.

There is a useful criterion for the existence of a bounded
semigroup generated by an operator A on a Hilbert space
[23]: A generates a bounded semigroup if it is dissipative,

i.e., if Aþ Ay � 0. Unfortunately even in the simplest
cases of a quadratic S the corresponding Langevin and
FPE operators are not dissipative. So they can at best
generate exponentially bounded semigroups; if in addition
the spectrum is in the left half-plane, convergence to the
equilibrium should still take place.
For the second question it would be necessary to have

good control over the falloff of the solutions of the FPE in
the imaginary directions: if we insert the observables
OkðzÞ � expðikzÞ into Eq. (39), we get for the Fourier
transform (Fourier coefficients in the compact case)
�̂ðk; tÞ of the complex density �ðx; tÞ

�̂ðk; tÞ ¼ 1

ð2�Þn
Z

Pðx; y; tÞeikx�kydxdy: (42)

This makes sense for all k only if Pðx; y; tÞ decays more
strongly than any exponential in imaginary direction. Our
case studies described in the following sections indicate
that this does not seem to be the case: in our first example
the decay is probably exponential, but not stronger; in our
second example the decay seems to be even weaker
[Oðjyj�rÞ with r � 2], so that exponentials cannot be
used as observables. The remainder of the paper is mainly
devoted to studying question (2) in some toy models.
Finally let us remark that the third question is more

difficult than the first one, and again the answer is not
known rigorously. But again the numerical evidence
strongly suggests a positive answer, depending on the
model and the parameter values, in many interesting and
relevant cases (see, e.g., Refs. [12,14]).

IV. BOUNDARY EFFECTS

In this paper we are mainly concerned with question (2).
Even though we have very little analytic control, careful
numerical studies reveal that, as remarked, the answer is
generally no. In our case studies we find indications that
the probability density Pðx; y; tÞ indeed relaxes to an equi-
librium density Pðx; y;1Þ, but that limiting density decays
at best like an exponential for jyj ! 1, in other cases only
powerlike. This limits the class of observables for which
the integrations by parts can be performed without bound-
ary terms.
But let us first take a closer look at the integrations by

parts that occur in the formal arguments of Sec. II. The
danger lies in a possibly insufficient falloff in the imagi-
nary (y) directions, whereas in the real (x) direction we
have either compactness or sufficient falloff due to the
behavior of the action S.
Let us remark that for NI > 0 the operators L and LT are

uniformly strictly elliptic; this is important, because it
implies regularity for any solution of the stationary FPE
[25]. It is also to be expected that the semigroup expðtLTÞ
has a smooth (even real analytic) kernel so that for t > 0
Pðx; y; tÞ will be smooth (real analytic). This is supported
by our numerical studies. So the problematic point is to
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show that the two terms on the right-hand side of Eq. (38)
actually cancel. This may fail because the observables O
typically grow in imaginary direction, whereas the decay
of Pðx; y; tÞ (always assuming it exists) may be insufficient
to compensate for it.

Let us see in a little more detail how the argument for the
independence ofNI may fail. For simplicity of presentation
we consider the one-dimensional case (n ¼ 1). We write
the Langevin operator (10) as

L ¼ LNI¼0 þ NI�; (43)

where LNI¼0 is the Langevin operator for NI ¼ 0, NR ¼ 1.

Then let us consider

@

@NI

Z
Pðx; y; tÞOðxþ iyÞdxdy

¼ @

@NI

Z
ðetðLT

NI¼0
þNI�ÞPðx; y; 0ÞÞOðxþ iyÞdxdy: (44)

We use the formula

@

@NI
etL

T ¼
Z t

0
d�e�L

T
�eðt��ÞLT

; (45)

and integration by parts to rewrite Eq. (44) as

Z t

0
d�

Z
Pðx; y; t� �Þ�Oðxþ iy; �Þdxdyþ X: (46)

The term denoted by X collects possible boundary terms
arising in the integration by parts. It vanishes only if the
decay of Pðx; y; t� �Þ is strong enough to offset any
possible growth of Oðx; y; �Þ; otherwise it may either con-
verge to a finite nonzero value or diverge. By the CR
equations the first term vanishes, but the uncontrolled
boundary term X remains.

Let us look at a simple example that shows how and
when the formal argument fails. Consider

X ¼
Z
ð�Pðx; y; tÞÞOðxþ iyÞdxdy

�
Z

Pðx; y; tÞ�Oðxþ iyÞdxdy (47)

(where the second term vanishes on account of the CR
equations). By the formal argument this would be zero,
being just a boundary term, but careful application of
integration by parts, at first over the finite domain �Y� <
y < Yþ, gives

X ¼ lim
Y�!1

Z
dx½ðryPðx; y; tÞÞOðxþ iyÞ

� Pðx; y; tÞryOðxþ iyÞ�jYþ�Y� : (48)

Here it is clear that what matters is the combined asymp-
totic behavior of P and O, and depending on the observ-
able, Xmay be zero, finite, or divergent. Of course the form

of the boundary terms is less simple when using integration
by parts in Eqs. (38) and (44), but we expect that it is still
the decay of the products like PO, OryP, PryO that is

relevant.
When trying to investigate the effects of the boundary

numerically, one would in principle like to use the proba-
bility density obtained without a cutoff. In practice this is,
however, not feasible, and we therefore introduce a cutoff
in the imaginary direction, which is not sent to infinity.
Such a device is necessary for the solution of the FPE, and
even though the CLE does not require it, for the purpose of
comparison we also introduce it there. This will, however,
introduce additional problems with the formal arguments
relying on the CR equations as well as integration by parts.
Concretely we proceed as follows: We restrict each yj to

lie between �Y� and Yþ and impose periodic boundary
conditions on both the observables and the probability
densities. This has a number of consequences. First, ob-
servables Oðxþ iyÞ will in general not be continuous
across the ‘‘seam,’’ where we identify yj ¼ �Y� with yj ¼
Yþ. They can therefore not be interpreted as continuous
functions and a priori the Itô formula (9) does not hold (it
may still hold in the sense of distributions, which should be
sufficient for our purposes). Furthermore, the jump across
the seam will mean that the CR equations are no longer
satisfied everywhere. For the evolved observables the CR
equations cannot be expected to hold anywhere exactly, as
the violation that occurred initially only at the boundary
gets propagated everywhere by the Langevin evolution.
Similarly, the drift in the FPE is expected to be discontinu-
ous at the seam. Therefore we have to expect that P has a
jump there as well; this in turn forces us to interpret the
FPE in the sense of distributions.
One might wonder whether it would not be better to

limit the fluctuations in the imaginary direction by intro-
ducing a smooth cutoff; but since such a smooth cutoff
function will necessarily be nonholomorphic it will destroy
the formal arguments even more; we therefore stick with
the simplest choice of a periodic cutoff.
We conclude therefore that the introduction of a cutoff

�Y� < yj < Yþ and imposing periodic boundary condi-

tions leads to a breakdown of the formal arguments given
in Sec. II. Although it is difficult to quantify precisely the
effect of this, it seems reasonable to expect that it is still the
behavior of PO and similar products at large jyjj that

determines what is happening. For the CLE it is also clear
that a very large cutoff will practically not be felt, because
the system very rarely will make contact with it. This is
borne out by our numerics which clearly shows conver-
gence to the limit of infinite cutoff. For the FPE, on the
other hand the issue is less clear, because there are very
large boundary terms arising from the gradients of the drift
across the ‘‘seam.’’ In any case, for the FPE we cannot
directly compare with the cutoff-free results, because these
do not exist.
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V. CASE STUDIES

A. The Uð1Þ one-link model

To understand in more detail how boundary terms affect
the behavior of complex Langevin simulations, we studied
in some detail the Uð1Þ one-link model in the hopping
approximation that was already discussed in Ref. [12] for
NI ¼ 0.

The action is

S ¼ �� cosz� � cosðz� i�Þ ¼ �a cosðz� icÞ; (49)

with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ �e�Þð�þ �e��Þ

q
; (50)

c ¼ 1

2
ln

�þ �e�

�þ �e�� : (51)

The complex drift force is correspondingly

K ¼ �S0 ¼ �� sinz� � sinðz� i�Þ ¼ �a sinðz� icÞ;
(52)

and the two components of the drift read

Kx ¼ �ReS0 ¼ �a sinx coshðy� cÞ; (53)

Ky ¼ �ImS0 ¼ �a cosx sinhðy� cÞ: (54)

As discussed in Ref. [12] there are two fixed points at
ðx; yÞ ¼ ð0; cÞ and ðx; yÞ ¼ ð�; cÞ; the first one is attractive,
the second one repulsive.

A special feature of this model is that for y ¼ c the drift
is purely in x direction. If in addition NI ¼ 0, the Langevin
process will never leave the line y ¼ c if it starts there (we
emphasize that the properties discussed in this paragraph
do not hold for the full Uð1Þ one-link model, which was
studied in detail in Ref. [12]). It is therefore straightfor-
ward to find an explicit solution to the stationary FPE,

Pðx; y;1Þ / e�SðxþicÞ�ðy� cÞ: (55)

It follows that this model is actually equivalent to one with
a real action, once we shift y ! yþ c and replace � by a
(a and c now embody the dependence on the parameters of
the model). The numerics presented below show that the
line y ¼ c is an attractor for the Langevin process; this
indicates that the solution (55) is unique (with proper
normalization). These properties imply that for NI ¼ 0
the dynamics is completely understood.

WhenNI > 0, the presence of the repulsive fixed point is
responsible for the occurrence of large excursions, which
are well known to be the scourge of complex Langevin
simulations. For large y the drift terms dominate over the
noise, and the Langevin process is essentially just a deter-
ministic motion; the ‘‘classical’’ trajectories are given by

zðtÞ ¼ i ln
1� iCe�at

1þ iCe�at þ ic; (56)

where the complex integration constant C is related to the
starting point by

C ¼ tan

�
zð0Þ � ic

2

�
: (57)

It is easy to see that all trajectories, except those starting on
the unstable trajectories (Imzð0Þ ¼ �) are attracted to the
stable fixed point at z ¼ ic.
As an illustration we show in Fig. 1 a scatter plot of a

Langevin simulation clearly exhibiting the classical orbits.
There were 500 update steps between consecutive points
and we used NI ¼ 1. To enhance the classical features, this
simulation was done with the noise terms in the CLE [see
Eqs. (59) and (60) below] suppressed by a factor 10; this is
of course equivalent to replacing � by �=100 while multi-
plying the force terms by a factor of 100. This scatter plot
should capture some generic features that will also be
present for other choices of the model parameters.
In order to numerically study the role of boundary terms

and large jyj values at nonzero NI, we introduce a cutoff in
imaginary direction, placed symmetrically around y ¼ c,
i.e., �Y þ c < y < Y þ c, and impose periodic boundary
conditions. To see the effect of this cutoff, we compute
numerically the expectation values of the observables
expðikzÞ for k ¼ �1, �2, for various values of NI and Y,
both by simulating the Langevin process and by numerical
solution of the FPE. Note that these observables grow
exponentially at large y. The exact values are given by

FIG. 1. Scatter plot for the Uð1Þ one-link model at � ¼ 1, � ¼
0, NI ¼ 1 with reduced noise (see text).
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heikxi ¼ IkðaÞ
I0ðaÞ e

�kc; (58)

where IkðaÞ are the modified Bessel functions of the first
kind.

The Langevin process is discretized in the usual way,

xnþ1 ¼ xn þ �Kxðxn; ynÞ þ
ffiffiffiffiffiffiffiffiffi
�NR

p
	x;n (59)

ynþ1 ¼ yn þ �Kyðxn; ynÞ þ
ffiffiffiffiffiffiffiffi
�NI

p
	y;n (60)

where 	x;n and 	y;n are pseudorandom numbers with zero

mean and variance 2. We use periodic boundary conditions
in the imaginary direction, as stated above. We also use an
adaptive step size [17], choosing � such that the product of
�jKx þ iKyj � 0:001. To estimate the statistical error we

run 100 trajectories with independent random starting
points.

To solve the FPE numerically, we employ the periodicity
in x and consider the Fourier decompositions

�̂ðk; tÞ ¼
Z dx

2�
eikx�ðx; tÞ; (61)

P̂ðk; y; tÞ ¼
Z dx

2�
eikxPðx; y; tÞ; (62)

with the inverse transformations given by

�ðx; tÞ ¼ X1
k¼�1

e�ikx�̂ðk; tÞ; (63)

Pðx; y; tÞ ¼ X1
k¼�1

e�ikxP̂ðk; y; tÞ: (64)

The FPE can be rewritten in terms of these modes as

@tP̂ðk; y; tÞ ¼ ð�NRk
2 þ NI@

2
yÞP̂ðk; y; tÞ

þ a

2
coshðy� cÞ½ðkþ 1ÞP̂ðk� 1; y; tÞ

� ðk� 1ÞP̂ðkþ 1; y; tÞ�
þ a

2
sinhðy� cÞ@y½P̂ðk� 1; y; tÞ

þ P̂ðkþ 1; y; tÞ�: (65)

This equation is solved numerically with a discretized time
step � ¼ 10�5 and a spatial discretization in y of � ¼ ffiffiffi

�
p

.
We vary the cutoff Y in the y direction from 10� up to 500�
(1500� in some cases). In the x direction, with ��< x �
�, we use 20–30 points. We found that convergence was
reached after 106 time steps, corresponding to a Langevin
time t	 10. We found convergence for all the values of NI

and Y studied. For NI ¼ 0, we were not able to solve the

FPE numerically, due to the singular behavior, but the
solution is known analytically, see Eq. (55).
We fix the parameters of the model to be

� ¼ 1:0; � ¼ 0:25; � ¼ 0:5: (66)

In Fig. 2 we show some examples of the real probability
distribution Pðx; y; tÞ at large Langevin time t	 20 for
various NI and a given cutoff Y ¼ 0:474. The y direction
goes from left to right and the compact x direction from

FIG. 2 (color online). Distributions Pðx; y; t ! 1Þ in the Uð1Þ
one-link model, obtained from a numerical solution of the real
FPE, for various values of NI: NI ¼ 0:0001 (top), 0.01 (middle),
0.1 (bottom). See the main text for further details.
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back to front. We observe that at small NI ¼ 0:0001, the
distribution resembles the analytic result at NI ¼ 0. The
distribution is very narrow in the y direction and boundary
effects are not expected to play a role. IncreasingNI results
in a wider distribution, and boundary effects become
clearly visible. The apparent nonsmooth behavior at the
edge jy� cj ¼ Y is to be expected from the discontinuity
across the seam, discussed at the end of the previous
section.

After obtaining the distribution, expectation values of
observables follow from Eq. (22). In Tables I, II, III, IV, V,
VI, and VII (see end of paper) we compare the results of
the Langevin simulation and the FPE for increasing values
of NI from 0 up to NI ¼ 0:1. Note that the Langevin
equation can be solved without a cutoff (Y ¼ 1). The
imaginary parts of the observables are consistent with
zero. The data of the tables are also summarized in

Figs. 3 and 4 (the FPE and the CLE data are indistinguish-
able at the scale of the figures; the rightmost points in Fig. 4
correspond to Y ¼ 4:74 for FPE and 1 for CLE).
The following facts can be inferred from these results:
(1) CLE and FPE give rather similar results, but some-

times they differ by several 
 (statistical error of the
CLE simulation).

(2) All the data show a clear dependence on NI, in
contrast to the conclusion of the formal arguments.
For larger NI values both CLE and FPE give results
different from the exact values.

(3) The best results are generally obtained for the small-
est NI. In this case there is also the weakest Y
dependence, in fact no Y dependence whatsoever
for NI ¼ 0.

Obviously the presence of the cutoff and periodic
boundary conditions affects the CLE and FPE in a similar
way. But theNI dependence shows the failure of the formal
argument, even for Y ¼ 1. At least for k ¼ �1 one has a
clear case of ‘‘convergence to a wrong limit.’’ The data of
the CLE with Y ¼ 1 and k ¼ �2 are actually not really
converged, except for NI ¼ 0. Observing the scatter plots
for different Langevin times it appears unclear whether the
observables expð�2izÞ really reach an equilibrium distri-
bution—they tend to drift out to infinity, whereas their
averages, while remaining small, suffer from huge fluctua-
tions. On the other hand the observables expð�izÞ seem to
reach a stable distribution for Y ¼ 1 and any NI.

B. The model of Guralnik and Pehlevan

Guralnik and Pehlevan [15] studied an instructive toy
model on M ¼ R and Mc ¼ C, called GP model hence-
forth. Its action is

0 0.05 0.1 0.15 0.2

N
I

0.4

0.45

0.5

0.55

0.6

0.65

Y=0.791
Y=0.474
Y=0.316
Y=0.158

0.59

0.595

0.6

0.605

Y=0.791
Y=0.474
Y=0.316
Y=0.158

0 0.005 0.01 0.015 0.02

N
I

0.48

0.485

0.49

0.495

Y=0.791
Y=0.474
Y=0.316
Y=0.158

FIG. 3 (color online). NI dependence of Reheizi (lower points)
and Rehe�izi (higher points) from FPE for various values of the
cutoff Y. The bottom figure zooms in on smaller values of NI .
The lines are guides to the eye, the horizontal dotted lines
indicate the correct results (0.483 564 and 0.592 966, respec-
tively).

0 0.25 0.5 0.75 1

tanh(Y/1.581)

0.45

0.5

0.55

0.6

0.65
N

I
=0.0001

N
I
=0.01

N
I
=0.05

N
I
=0.1

FIG. 4 (color online). Cutoff (Y) dependence of Reheizi (lower
data) and Rehe�izi (upper data) for various values of NI , for FPE
(open symbols) and CLE (full symbols, note that the errorbars
are much smaller that the points). The lines are guides to the eye.
The horizontal dotted lines indicate the correct results.
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S ¼ �i�ðzþ 1
3z

3Þ; (67)

and was studied in connection with PT invariant but non-
Hermitian Hamiltionians (where PT indicates the com-
bined action of parity and time reversal) [26].

The action (67) leads to the drift forces

Kx ¼ �2�xy; Ky ¼ �ð1þ x2 � y2Þ: (68)

There is a stable fixed point at z ¼ i and an unstable one at
z ¼ �i. The ‘‘classical trajectories’’ obtained by leaving
out the noise are given by

zðtÞ ¼ z0 þ i tanhð�tÞ
1� iz0 tanhð�tÞ : (69)

Since this is a Möbius transformation from w ¼ tanhð�tÞ
to zðtÞ the trajectories are circles. They can be imagined to
emerge from the unstable fixed point z ¼ �i at t ¼ �1
and go to the stable fixed point z ¼ i as t ! 1. Those
classical trajectories again can be seen clearly in the large
excursions, since there the noise becomes negligible.
Figure 5 shows the result from a Langevin simulation at
NI ¼ 1:0 and � ¼ 1:0 (in this case there are 50 000 update
steps between two consecutive points).

Guralnik and Pehlevan give the exact results of the first
three moments at � ¼ 1, they are

hzi ¼ �i
Ai0ð1Þ
Aið1Þ ¼ 1:1763i; hz2i ¼ �1;

hz3i ¼ i� hzi ¼ �0:1763i:

(70)

They solved the discretized Langevin equation numeri-
cally, using NI ¼ 0:001, and obtained good agreement

with those exact results. We did some more and probably
longer simulations at NI ¼ 0, 0.1, 0.5, 1.0. The results for
Imhzi are shown in Fig. 6; again they show a clear depen-
dence on NI, in conflict with the formal reasoning. While
for small NI there is agreement with the exact result, for
larger NI we again have convergence to the wrong limit.

FIG. 5. Scatter plot in the GP model with � ¼ 1, NI ¼ 1.

FIG. 6. NI dependence of Imhzi in the GP model at � ¼ 1.

FIG. 7. Scatter plot in the GP model for � ¼ 1, NI ¼ 0.
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The results for Rehz2i show a similar behavior, except
that at NI ¼ 1:0 the result is �0:951ð44Þ, with a statistical
error that is huge compared to the error 0.0007 found at
NI ¼ 0:5. The data for Imhz3i show an even more dramatic
failure for larger NI: they diverge for NI ¼ 1:0, whereas
for NI ¼ 0:5 fluctuations are large. Finally we measured
Imheizi, which has an exact value of 2.2624. Here diver-

gence becomes manifest already for NI ¼ 0:5 (but it might
occur for all NI > 0).
In order to have an idea of the equilibrium distribution

for NI ¼ 0 we show in Fig. 7 a scatter plot of 50 000
configurations in the complex plane. Non-Gaussian behav-
ior is quite clear from this plot. Noticeable is the appear-
ance of sharp edges of the distribution, possibly indicating
jumps, but no � functions like in the Uð1Þ case in the
hopping expansion. To obtain these pictures we sampled
over 60 000 points taken at equal intervals of 0.5 in
Langevin time. Similar distributions have been observed
in Ref. [12] for the full Uð1Þ one-link model. The non-
Gaussian character is further demonstrated in Fig. 8: the
histograms for both Rez and Imz deviate strongly from a
Gaussian distribution.

VI. TENTATIVE CONCLUSIONS

A. Explanation of wrong results

We will now try to interpret these findings. They are
quite analogous in the two model cases and we will try to
reach some conclusions that can be generalized to more
realistic models.
The question of convergence vs divergence apparently

depends on the values of NI, but it is more plausible that
there is no qualitative difference between the different
positive values of NI, only the time needed to observe
the asymptotic behavior is different. On the other hand
forNI ¼ 0 there seems to be really a qualitative difference:
the distributions develop discontinuities or even � func-
tions; but more important is the fact that they seem to drop
very rapidly in the imaginary direction.
We tentatively conclude that for NI ¼ 0 the systems

relax to equilibrium measures that show at least exponen-
tial decay in imaginary direction [in our simpleUð1Þmodel
this decay is of course much stronger—the measure is zero
for jyj> c].
For NI > 0 the situation is less clear, but it seems that in

the Uð1Þ model we get a decay at least like expð�jyjÞ, but
probably not stronger than any exponential. In the model of
Guralnik and Pehlevan the data suggest a powerlike decay
(the power appears to be near 2).
To sum up our tentative conclusions: There is a unique

equilibrium distribution Pðx; y;1Þ for the Langevin pro-
cesses for any NI � 0, but for NI > 0 it shows limited
decay, especially in the imaginary direction.
The type of decay for NI > 0 depends on the model

considered; but for some observables their growth in
imaginary direction may conspire with the falloff of the
equilibrium measure in such a way that we obtain conver-
gence to a wrong limit. In any case one should not expect
convergence of the mean value for all holomorphic
observables.
For very small NI and limited simulation time, the

behavior is of course indistinguishable from the one at
FIG. 8. Distribution of Rez (top) and Imz (bottom) in the GP
model with � ¼ 1, NI ¼ 0.
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NI ¼ 0, and one may reach a quasiconvergence to the right
limit, even if an infinitely long simulation would diverge.

If we try to generalize boldly from our toyUð1Þmodel to
real lattice gauge theories, we expect that for NI > 0 and
for most interesting observables, such as Wilson loops,
Polyakov loops, etc., we have to expect boundary terms
contributing even as the boundary is sent to infinity. For
multiply charged loops and NI > 0 the situation could be

even worse: those boundary contributions may diverge as
the boundary is moved to infinity. But these problems
probably will not occur for NI ¼ 0 and do not show up
at very small values of NI either, at least if simulations are
not run excessively long.
We realize that definite conclusions about the falloff of

the probability density Pðx; yÞ in the y direction have not

TABLE I. NI ¼ 0:0.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.483 31(047) 0.592 65(058) 0.123 11(037) 0.198 65(055)

0.158 CLE 0.483 31(047) 0.592 65(058) 0.132 11(037) 0.198 65(055)

0.474 CLE 0.483 31(047) 0.592 65(058) 0.132 11(037) 0.198 65(055)

0.790 CLE 0.483 31(047) 0.592 65(058) 0.132 11(037) 0.198 65(055)

1.581 CLE 0.483 31(047) 0.592 65(058) 0.132 11(037) 0.198 65(055)

1 CLE 0.483 31(047) 0.592 65(058) 0.132 11(037) 0.198 65(055)

Exact 0.483 56 0.592 97 0.130 65 0.196 46

TABLE III. NI ¼ 0:0001.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.483 45(050) 0.592 80(062) 0.131 14(035) 0.197 14(052)

FPE 0.483 66 0.592 90 0.130 66 0.196 46

0.158 CLE 0.483 85(054) 0.593 35(067) 0.131 53(039) 0.197 71(059)

FPE 0.483 71 0.593 13 0.130 64 0.196 44

0.474 CLE 0.484 02(052) 0.593 57(064) 0.131 48(037) 0.197 62(056)

FPE 0.483 99 0.593 48 0.130 59 0.196 37

0.790 CLE 0.484 25(053) 0.593 77(065) 0.131 46(038) 0.197 64(057)

FPE 0.484 25 0.593 79 0.130 56 0.196 27

1.581 CLE 0.484 85(051) 0.594 54(063) 0.131 15(036) 0.197 25(054)

FPE 0.484 76 0.594 37 0.123 63 0.195 83

1 CLE 0.485 27(051) 0.595 04(063) 0.129 44(047) 0.193 87(079)

Exact 0.483 56 0.592 97 0.130 65 0.196 46

TABLE II. NI ¼ 0:000 01.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.483 44(046) 0.592 81(057) 0.131 54(036) 0.197 78(054)

FPE 0.483 58 0.592 97 0.130 65 0.196 46

0.158 CLE 0.483 69(047) 0.593 13(057) 0.131 94(036) 0.198 35(055)

FPE 0.483 61 0.593 02 0.130 65 0.196 45

0.474 CLE 0.483 70(047) 0.593 13(058) 0.131 88(036) 0.198 22(054)

FPE 0.483 76 0.593 07 0.130 66 0.196 39

0.790 CLE 0.483 72(048) 0.593 19(059) 0.131 86(036) 0.198 12(055)

FPE 0.484 05 0.592 92 0.130 76 0.196 18

1.581 CLE 0.483 82(047) 0.593 30(058) 0.131 83(037) 0.197 92(056)

FPE 0.486 47 0.590 33 0.133 18 0.194 49

1 CLE 0.483 96(047) 0.593 45(058) 0.130 89(042) 0.196 85(056)

Exact 0.483 56 0.592 97 0.130 65 0.196 46
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yet been reached; we intend to return to a more detailed
study of this question in a future paper.

B. Practical conclusions

The conclusions for practical applications are quite
straightforward:

(1) In complex Langevin simulations one should use
NI ¼ 0. If one wants to do a random walk simula-
tion or an iterate of the Fokker-Planck operator, this
is not possible, but one should make sure that
NI 
 1.

TABLE VI. NI ¼ 0:05.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.467 20(051) 0.572 90(063) 0.121 50(034) 0.182 69(051)

FPE 0.467 63 0.572 53 0.121 18 0.181 65

0.158 CLE 0.469 85(054) 0.576 20(066) 0.123 35(037) 0.185 57(055)

FPE 0.470 70 0.576 29 0.123 63 0.185 33

0.474 CLE 0.485 70(057) 0.595 33(071) 0.131 67(042) 0.197 66(065)

FPE 0.486 08 0.595 42 0.131 84 0.197 93

0.790 CLE 0.496 64(055) 0.608 71(068) 0.131 66(046) 0.197 31(074)

FPE 0.496 44 0.608 58 0.131 66 0.197 99

1.581 CLE 0.511 04(056) 0.625 80(080) 0.123 66(074) 0.183 70(114)

FPE 0.510 55 0.626 01 0.123 63 0.185 95

1 CLE 0.522 72(051) 0.640 13(069) 0.075 53(204) 0.113 59(334)

Exact 0.483 56 0.592 97 0.130 65 0.196 46

TABLE IV. NI ¼ 0:001.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.483 42(049) 0.592 93(060) 0.130 95(038) 0.196 92(057)

FPE 0.483 73 0.592 26 0.130 74 0.196 02

0.158 CLE 0.484 10(051) 0.593 46(062) 0.130 68(037) 0.196 32(056)

FPE 0.483 99 0.593 44 0.130 65 0.196 47

0.474 CLE 0.485 38(051) 0.594 97(064) 0.130 90(038) 0.197 02(058)

FPE 0.484 88 0.594 57 0.130 50 0.196 23

0.790 CLE 0.486 19(051) 0.596 05(061) 0.130 66(041) 0.196 55(063)

FPE 0.485 72 0.059 559 0.130 27 0.195 89

1.581 CLE 0.487 62(052) 0.597 61(062) 0.129 34(044) 0.195 03(064)

FPE 0.487 29 0.597 53 0.129 34 0.194 49

1 CLE 0.488 90(050) 0.599 42(063) 0.123 92(068) 0.186 02(086)

Exact 0.483 56 0.592 97 0.130 65 0.196 46

TABLE V. NI ¼ 0:01.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.480 47(049) 0.589 17(060) 0.129 35(035) 0.194 50(053)

FPE 0.480 73 0.588 56 0.128 94 0.193 28

0.158 CLE 0.482 40(051) 0.591 50(063) 0.130 39(037) 0.196 13(056)

FPE 0.483 13 0.591 63 0.130 55 0.195 84

0.474 CLE 0.487 47(053) 0.597 53(067) 0.130 80(041) 0.196 45(059)

FPE 0.487 39 0.597 60 0.130 64 0.196 46

0.790 CLE 0.490 12(055) 0.600 78(069) 0.129 52(045) 0.194 37(069)

FPE 0.490 20 0.601 07 0.129 84 0.195 25

1.581 CLE 0.495 32(052) 0.607 14(068) 0.126 47(054) 0.190 56(085)

FPE 0.495 50 0.607 58 0.126 68 0.190 51

1 CLE 0.499 95(049) 0.612 87(063) 0.107 33(202) 0.161 32(376)

Exact 0.483 56 0.592 97 0.130 65 0.196 46
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(2) Always validate the simulations by comparison with
other trusted computations for parameter values
where other methods are available.

(3) Wilson or Polyakov loops of higher charge will
generally have much larger fluctuations. In general
they are not needed for physics applications, but
they may be worth looking at because they can
give information about the probability distribution.
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TABLE VII. NI ¼ 0:1.

Y hUi hU�1i hU2i hU�2i
0.032 CLE 0.451 44(051) 0.553 58(062) 0.112 67(035) 0.169 41(053)

FPE 0.452 03 0.553 43 0.112 36 0.168 43
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FPE 0.495 75 0.607 40 0.134 46 0.201 98

1.581 CLE 0.521 41(093) 0.638 83(093) 0.123 45(098) 0.185 69(144)

FPE 0.521 57 0.639 48 0.124 26 0.186 92

1 CLE 0.541 04(059) 0.662 30(082) 0.050 49(354) 0.077 23(522)

Exact 0.483 56 0.592 97 0.130 65 0.196 46

COMPLEX LANGEVIN METHOD: WHEN CAN IT BE . . . PHYSICAL REVIEW D 81, 054508 (2010)

054508-13


